
C4.1 Further Functional Analysis – Problem Sheet 4

Three Solutions

These are solutions to Q8, 10 and 12 - which were not fully covered in classes.

1 Question 8

Let X, Y and Z be Banach spaces and let S ∈ B(Y, Z) and T ∈ B(X, Y ).
1. Show that if S, T are both Fredholm then so is ST and indST = indS + indT.

Before getting going on this question it’s useful to make sure you’re happy with
the following facts about finite codimensional spaces:

• If U ⊂ V ⊂ X are subspaces, and U is finite codimensional in V and V
finite codimensional in X, then U is finite codimensional in X.

• If U, V are finite codimensional subspaces of X, then U ∩ V is also finite
codimensional in X. (Check that U ∩ V is finite codimensional in U and
use the previous fact).

The approach taken below is in the spirit of the course, heavily using Theorem
12.4. Another — and arguably nicer — solution can be obtained via some short
exact sequence arguments in the setting of vector spaces.

If S and T are Fredholm then there exist closed finite-codimensional sub-
spaces U and V of X and Y , respectively, such that T maps U isomor-
phically onto RanT and S maps V isomorphically onto RanS. Thus
dimX/U = dim KerT and dimY/V = dim KerS

We want to find a closed finite codimensional subspace M of X such that
ST maps M isomorphically onto a closed finite codimensional subspace of
Z. The plan is to start in the middle, defining W = V ∩ RanT , a closed
finite-codimensional subspace of Y .

Then the space M = U ∩ T−1(W ) is closed in X and satisfies dimU/M =
dim RanT/W , so M has finite codimension in U and hence in X. Similarly,
the space N = S(W ) is closed in Z and dim RanS/N = dimV/W , so N has
finite codimension in RanS and hence in Z. Since ST mapsM isomorphically
onto N we see that ST is Fredholm.

Finally we use the fact that indST can be computed as indST = dimX/M−
dimZ/N (by Theorem 12.4). Then

indST = dimX/M − dimZ/N

= dimX/U + dim RanT/W − dimZ/RanS − dimV/W

= dim KerT − dimY/RanT + dimY/W

− dimZ/RanS + dimY/V − dimY/W

= indT + indS.
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2. Suppose now that ST is Fredholm. Prove that S is Fredholm if and only if T is
Fredholm. Give an example in which neither S nor T is Fredholm.

Suppose that ST is Fredholm. Note that KerT ⊆ KerST and RanST ⊆
RanS. Hence KerT is finite-dimensional and RanS has finite-codimension
in Z, so T is Fredholm if and only if RanT has finite codimension in Y and
S is Fredholm if and only if KerS is finite-dimensional.

Since ST is Fredholm there exists a closed finite-codimensional subspace U of
X such that ST maps U isomorphically onto RanST . Let V = T (U). Then
V ∩KerS = {0}. As U is finite codimension in X, T (U) is finite codimension
in Ran(T ). So RanT is of finite codimension in Y if and only if V is.

Since RanST = S(V ) has finite codimension in Z there exists a finite-
dimensional subspace W of Y such that Y = KerS ⊕ V ⊕ W . Hence
dimY/V <∞ if and only if dim KerS <∞, so T is Fredholm if and only if
S is.

For a suitable example let X = Y = Z = `2 and consider Sx =
(x2, x4, x6, . . . ) and Tx = (0, x1, 0, x2, 0, . . . ). Then ST is the identity op-
erator, and in particular Fredholm, but KerS is infinite-dimensional and
RanT has infinite codimension, so neither S nor T is Fredholm.

3. Show that if X = Y = Z and ST = TS then ST is Fredholm if and only if S
and T are both Fredholm.

We know from part (a) that if S and T are both Fredholm then so is ST .
Suppose Q = ST = TS is Fredholm. Then KerT ⊆ KerQ and RanQ ⊆
RanT , and similarly KerS ⊆ KerQ and RanQ ⊆ RanS. So S, T are both
Fredholm.

2 Question 10

Let X be a Banach space and let {xn : n ≥ 1} be a Schauder basis for X with basis
projections Pn, n ≥ 1, and let

9x9 = sup{‖Pnx‖ : n ≥ 1}, x ∈ X.

Prove that 9 · 9 defines a complete norm on X.
Before we start a quick word about context. This result is used in the proof of

Theorem 14.3, so we should avoid using Theorem 14.3 to prove it (next year I’ll make
this explicit in the question)! So we should not use the fact that the basis projections
are bounded (which was explicitly or implicitly done in many proofs).

If x ∈ X satisfies 9x9 = 0, then Pnx = 0 for all n ≥ 1 and hence x =
limn→∞ Pnx = 0. The other norm axioms are easily seen to be satisfied, so 9 ·9 is
indeed a norm. Let (yk) be a 9 · 9-Cauchy sequence in X. For each k ≥ 1 there
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exists a scalar sequence (λ
(k)
n ) such that yk =

∑∞
n=1 λ

(k)
n xn, k ≥ 1. Then for n ≥ 1

we have

|λ(k)n − λ(`)n |‖xn‖ = ‖(Pn − Pn−1)(yk − y`)‖ ≤ 29yk − y`9, k ≥ `,

and hence the sequence (λ
(k)
n ) is Cauchy for each n ≥ 1, and therefore convergent.

Let λn = limk→∞ λ
(k)
n , n ≥ 1. Given ε > 0 we may find K ≥ 1 such that

9yk − y`9 < ε for k, ` ≥ K. For fixed n > m we deduce that∥∥∥∥ n∑
j=m+1

(λ
(k)
j − λ

(`)
j )xj

∥∥∥∥ = ‖(Pn − Pm)(yk − y`)‖ ≤ 29yk − y`9 < 2ε, k, ` ≥ K.

Let `→∞ to get ∥∥∥∥ n∑
j=m+1

(λ
(k)
j − λj)xj

∥∥∥∥ ≤ 2ε, k ≥ K.

Since the series
∑∞

j=1 λ
(K)
j xj is convergent there exists N ≥ 1 such that∥∥∥∥ n∑

j=m+1

λjxj

∥∥∥∥ ≤ 2ε+

∥∥∥∥ n∑
j=m+1

λ
(K)
j xj

∥∥∥∥ < 3ε, m, n ≥ N.

Hence the series
∑∞

n=1 λnxn is ‖ · ‖-Cauchy and therefore convergent with limit y,
say. Now by the Cauchy condition for (yn) we know that for k, ` ≥ K we have

‖Pn(yk − y`)‖ =

∥∥∥∥ n∑
j=1

(λ
(k)
j − λ

(`)
j )xj

∥∥∥∥ < ε, n ≥ 1.

Letting ` → ∞ we see that ‖Pn(yk − y)‖ ≤ ε for k ≥ K and n ≥ 1. Hence
9yk − y9 ≤ ε for k ≥ K, so the norm 9 · 9 is complete.

3 Question 12

Prove Theorem 14.4: if X is a Banach space with a Schauder basis, then every compact
operator on X is a norm limit of finite rank operators. 1

Let (Pn)∞n=1 be the sequence of basis projections corresponding to a Schauder
basis, so that there exists some M > 0 such that ‖Pn‖ ≤ M and Pnx → x for all
x ∈ X. Let T ∈ K(X). We claim that PnT → T as n → ∞ in operator norm,
from which it follows that T is in the norm closure of the finite rank operators.

1Additional exercise. Show that regardless of separability, every compact operator on a Hilbert
space is a limit of finite rank operators. My generousity does not extend to a solution of the additional
exercise — beyond drawing your attention to the trick in Q4 I discussed in class
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Suppose this fails, then there exists a bounded sequence (xn)n and ε > 0 such
that ‖(PnT − T )xn‖ ≥ ε. Passing to a subsequence we may assume that Txn →
y ∈ X say. But then

‖PnTxn − y‖ ≤ ‖Pn(Txn − y)‖+ ‖Pny − y‖ ≤M‖Txn − y‖+ ‖Pny − y‖ → 0,

as n→∞. This contradiction proves the result.
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