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Sums of squares

The square numbers are {02, 12, 22, 32, . . .}.

Theorem (Fermat)

An odd prime p is a sum of two squares if and only if p ≡ 1
(mod 4).

Theorem (Lagrange)

Every positive integer n is the sum of four squares.
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Proof of Fermat’s theorem

Necessity: Note that x2 ≡ 0, 1 (mod 4). Hence,
x2 + y2 ≡ 0, 1, 2 6≡ 3 (mod 4).

Sufficiency: Based on a useful principle:

Infinite descent

Let P(n) be a proposition. Suppose that the existence of n0 ∈ N

with P(n0) true implies the existence of a smaller n1 ∈ N with
P(n1) true. Then P(n) is false for all n ∈ N.

Equivalent to N being well-ordered.

Example

We claim that if 5a || x2 + 2y2, then a is even. Suppose a is an
odd integer such that 5a || x2 + 2y2 for some x , y . Note that
x2 + 2y2 ≡ 0 (mod 5) implies x ≡ y ≡ 0 (mod 5). Hence,
5a−2 || (x/5)2 + 2(y/5)2 and a− 2 ≥ 1. Now done by infinite
descent.
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Proof of Fermat’s theorem

Let m ≥ 1 be the smallest integer such that mp = x2 + y2 for
some x , y .

Existence: Since p ≡ 1 (mod 4), −1 is a quadratic residue
(mod p) [part A Number Theory]. Hence, ∃x : x2 ≡ −1 (mod p),
so x2 + 12 = mp.

Upper bound: Since the transformations x 7→ x (mod p) and
x 7→ −x do not change x2 (mod p), we may assume that
|x |, |y | < p/2. Hence, mp = x2 + y2 < 2(p/2)2 < p2 =⇒ m < p.

Descent: We claim that there exists 1 ≤ r < m such that
rm ·mp = A2 + B2 with A,B ≡ 0 (mod m). Then,
rp = (A/m)2 + (B/m)2. Done by infinite descent.

4 / 9



Proof of Fermat’s theorem

Key identity:

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2.

Thus, the set of sums of two squares is closed under multiplication.

Let a, b be such that x ≡ a (mod m), y ≡ b (mod m) and
|a|, |b| ≤ m/2. Then

a2 + b2 ≡ x2 + y2 ≡ 0 (mod m)

and a2 + b2 > 0 (since m < p). Now, a2 + b2 = rm for some
1 ≤ r < 2(m/2)2/m < m. But by the key identity,

rm ·mp = A2 + B2, A = ax + by , B = ay − bx .

We have ax + by ≡ x2 + y2 ≡ 0 (mod m), ay − bx ≡ xy − yx ≡ 0
(mod m), so we are done by the descent step.
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Proof of Lagrange’s theorem

Key identity:

(x21 + x22 + x23 + x24 )(y
2

1 + y22 + y23 + y24 ) = (x1y1 + x2y2 + x3y3 + x4y4)
2

+ (x1y2 − x2y1 + x3y4 − x4y3)
2 + (x1y3 − x3y1 + x4y2 − x2y4)

2

+ (x1y4 − x4y1 + x2y3 − x3y2)
2.

Thus, the set of sums of two squares is closed under multiplication.

Since 2 = 12 + 12 + 02 + 02, it suffices to show that any odd prime
p is the sum of four squares.
Let m ≥ 1 be the smallest integer such that
mp = x2

1
+ x2

2
+ x2

3
+ x2

4
.

Existence: Since the set S of squares (mod p) has size
(p + 1)/2, the sets S and −1− S always intersect. Thus, we have
a solution to −1 ≡ x2

1
+ x2

2
(mod p). Then,

0 ≡ x2
1
+ x2

2
+ 12 + 02, so m exists.
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Proof of Lagrange’s theorem

Upper bound: Making changes x 7→ x (mod p) and x 7→ −x , we
may assume that |xi | < p/2. Thus,

mp = x21 + x22 + x23 + x24 < 4(p/2)2 = p2 =⇒ m < p.

Case 1: If m is even, reorder xi such that x1 ≡ x2, x3 ≡ x4
(mod 2). Now,

1

2
mp = ((x1 + x2)/2)

2 + ((x1 − x2)/2)
2

+ ((x3 + x4)/2)
2 + ((x3 − x4)/2)

2 ,

contradicting the minimality of m.
Case 2: Let m be odd.
Descent: We claim that there exists 1 ≤ r < m such that
rm ·mp = A2 + B2 + C 2 + D2 with A,B ,C ,D ≡ 0 (mod m).
Then, rp = (A/m)2 + (B/m)2 + (C/m)2 + (D/m)2. Done by
infinite descent.
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Proof of Lagrange’s theorem

Let yi be such that xi ≡ yi (mod m), |yi | < m/2 (recall m is odd).

Then

y21 + y22 + y23 + y24 < 4(m/2)2 = m2

and y2
1
+ y2

2
+ y2

3
+ y2

4
> 0 (as m < p), so y2

1
+ y2

2
+ y2

3
+ y2

4
= rp

for some 1 ≤ r < m.

Now

rm ·mp = A2 + B2 + C 2 + D2,

where A = x1y1 + x2y2 + x3y3 + x4y4 ≡ x2
1
+ ...+ x2

4
≡ 0 (mod m)

(similarly for B ,C ,D). We are done by the descent step.
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Sums of three squares etc.

We mention the following theorem of Legendre (not proved on this
course):

Theorem

An integer n ≥ 1 is the sum of three squares if and only if n is not
of the form 4a(8m + 7).

Proof of necessity: Sheet 1.

We also mention the characterisation of sums of two squares:

Theorem

An integer n ≥ 1 is the sum of two squares if and only if every
prime divisor p of n that is congruent to −1 (mod 4) divides n to
an even power.

Proof: Sheet 1.
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