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Sums of squares

The square numbers are {02,12,22 32 .. .}.

Theorem (Fermat)

An odd prime p is a sum of two squares if and only if p =1
(mod 4).

Theorem (Lagrange)

Every positive integer n is the sum of four squares.




Proof of Fermat's theorem

Necessity: Note that x> = 0,1 (mod 4). Hence,
x>+ y?2=0,1,2# 3 (mod 4).

Sufficiency: Based on a useful principle:

Infinite descent

Let P(n) be a proposition. Suppose that the existence of np € N
with P(ng) true implies the existence of a smaller n; € N with
P(n1) true. Then P(n) is false for all n € N.

Equivalent to N being well-ordered.

We claim that if 57 || x? 4 2y?, then ais even. Suppose a is an
odd integer such that 57 || x2 + 2y? for some x,y. Note that
x2 +2y? =0 (mod 5) implies x =y =0 (mod 5). Hence,
53=2 || (x/5)? +2(y/5)% and a — 2 > 1. Now done by infinite
descent.




Proof of Fermat's theorem

Let m > 1 be the smallest integer such that mp = x? + y? for
some X, y.

Existence: Since p =1 (mod 4), —1 is a quadratic residue
(mod p) [part A Number Theory]. Hence, 3x: x> = —1 (mod p),
so x% + 12 = mp.

Upper bound: Since the transformations x — x (mod p) and

x + —x do not change x> (mod p), we may assume that

x|, ly| < p/2. Hence, mp = x*> + y? < 2(p/2)? < p> = m < p.
Descent: We claim that there exists 1 < r < m such that

rm- mp = A%2 + B2 with A;B =0 (mod m). Then,

rp = (A/m)? + (B/m)?. Done by infinite descent.



Proof of Fermat's theorem

Key identity:
(8 + b?)(c? 4 d?) = (ac + bd)? + (ad — bc)?.

Thus, the set of sums of two squares is closed under multiplication.

Let a, b be such that x =a (mod m), y = b (mod m) and
la|,|b| < m/2. Then

@ +b=x"+y*=0 (mod m)

and a® 4 b% > 0 (since m < p). Now, a® + b?> = rm for some
1 <r<2(m/2)?/m < m. But by the key identity,

rm-mp =A%+ B2 A=ax+by, B=ay— bx.

We have ax + by = x?>+y?> =0 (mod m), ay —bx =xy —yx =0
(mod m), so we are done by the descent step. O



Proof of Lagrange's theorem

Key identity:

(G +53 + X5 +x3) 07 +¥3 + 3 +yi) = (ayt + xey2 + xay3 + xays)’
+ (x1y2 — Xoy1 + X3ya — X4}/3)2 + (x1y3 — x3y1 + Xayo — X2Y4)2
+ (X1ys — xay1 + xo¥3 — X3Y2)2-

Thus, the set of sums of two squares is closed under multiplication.

Since 2 = 1% 4 12 4+ 0% + 02, it suffices to show that any odd prime
p is the sum of four squares.

Let m > 1 be the smallest integer such that

mple2 —|—X22 —|—X32+Xf.

Existence: Since the set S of squares (mod p) has size
(p+1)/2, the sets S and —1 — S always intersect. Thus, we have
a solution to —1 = xZ + x3 (mod p). Then,

0=x?+ x5 + 12+ 02, so m exists.



Proof of Lagrange's theorem

Upper bound: Making changes x — x (mod p) and x — —x, we
may assume that |x;| < p/2. Thus,

mp = x3 4+ x5 + x5+ x¢ < 4(p/2)* = p> = m < p.

Case 1: If mis even, reorder x; such that x; = x», x3 = xs
(mod 2). Now,

%mp = ([ +x)/2)° + (1 — x)/2)°
+ (s +x)/2)” + ((xs — xa)/2)°,

contradicting the minimality of m.

Case 2: Let m be odd.

Descent: We claim that there exists 1 < r < m such that
rm-mp = A%+ B2+ C2 + D? with A,B,C,D =0 (mod m).
Then, rp = (A/m)? + (B/m)? + (C/m)? + (D/m)?. Done by
infinite descent.



Proof of Lagrange's theorem

Let y; be such that x; = y; (mod m), |yi| < m/2 (recall m is odd).
Then

Vi +yv3+yi+yi <4(m/2)? =m?

and y2 +y2+ys+y2>0(sm<p)soyl+yi+yi+yZ=rp
forsome 1 < r < m.

Now
rm-mp =A%+ B? 4+ C? + D?,

where A = x1y1 + xay2 + x3y3 + Xaya = X2 + ... + x2 =0 (mod m)
(similarly for B, C, D). We are done by the descent step. O



Sums of three squares etc.

We mention the following theorem of Legendre (not proved on this
course):

An integer n > 1 is the sum of three squares if and only if n is not
of the form 42(8m + 7).

Proof of necessity: Sheet 1.

We also mention the characterisation of sums of two squares:

An integer n > 1 is the sum of two squares if and only if every
prime divisor p of n that is congruent to —1 (mod 4) divides n to
an even power.

Proof: Sheet 1.



