C3.10 Additive and Combinatorial NT Lecture 2: Sums of two squares

Joni Teräväinen

Mathematical Institute

The square numbers are $\{0^2,1^2,2^2,3^2,\ldots\}.$

Theorem (Fermat)

An odd prime p is a sum of two squares if and only if $p \equiv 1 \pmod{4}$.

Theorem (Lagrange)

Every positive integer n is the sum of four squares.

Proof of Fermat's theorem

Necessity: Note that $x^2 \equiv 0, 1 \pmod{4}$. Hence, $x^2 + y^2 \equiv 0, 1, 2 \not\equiv 3 \pmod{4}$.

Sufficiency: Based on a useful principle:

Infinite descent

Let P(n) be a proposition. Suppose that the existence of $n_0 \in \mathbb{N}$ with $P(n_0)$ true implies the existence of a smaller $n_1 \in \mathbb{N}$ with $P(n_1)$ true. Then P(n) is false for all $n \in \mathbb{N}$.

Equivalent to \mathbb{N} being well-ordered.

Example

We claim that if $5^a || x^2 + 2y^2$, then *a* is even. Suppose *a* is an odd integer such that $5^a || x^2 + 2y^2$ for some *x*, *y*. Note that $x^2 + 2y^2 \equiv 0 \pmod{5}$ implies $x \equiv y \equiv 0 \pmod{5}$. Hence, $5^{a-2} || (x/5)^2 + 2(y/5)^2$ and $a-2 \ge 1$. Now done by infinite descent.

Let $m \ge 1$ be the smallest integer such that $mp = x^2 + y^2$ for some x, y.

Existence: Since $p \equiv 1 \pmod{4}$, -1 is a quadratic residue (mod p) [part A Number Theory]. Hence, $\exists x: x^2 \equiv -1 \pmod{p}$, so $x^2 + 1^2 = mp$.

Upper bound: Since the transformations $x \mapsto x \pmod{p}$ and $x \mapsto -x$ do not change $x^2 \pmod{p}$, we may assume that |x|, |y| < p/2. Hence, $mp = x^2 + y^2 < 2(p/2)^2 < p^2 \Longrightarrow m < p$.

Descent: We claim that there exists $1 \le r < m$ such that $rm \cdot mp = A^2 + B^2$ with $A, B \equiv 0 \pmod{m}$. Then, $rp = (A/m)^2 + (B/m)^2$. Done by infinite descent.

Proof of Fermat's theorem

Key identity:

$$(a^{2}+b^{2})(c^{2}+d^{2})=(ac+bd)^{2}+(ad-bc)^{2}.$$

Thus, the set of sums of two squares is closed under multiplication. Let a, b be such that $x \equiv a \pmod{m}$, $y \equiv b \pmod{m}$ and $|a|, |b| \leq m/2$. Then

$$a^2 + b^2 \equiv x^2 + y^2 \equiv 0 \pmod{m}$$

and $a^2 + b^2 > 0$ (since m < p). Now, $a^2 + b^2 = rm$ for some $1 \le r < 2(m/2)^2/m < m$. But by the key identity,

$$rm \cdot mp = A^2 + B^2$$
, $A = ax + by$, $B = ay - bx$.

We have $ax + by \equiv x^2 + y^2 \equiv 0 \pmod{m}$, $ay - bx \equiv xy - yx \equiv 0 \pmod{m}$, so we are done by the descent step.

Proof of Lagrange's theorem

Key identity:

$$\begin{aligned} (x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2) &= (x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4)^2 \\ &+ (x_1y_2 - x_2y_1 + x_3y_4 - x_4y_3)^2 + (x_1y_3 - x_3y_1 + x_4y_2 - x_2y_4)^2 \\ &+ (x_1y_4 - x_4y_1 + x_2y_3 - x_3y_2)^2. \end{aligned}$$

Thus, the set of sums of two squares is closed under multiplication.

Since $2 = 1^2 + 1^2 + 0^2 + 0^2$, it suffices to show that any odd prime p is the sum of four squares.

Let $m \ge 1$ be the smallest integer such that $mp = x_1^2 + x_2^2 + x_3^2 + x_4^2.$

Existence: Since the set *S* of squares $(\mod p)$ has size (p+1)/2, the sets *S* and -1 - S always intersect. Thus, we have a solution to $-1 \equiv x_1^2 + x_2^2 \pmod{p}$. Then, $0 \equiv x_1^2 + x_2^2 + 1^2 + 0^2$, so *m* exists.

Proof of Lagrange's theorem

Upper bound: Making changes $x \mapsto x \pmod{p}$ and $x \mapsto -x$, we may assume that $|x_i| < p/2$. Thus,

$$mp = x_1^2 + x_2^2 + x_3^2 + x_4^2 < 4(p/2)^2 = p^2 \Longrightarrow m < p.$$

Case 1: If *m* is even, reorder x_i such that $x_1 \equiv x_2$, $x_3 \equiv x_4 \pmod{2}$. Now,

$$\frac{1}{2}mp = ((x_1 + x_2)/2)^2 + ((x_1 - x_2)/2)^2 + ((x_3 + x_4)/2)^2 + ((x_3 - x_4)/2)^2,$$

contradicting the minimality of m.

Case 2: Let *m* be odd.

Descent: We claim that there exists $1 \le r < m$ such that $rm \cdot mp = A^2 + B^2 + C^2 + D^2$ with $A, B, C, D \equiv 0 \pmod{m}$. Then, $rp = (A/m)^2 + (B/m)^2 + (C/m)^2 + (D/m)^2$. Done by infinite descent.

Proof of Lagrange's theorem

Let y_i be such that $x_i \equiv y_i \pmod{m}$, $|y_i| < m/2$ (recall m is odd). Then

$$y_1^2 + y_2^2 + y_3^2 + y_4^2 < 4(m/2)^2 = m^2$$

and $y_1^2 + y_2^2 + y_3^2 + y_4^2 > 0$ (as m < p), so $y_1^2 + y_2^2 + y_3^2 + y_4^2 = rp$ for some $1 \le r < m$.

Now

$$rm \cdot mp = A^2 + B^2 + C^2 + D^2,$$

where $A = x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4 \equiv x_1^2 + \ldots + x_4^2 \equiv 0 \pmod{m}$ (similarly for B, C, D). We are done by the descent step. We mention the following theorem of Legendre (not proved on this course):

Theorem

An integer $n \ge 1$ is the sum of three squares if and only if n is not of the form $4^{a}(8m + 7)$.

Proof of necessity: Sheet 1.

We also mention the characterisation of sums of two squares:

Theorem

An integer $n \ge 1$ is the sum of two squares if and only if every prime divisor p of n that is congruent to $-1 \pmod{4}$ divides n to an even power.

Proof: Sheet 1.