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Waring’s problem

Lagrange’s theorem: any n ≥ 1 is the sum of four squares.

Waring (1770) conjectured:

Waring’s problem

Let k ≥ 2. Then there exists s = s(k) such that every positive
integer is the sum of s kth powers of nonngeative integers.

This was finally proved by Hilbert (1909) and Hardy and
Littlewood (1920s).
It suffices to prove that every large n is a sum of kth powers.

Definition

Denote by G (k) be the least integer s such that every large enough
integer is the sum of s kth powers of nonnegative integers.

Theorem (Solution to Waring’s problem)

G (k) is finite, and moreover G (k) ≤ 100k .
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Waring’s problem

In Section 8 of lecture notes (Hua’s lemma), it is proved that
G (k) ≤ 2k + 1.

We have the easy lower bound G (k) ≥ k + 1 (Sheet 1), but the
best upper bound is a deep result of Wooley:
G (k) ≤ k log k + k log log k + O(k).

G (2) = 4, G (4) = 16, but all other values unknown! Open
problem: Is G (3) = 4?.

We will follow (a modern version of) Hardy and Littlewood’s proof.
This is based on their influential circle method.
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Waring’s problem: Asymptotic formula

We will in fact prove an asymptotic formula:
Theorem (Asymptotics for Waring’s problem)

Let rk,s(N) be the number of representations of N as xk1 + ...+ xks ,
xi ≥ 0. Suppose that s ≥ 100k . Then

rk,s(N) = Sk,s(N)Ns/k−1 + o(Ns/k−1),

where the singular series is

Sk,s(N) = β∞
∏

p

βp(N),

and βp(N) is the local density of solutions,

βp(N) = lim
n→∞

p−n(s−1)|{(x1, ..., xs) ∈ (Z/pnZ)s :
∑

i≤s

xki ≡ N (pn)}|,

and the Archimedean density is

β∞ = Γ(1 + 1/k)s/Γ(s/k).
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Waring’s problem: Asymptotic formula

The asymptotic formula is complemented by

Theorem (Singular series)

For s ≥ k4 we have 1 ≪ Sk,s(N) ≪ 1 (i.e., Sk,s(N) ≍ 1).

Interpretation of the asymptotic formula:

It implies that rk,s(N) ≍ Ns/k−1. This is the expected order of
magnitude, since we can show by elementary means (Sheet 1) that

cs,kN
s/k ≤

∑

n≤N

rk,s(N) ≤ Cs,kN
s/k .

The asymptotic formula is a local-to-global principle: If
P(x1, ..., xs) = xk1 + ....+ xks , then

|{x̄ ∈ N
s
0 : P(x̄) = N}|

∼ β∞Ns/k−1
∏

p

lim
n→∞

Pr(x̄ ∈ (Z/pnZ)s : P(x̄) ≡ N (mod pn),

and one can show that β∞Ns/k−1 = Area(x̄ ∈ R≥0 : P(x̄) = N).
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The Hardy–Littlewood circle method

This method will underlay what we do in the next few lectures.

The details are somewhat complicated, but the ideas are important.

Very roughly, the circle method tells us that

Counting sol’s to a1 + ...+ as = N, ai ∈ A ↔ Estimating 1̂A(θ) ∀θ ∈ T.

However, the number of variables here needs to be large enough
(depending on the problem at hand) for this approach to work.

Thus, the key object will be the the Fourier transform (or
exponential sum)

1̂A(θ) =
∑

n∈A

e(−θn).
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The Hardy–Littlewood circle method

More precisely, we have the following

Theorem

If A ⊂ Z is finite, then

|{(a1, ..., as) ∈ As : a1 + ...+ as = N}| =
∫ 1

0
1̂A(θ)

se(Nθ) dθ.

Proof: The LHS is ∑

a1,..,as∈A

1a1+...+as−N=0.

Use 1n=0 =
∫ 1
0 e(nx) dx and change order of integral and sum.

Corollary

Denoting X = {nk : n ≤ N1/k},

rk,s(N) =

∫ 1

0
1̂X (θ)

se(Nθ) dθ.
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The Hardy–Littlewood circle method

We now need to estimate 1̂X (θ) uniformly in θ.

Heuristic: 1̂X (θ) is typically large when θ ≈ a/q with a, q “small”.

If θ is “far from” such rationals (“highly irrational”), then 1̂X (θ) is
small.

Example

Suppose θ = 1/3, k = 2. Then

1̂X (θ) =
∑

n≤N1/2

e(n2/3) = (1/3 + 2e(1/3)/3 + o(1))N1/2 ≫ N1/2.

Similarly, if θ = a/q with q = O(1), then

1̂X (θ) =
∑

n≤N1/2

e(an2/q) ≫ N1/2.

Lastly, if we perturb θ by c/N for small c > 0, nothing changes.
8 / 11



The Hardy–Littlewood circle method

Example

Let θ =
√
2, k = 2. Then

1̂X (θ) =
∑

n≤N1/2

e(
√
2n2).

We expect the sequence
√
2n2 (mod 1) to be equidistributed in

[0, 1], and therefore we expect 1̂X (θ) = o(N1/2). Again, the same
holds if we perturb θ by o(1/N).
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The Hardy–Littlewood circle method

Let ‖θ‖ be the distance from θ to the nearest integer. We identity
T and [0, 1).
To talk rigorously about rationals of small denominator, we define:

Definition

Set η := 1/(10k). Define the major arcs

M =
⋃

q≤Nη

a∈(Z/qZ)∗

Ma,q,

where
Ma,q := {θ ∈ T : |θ − a

q
| ≤ N−1+2η}.

Define the minor arcs m to be T \M.

Roughly, θ ∈ M if there is q . 1 such that ‖qθ‖ . 1/N.
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The Hardy–Littlewood circle method

The idea of the circle method is to evaluate∫

M

1̂X (θ)
se(Nθ) dθ and

∫

m

1̂X (θ)
se(Nθ) dθ.

Why is this called the circle method? Think of T as the unit circle
of C (via x 7→ e(x)), and draw a small arc around every point of
the unit circle having angle a rational multiple of 2π.
Prop. 3.2.1 (Major arcs)

Let s ≥ 2k + 1. Then,∫

M

1̂X (θ)
se(Nθ) dθ = Sk,s(N)Ns/k−1 + o(Ns/k−1).

Prop. 3.2.2 (Minor arcs)

Let s ≥ 100k . Then,∫

m

1̂X (θ)
se(Nθ) dθ = o(Ns/k−1).

These propositions, together with bounds for the singular series,
will lead to the solution of Waring’s problem. 11 / 11


