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Circle method

Recall we need to prove three things to solve Waring’s problem:

Prop. 3.2.1 (Major arcs)

Let s ≥ 2k + 1, X = {nk : n ≤ N1/k}. Then,∫

M

1̂X (θ)
se(Nθ) dθ = Sk,s(N)Ns/k−1 + o(Ns/k−1).

Prop. 3.2.2 (Minor arcs)

Let s ≥ 100k . Then,∫

m

1̂X (θ)
se(Nθ) dθ = o(Ns/k−1).

Prop. 3.1.1 (Singular series)

Let s ≥ k4. Then 1 ≪ Sk,s(N) ≪ 1 (i.e., Sk,s(N) ≍ 1).
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The minor arcs

By the triangle inequality,

∣∣∣∣
∫

m

1̂X (θ)
se(Nθ) dθ

∣∣∣∣ ≤ sup
θ∈m

|1̂X (θ)|
s ,

so the minor arc proposition will follow from

Prop. 4.0.1 (Pointwise estimate)

Let ε = 100−k . Then

sup
θ∈m

|1̂X (θ)| ≪ N1/k−ε.

We will deduce this from a slightly more general bound for
exponential sums

∑
x∈I e(P(x)) (Weyl sums).
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Weyl sums

Theorem 4.2.1 (estimate for Weyl sums)

Set Ck := 10k . Let δ be sufficiently small in terms of k , and
suppose that L > δ−Ck . Let I ⊆ Z be an interval of length at most
L. Let P : Z → R, P(x) = αxk + · · · be a polynomial of degree k .
Suppose that |

∑
x∈I e(P(x))| ≥ δL. Then there is q ≤ δ−Ck such

that ‖qα‖ ≤ δ−CkL−k .

Deduction of Prop. 4.0.1: Take I = {n ≤ N1/k}, L = ⌊N1/k⌋,
δ = N−ε (ε = 100−k). Then if θ ∈ R satisfies |1̂X (θ)| > δN1/k ,
there exists q ≤ δ−Ck ≤ Nη (η = 1/(10k)) such that
‖qθ‖ ≤ δ−CkL−k ≪ Nη−1, so θ ∈ M.

4 / 11



Vinogradov’s lemma

The proof of Theorem 4.2.1 (Weyl sums) makes use of a lemma on
the distribution of nα (mod 1).

If α is “highly irrational”, then we expect uniform distribution:
‖αn‖ ≤ δ for proportion 2δ for integers n ≤ N. The next lemma is
a converse to this: if ‖αn‖ is far from uniformly distributed, then α
is “highly rational”.

Lemma (Vinogradov)

There is an absolute constant C with the following property.
Suppose α ∈ R and that I ⊂ Z is an interval with |I | = N.
Suppose δ1, δ2 are positive quantities with δ2 > Cδ1, and suppose
that there are at least δ2N elements n ∈ I for which ‖αn‖ ≤ δ1.
Suppose N ≥ C/δ2. Then there is 1 ≤ q ≤ C/δ2 such that
‖αq‖ ≤ Cδ1/δ2N.

Roughly: If ‖αn‖ ≤ δ for > 1000δN integers and N ≫δ 1, there is
q ≪δ 1 s.t. ‖qα‖ ≪δ 1/N.
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Proof of Vinogradov’s lemma

We start with a well-known lemma.

Theorem (Dirichlet)

Let α ∈ R and Q ≥ 1. Then there exists 1 ≤ q ≤ Q such that
‖qα‖ ≤ 1/Q.

Proof

Apply the pigeonhole principle to α, 2α, ...,Qα (mod 1).
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Proof of Vinogradov’s lemma

The proof of Vinogradov’s lemma is in steps. Let
S = {n ∈ I : ‖αn‖ ≤ δ1}.

Step 1: Reduction to the case I = [1,N] ∩ Z.

This is just a change of variables.

Step 2: Applying Dirichlet’s theorem.

Apply Dirichlet’s thm with Q = 4N. Thus, ∃1 ≤ q ≤ 4N such that
‖αq‖ ≤ 1/(4N). Hence, ∃a coprime to q such that
|α− a/q| ≤ 1/(4qN). This gives

‖αn‖ ≤ ‖an/q‖+ 1/(4q), for n ∈ S .

Step 3: Reducing q. The number of solutions n to
‖an/q‖ ≤ δ1 + 1/(4q) is

≤ (N/q + 1)|{1 ≤ n ≤ q : ‖an/q‖ ≤ δ1 + 1/(4q)}|

≤ (N/q + 1)(2q(δ1 + 1/(4q)) + 1).

This should be ≥ δ2N, so with a bit of algebra q ≤ 16/δ2.
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Proof of Vinogradov’s lemma

Step 4: Reducing ‖α‖.

By Step 3, we have q ≤ 16/δ2, so δ1 < 1/(2q). Recalling
|α− a/q| ≤ 1/(4qN), this gives

‖an/q‖ < 1/q, for n ∈ S .

Thus S ⊂ qZ ∩ [1,N].

Step 5: Finishing the proof.

Let θ = α− a/q. Since S ⊂ qZ, we have ‖θn‖ = ‖αn‖ for n ∈ S .
But |θ| ≤ 1/(4Nq), so ‖θn‖ = |θn| for all n ≤ N. Thus

|θn| ≤ δ1 (1)

for n ∈ S . But since |S | ≥ δ2N and S ⊂ qZ, ∃n0 ∈ S such that
|n0| ≥ δ2qN. Choosing n = n0 in (1), we get |θ| ≤ δ1/(qδ2N), so
‖αq‖ ≤ ‖θq‖ ≤ δ1/(δ2N).
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Proof of Weyl sum estimate

We need one more ingredient.

Lemma 4.2.1

Let X be finite and b : X → C such that |b(x)| ≤ 1 for all x ∈ X .
Suppose |

∑
x∈X b(x)| ≥ ε|X |. Then there are ≥ ε|X |/2 values of

x ∈ X for which |b(x)| ≥ ε|X |/2.

Proof

Argue by contradiction.

The proof of Prop. 4.2.1 is by induction, so we start with the
simple case of k = 1.
Proof of Prop. 4.2.1 for k = 1. Let P(x) = αx + β be a linear
polynomial. By the geometric sum formula, we have

|
∑

x∈I

e(P(x))| = |

|I |−1∑

j=0

e(αj)| = |
1− e(α|I |)

1− e(α)
| ≤ 2/|1− e(α)| ≪ 1/‖α‖.

Hence, if the LHS is > δL, we must have ‖α‖ ≪ δ−1L−1.
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Proof of Weyl sum estimate

We use induction.The case k = 1 has been handled. Suppose that
the case k − 1 has been handled, and consider case k .

Step 1: Square out and look at discrete derivatives.

By assumption we have

|
∑

x∈I

e(P(x))|2 ≥ δ2L2, so |
∑

x ,y∈I

e(P(x)− P(y))| ≥ δ2L2.

Letting h = y − x and introducing the discrete derivatives
∂hf (x) = f (x + h)− f (x),

|
∑

|h|≤L,x∈Ih

e(∂hP(x))| ≥ δ2L2, Ih = I ∩ (I − h).

By the averaging lemma, this gives

∃ ≥ δ2L/6 values of |h| ≤ L s.t. |
∑

x∈Ih

e(∂hP(x))| ≥ δ2L/6.

Since L > 100δ−2, the contribution of h = 0 is small, so there are
δ2L/18 positive (or negative) h with this property. 10 / 11



Proof of Weyl sum estimate

Step 2: Applying the induction assumption.

Let H be the set of h of size at least δ2L/18 from the previous
slide. Note that crucially ∂hP(x) = kαxk−1 + ... is a polynomial of
degree k − 1, so by induction

∀h ∈ H ∃qh ≪ δ−2Ck−1 s.t. ‖khqhα‖ ≪ δ−2Ck−1L−(k−1).

By pigeonholing, ∃H ′ ⊂ H of size ≫ δ2+2Ck−1L such that qh := q′

is constant for h ∈ H ′.

Step 3: Applying Vinogradov’s lemma.

Apply Vinogradov’s lemma with α′ = kq′α,
δ1 = C1δ

−2Ck−1L−(k−1), δ2 = c2δ
2+2Ck−1 (we have δ2 > Cδ1, since

Ck > 2 + 4Ck−1). Hence,

∃q′′ ≪ δ−1
2 ≪ δ−2−2Ck−1 s.t. ‖α′q′′‖ ≪ δ1/(δ2L) ≪ δ−2−4Ck−1L−k .

Letting q = kq′q′′ and recalling Ck > 2 + 4Ck−1, we are done.
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