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Circle method

Recall we need to prove three things to solve Waring's problem:
Prop. 3.2.1 (Major arcs)
Let s > 2k +1, X = {n*: n < NVk}. Then,

/m Tx(6)°e(N6) db = & s(N)N*/51 1 o(N*/k1),

Prop. 3.2.2 (Minor arcs)
Let s > 100%. Then,

/ 1x(0)e(N6) db = o(N*/k1).

Prop. 3.1.1 (Singular series)

Let s > k* Then 1 < &, s(N) < 1 (i.e., Gks(N) =< 1).




The minor arcs

By the triangle inequality,

| Txopeqo) de‘ < sup [x(O)F,
m fem

so the minor arc proposition will follow from

Prop. 4.0.1 (Pointwise estimate)

Let e = 100~ %. Then

sup |1x(0)] < Nk
fem

We will deduce this from a slightly more general bound for
exponential sums ) ., e(P(x)) (Weyl sums).



Weyl sums

Theorem 4.2.1 (estimate for Weyl sums)

Set C := 10X. Let § be sufficiently small in terms of k, and
suppose that L > §~ . Let | C Z be an interval of length at most
L. Let P:Z — R, P(x) = axk+--- be a polynomial of degree k.
Suppose that | >°, ., e(P(x))| > L. Then there is ¢ < 6~ such
that ||qa|| < 6~ CL=k.

Deduction of Prop. 4.0.1: Take / = {n < N¥/k}, L = |NV/K],
§ = N~¢ (e = 1007%). Then if € R satisfies |1x(6)| > sNV/*,
there exists ¢ < 6~ % < N" (n = 1/(10k)) such that

g0 < 6~ kL=F < N"71, s0 6 € M.



Vinogradov's lemma

The proof of Theorem 4.2.1 (Weyl sums) makes use of a lemma on
the distribution of na (mod 1).

If v is “highly irrational”, then we expect uniform distribution:
|lan|| < & for proportion 26 for integers n < N. The next lemma is
a converse to this: if ||an|| is far from uniformly distributed, then «
is “highly rational”.

Lemma (Vinogradov)

There is an absolute constant C with the following property.
Suppose o € R and that / C Z is an interval with |/| = N.
Suppose d1, d> are positive quantities with d, > Cdy, and suppose
that there are at least 92N elements n € | for which ||an|| < 61.
Suppose N > C/d,. Then there is 1 < g < C/d7 such that

lag|| < Co1/62N.

Roughly: If ||an]|| < ¢ for > 10000N integers and N >>;5 1, there is
g<slst |lgo| <5 1/N.



Proof of Vinogradov's lemma

We start with a well-known lemma.

Theorem (Dirichlet)

Let « € R and @ > 1. Then there exists 1 < g < @ such that
lgal <1/Q.

Apply the pigeonhole principle to «, 2, ..., Qo (mod 1).




Proof of Vinogradov's lemma

The proof of Vinogradov's lemma is in steps. Let
S={nel:|an] <}

Step 1: Reduction to the case | = [1, N] N Z.
This is just a change of variables.
Step 2: Applying Dirichlet's theorem.

Apply Dirichlet's thm with @ = 4N. Thus, 91 < g < 4N such that
|lag|| < 1/(4N). Hence, Ja coprime to g such that
| —a/q| < 1/(4gN). This gives

leen|| < llan/ql| +1/(4q), for neS.

Step 3: Reducing q. The number of solutions n to
lan/q|l < 61+ 1/(4q) is

<(N/g+1){1<n<gq: [an/q| <1 +1/(49)}
< (N/g+1)(2g(61 +1/(4q)) + 1).
This should be > 6, /N, so with a bit of algebra g < 16/65.



Proof of Vinogradov's lemma

Step 4: Reducing ||¢]|.
By Step 3, we have g < 16/d2, so d1 < 1/(2q). Recalling
| —a/q| < 1/(4gN), this gives

llan/q|| <1/q, for neS.

Thus S C qZ N [1, N].
Step 5: Finishing the proof.
Let # = a— a/q. Since S C gZ, we have ||0n|| = ||an|| for n € S.
But |0] <1/(4Ngq), so ||@n|| = |0n]| for all n < N. Thus
|6n] < 61 (1)

for n € S. But since |S| > 02N and S C gZ, 3ng € S such that
[ng| > d2gN. Choosing n = ng in (1), we get 0| < 61/(gd2N), so
e[| < [10q]] < 01/(52N). O



Proof of Weyl sum estimate

We need one more ingredient.

Let X be finite and b : X — C such that |b(x)| <1 for all x € X.

Suppose | >, .x b(x)| > €|X]|. Then there are > €| X|/2 values of
x € X for which |b(x)| > €|X|/2.

Argue by contradiction

The proof of Prop. 4.2.1 is by induction, so we start with the
simple case of k = 1.
Proof of Prop. 4.2.1 for k = 1. Let P(x) = ax + [ be a linear
polynomial. By the geometric sum formula, we have

1/]-1

PNl =1 e (o)l = =20 < 2/ - (@) < Vlall

xel

Hence, if the LHS is > 6L, we must have |ja| < 671L7 1.



Proof of Weyl sum estimate

We use induction.The case k = 1 has been handled. Suppose that
the case k — 1 has been handled, and consider case k.

Step 1: Square out and look at discrete derivatives.

By assumption we have
13 e(PC))P > P12, s0 | S e(P(x) - P(y))| > L2,
x€l x,y€l
Letting h = y — x and introducing the discrete derivatives
Onf(x) = f(x + h) — f(x),
| Y e(OnP(X)| =62, Iy=1n(I—h).
|h|<L,x€El
By the averaging lemma, this gives
3> §°L/6 values of |h| < Ls.t. | Y e(9,P(x))| = 6°L/6.
x€lp

Since L > 100672, the contribution of h = 0 is small, so there are
52L/18 positive (or negative) h with this property.



Proof of Weyl sum estimate

Step 2: Applying the induction assumption.

Let H be the set of h of size at least 62L/18 from the previous
slide. Note that crucially 9,P(x) = kax*~1 + ... is a polynomial of
degree k — 1, so by induction

Vh e H 3qy < §72%1 sit. [|khgnal| < 621~ (k=D

By pigeonholing, 3H' C H of size > §>+2%-1[ such that g, := ¢
is constant for h € H'.
Step 3: Applying Vinogradov's lemma.

Apply Vinogradov's lemma with o/ = kq'«,
61 = o 2CG-1 =(k=1) 5y = 62+2C-1 (we have 0 > Cdy, since
Ck > 2+ 4Ck_1). Hence,

3" < 0, < 072720 st ||/ q|| < 01/(02L) < 6 F 4Gk,

Letting g = kq'q” and recalling C; > 2 + 4C_1, we are done. []



