C3.10 Additive and Combinatorial NT Lecture 4: Waring's problem: the minor arcs

Joni Teräväinen

Mathematical Institute

Circle method

Recall we need to prove three things to solve Waring's problem:

Prop. 3.2.1 (Major arcs)

Let $s \ge 2k+1$, $X = \{n^k : n \le N^{1/k}\}$. Then, $\int_{\mathfrak{M}} \widehat{1_X}(\theta)^s e(N\theta) d\theta = \mathfrak{S}_{k,s}(N) N^{s/k-1} + o(N^{s/k-1}).$

Prop. 3.2.2 (Minor arcs)

Let $s \ge 100^k$. Then,

$$\int_{\mathfrak{m}} \widehat{1_X}(\theta)^s e(N\theta) d\theta = o(N^{s/k-1}).$$

Prop. 3.1.1 (Singular series)

Let $s \geq k^4$. Then $1 \ll \mathfrak{S}_{k,s}(N) \ll 1$ (i.e., $\mathfrak{S}_{k,s}(N) \times 1$).

The minor arcs

By the triangle inequality,

$$\left| \int_{\mathfrak{m}} \widehat{1_X}(\theta)^s e(N\theta) d\theta \right| \leq \sup_{\theta \in \mathfrak{m}} |\widehat{1_X}(\theta)|^s,$$

so the minor arc proposition will follow from

Prop. 4.0.1 (Pointwise estimate)

Let $\varepsilon = 100^{-k}$. Then

$$\sup_{\theta \in \mathfrak{m}} |\widehat{1_X}(\theta)| \ll N^{1/k-\varepsilon}.$$

We will deduce this from a slightly more general bound for exponential sums $\sum_{x \in I} e(P(x))$ (Weyl sums).

Weyl sums

Theorem 4.2.1 (estimate for Weyl sums)

Set $C_k := 10^k$. Let δ be sufficiently small in terms of k, and suppose that $L > \delta^{-C_k}$. Let $I \subseteq \mathbb{Z}$ be an interval of length at most L. Let $P : \mathbb{Z} \to \mathbb{R}$, $P(x) = \alpha x^k + \cdots$ be a polynomial of degree k. Suppose that $|\sum_{x \in I} e(P(x))| \ge \delta L$. Then there is $q \le \delta^{-C_k}$ such that $||q\alpha|| \le \delta^{-C_k} L^{-k}$.

Deduction of Prop. 4.0.1: Take $I = \{n \leq N^{1/k}\}$, $L = \lfloor N^{1/k} \rfloor$, $\delta = N^{-\varepsilon}$ ($\varepsilon = 100^{-k}$). Then if $\theta \in \mathbb{R}$ satisfies $|\widehat{1_X}(\theta)| > \delta N^{1/k}$, there exists $q \leq \delta^{-C_k} \leq N^{\eta}$ ($\eta = 1/(10k)$) such that $||q\theta|| \leq \delta^{-C_k} L^{-k} \ll N^{\eta-1}$, so $\theta \in \mathfrak{M}$.

Vinogradov's lemma

The proof of Theorem 4.2.1 (Weyl sums) makes use of a lemma on the distribution of $n\alpha$ (mod 1).

If α is "highly irrational", then we expect uniform distribution: $\|\alpha n\| \leq \delta$ for proportion 2δ for integers $n \leq N$. The next lemma is a converse to this: if $\|\alpha n\|$ is far from uniformly distributed, then α is "highly rational".

Lemma (Vinogradov)

There is an absolute constant C with the following property. Suppose $\alpha \in \mathbb{R}$ and that $I \subset \mathbb{Z}$ is an interval with |I| = N. Suppose δ_1, δ_2 are positive quantities with $\delta_2 > C\delta_1$, and suppose that there are at least $\delta_2 N$ elements $n \in I$ for which $\|\alpha n\| \leq \delta_1$. Suppose $N \geq C/\delta_2$. Then there is $1 \leq q \leq C/\delta_2$ such that $\|\alpha q\| \leq C\delta_1/\delta_2 N$.

Roughly: If $\|\alpha n\| \le \delta$ for $> 1000\delta N$ integers and $N \gg_{\delta} 1$, there is $q \ll_{\delta} 1$ s.t. $\|q\alpha\| \ll_{\delta} 1/N$.

Proof of Vinogradov's lemma

We start with a well-known lemma.

Theorem (Dirichlet)

Let $\alpha \in \mathbb{R}$ and $Q \geq 1$. Then there exists $1 \leq q \leq Q$ such that $\|q\alpha\| \leq 1/Q$.

Proof

Apply the pigeonhole principle to $\alpha, 2\alpha, ..., Q\alpha \pmod{1}$.

Proof of Vinogradov's lemma

The proof of Vinogradov's lemma is in steps. Let $S = \{n \in I : ||\alpha n|| \le \delta_1\}.$

Step 1: Reduction to the case $I = [1, N] \cap \mathbb{Z}$.

This is just a change of variables.

Step 2: Applying Dirichlet's theorem.

Apply Dirichlet's thm with Q=4N. Thus, $\exists 1 \leq q \leq 4N$ such that $\|\alpha q\| \leq 1/(4N)$. Hence, $\exists a$ coprime to q such that $|\alpha - a/q| \leq 1/(4qN)$. This gives

$$\|\alpha n\| \le \|an/q\| + 1/(4q)$$
, for $n \in S$.

Step 3: Reducing q. The number of solutions n to $\|an/q\| \le \delta_1 + 1/(4q)$ is

$$\leq (N/q+1)|\{1 \leq n \leq q: \|an/q\| \leq \delta_1 + 1/(4q)\}|$$

 $\leq (N/q+1)(2q(\delta_1+1/(4q))+1).$

This should be $\geq \delta_2 N$, so with a bit of algebra $q \leq 16/\delta_2$.

Proof of Vinogradov's lemma

Step 4: Reducing $\|\alpha\|$.

By Step 3, we have $q \le 16/\delta_2$, so $\delta_1 < 1/(2q)$. Recalling $|\alpha - a/q| \le 1/(4qN)$, this gives

$$||an/q|| < 1/q$$
, for $n \in S$.

Thus $S \subset q\mathbb{Z} \cap [1, N]$.

Step 5: Finishing the proof.

Let $\theta = \alpha - a/q$. Since $S \subset q\mathbb{Z}$, we have $\|\theta n\| = \|\alpha n\|$ for $n \in S$. But $|\theta| \le 1/(4Nq)$, so $\|\theta n\| = |\theta n|$ for all $n \le N$. Thus

$$|\theta n| \le \delta_1 \tag{1}$$

for $n \in S$. But since $|S| \ge \delta_2 N$ and $S \subset q\mathbb{Z}$, $\exists n_0 \in S$ such that $|n_0| \ge \delta_2 qN$. Choosing $n = n_0$ in (1), we get $|\theta| \le \delta_1/(q\delta_2 N)$, so $\|\alpha q\| \le \|\theta q\| \le \delta_1/(\delta_2 N)$.

Proof of Weyl sum estimate

We need one more ingredient.

Lemma 4.2.1

Let X be finite and $b: X \to \mathbb{C}$ such that $|b(x)| \le 1$ for all $x \in X$. Suppose $|\sum_{x \in X} b(x)| \ge \varepsilon |X|$. Then there are $\ge \varepsilon |X|/2$ values of

$x \in X$ for which $|b(x)| \ge \varepsilon |X|/2$.

Proof

Argue by contradiction.

The proof of Prop. 4.2.1 is by induction, so we start with the simple case of k = 1.

Proof of Prop. 4.2.1 for k = 1. Let $P(x) = \alpha x + \beta$ be a linear polynomial. By the geometric sum formula, we have

$$|\sum_{x\in I} e(P(x))| = |\sum_{j=0}^{|I|-1} e(\alpha j)| = |\frac{1-e(\alpha |I|)}{1-e(\alpha)}| \le 2/|1-e(\alpha)| \ll 1/||\alpha||.$$

Hence, if the LHS is $> \delta L$, we must have $\|\alpha\| \ll \delta^{-1} L^{-1}$.

Proof of Weyl sum estimate

We use induction. The case k = 1 has been handled. Suppose that the case k - 1 has been handled, and consider case k.

Step 1: Square out and look at discrete derivatives.

By assumption we have

$$|\sum_{x \in I} e(P(x))|^2 \ge \delta^2 L^2$$
, so $|\sum_{x,y \in I} e(P(x) - P(y))| \ge \delta^2 L^2$.

Letting h = y - x and introducing the discrete derivatives $\partial_h f(x) = f(x+h) - f(x)$,

$$|\sum_{|h| \le L, x \in I_h} e(\partial_h P(x))| \ge \delta^2 L^2, \quad I_h = I \cap (I - h).$$

By the averaging lemma, this gives

$$\exists \geq \delta^2 L/6 \text{ values of } |h| \leq L \text{ s.t. } |\sum e(\partial_h P(x))| \geq \delta^2 L/6.$$

Since $L > 100\delta^{-2}$, the contribution of h = 0 is small, so there are $\delta^2 L/18$ positive (or negative) h with this property.

Proof of Weyl sum estimate

Step 2: Applying the induction assumption.

Let H be the set of h of size at least $\delta^2 L/18$ from the previous slide. Note that crucially $\partial_h P(x) = k\alpha x^{k-1} + \dots$ is a polynomial of degree k-1, so by induction

$$\forall h \in H \ \exists q_h \ll \delta^{-2C_{k-1}} \text{ s.t. } \|khq_h\alpha\| \ll \delta^{-2C_{k-1}}L^{-(k-1)}.$$

By pigeonholing, $\exists H' \subset H$ of size $\gg \delta^{2+2C_{k-1}}L$ such that $q_h := q'$ is constant for $h \in H'$.

Step 3: Applying Vinogradov's lemma.

Apply Vinogradov's lemma with $\alpha'=kq'\alpha$, $\delta_1=C_1\delta^{-2C_{k-1}}L^{-(k-1)}$, $\delta_2=c_2\delta^{2+2C_{k-1}}$ (we have $\delta_2>C\delta_1$, since $C_k>2+4C_{k-1}$). Hence,

$$\exists q'' \ll \delta_2^{-1} \ll \delta^{-2-2C_{k-1}} \text{ s.t. } \|\alpha' q''\| \ll \delta_1/(\delta_2 L) \ll \delta^{-2-4C_{k-1}} L^{-k}.$$

Letting q = kq'q'' and recalling $C_k > 2 + 4C_{k-1}$, we are done.