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Circle method

Recall we need to prove three things to solve Waring’s problem:

Prop. 3.2.1 (Major arcs)

Let s ≥ 2k + 1, X = {nk : n ≤ N1/k}. Then,∫

M

1̂X (θ)
se(Nθ) dθ = Sk,s(N)Ns/k−1 + o(Ns/k−1).

Prop. 3.2.2 (Minor arcs)

Let s ≥ 100k . Then,∫

m

1̂X (θ)
se(Nθ) dθ = o(Ns/k−1).

Prop. 3.1.1 (Singular series)

Let s ≥ k4. Then 1 ≪ Sk,s(N) ≪ 1 (i.e., Sk,s(N) ≍ 1).
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Gauss sums

We now begin to study 1̂X (θ) for θ ∈ M. For θ = a/q, we have

1̂X (θ) =
∑

n≤N1/k

e(−ank/q) =
N1/k

q

∑

b∈Z/qZ

e(−abk/q) + O(q).

Thus, we are lead to study

Definition (Gauss sum)

For a ∈ Z/qZ, define

Ga,q =
1

q

∑

b∈Z/qZ

e(−abk/q).

Trivial bound: |Ga,q| ≤ 1. For a ∈ (Z/qZ)∗, expect cancellation.

Prop. 5.0.1 (Pointwise bound for Gauss sums)

Let a ∈ (Z/qZ)∗. Then |Ga,q| ≪ q−1/k+o(1).

This is optimal up to the o(1) in the exponent (Sheet 2).
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Multiplicativity of Gauss sums
The first step in proving Prop. 5.0.1 is a multiplicativity relation.

Lemma 5.1.1

Let q1, q2 ≥ 1 be coprime and ai ∈ (Z/qiZ)
∗. Then

Ga1,q1Ga2,q2 = Ga1q2+a2q1,q1q2 .

Proof. By making the changes of variables x ′1 = q2x1, x
′
2 = q1x2,

Ga1,q1Ga2,q2 =
1

q1q2

∑

x ′1∈Z/q1Z

∑

x ′2∈Z/q2Z

e(−a1

q1
(q2x

′
1)

k − a2

q2
· (q1x ′2)k).

By the binomial theorem,

a1

q1
(q2x

′
1)

k +
a2

q2
· (q1x ′2)k ≡

(
a1

q1
+

a2

q2

)
(q2x

′
1 + q1x

′
2)

k (mod 1)

⇒ Ga1,q1Ga2,q2 =
1

q1q2

∑

x ′1∈Z/q1Z

∑

x ′2∈Z/q2Z

e(−a1q2 + a2q1

q1q2
(q2x

′
1 + q1x

′
2)

k).

Since each element of Z/(q1q2Z) has a unique representation as
q2x

′
1 + q1x

′
2, the RHS is Ga1q2+a2q1,q1q2 .
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Reduction to prime power moduli

We now claim that it suffices to prove

Lemma 5.1.2 (prime power case)

Let q be a prime power and a ∈ (Z/qZ)∗. Then

|Ga,q| ≤ 6kq−1/k . (1)

Proof that Lemma 5.1.2 implies Prop. 5.0.1: By the
multiplicativity relation and (1), for any q and a coprime to q,

|Ga,q| ≤ (6k)ω(q)q−1/k ,

where ω(q) is the number of distinct prime factors of q. If
ω(q) = o(log q), we are done. Note that for any C ≥ 2 we have

Cω(q)−C ≤ q,

so ω(q) ≤ C + (log q)/(logC ). Then let C → ∞.
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The prime power case

We first need a few lemmas about the number of solutions to
congruences in Z/qZ.

Lemma 5.3.2

If q is an odd prime power, there are ≤ k kth roots of unity in
(Z/qZ)∗. If q is a power of two, there are ≤ 2k kth roots of unity
in (Z/qZ)∗

Proof. By [Part A NT], if q is an odd prime power then (Z/qZ)∗

is cyclic. Note that in a cyclic group Z/mZ there are ≤ k solutions
to kx = 0.

If q = 2ν is a power of two, then by [Part A NT] (Z/qZ)∗ is
isomorphic to (Z/2Z)× (Z/2ν−2

Z), so there are ≤ 2k kth roots of
unity.
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The prime power case

The second lemma we need is

Lemma 5.3.3

Let k ≥ 3, and let q be a prime power. Then the number of
solutions to xk = yk in Z/qZ is ≤ 8kq2(1−1/k).

Proof. Let x = pλt, y = pµu, 0 < t < pν−λ, 0 < u < pν−µ,
where t, u are coprime to p. Then, either (1) λ = µ and the
congruence reduces to tk ≡ uk (mod pν−kλ), or (2) µ, λ ≥ ν/k .

The number of solutions satisfying (2) is ≤ p2ν(1−1/k).

Let Nt,λ be the number of solutions satisfying (1) with fixed t and
λ. By Lemma 5.3.2, there are ≤ 2k choices for u (mod pν−kλ).
Thus Nt,λ ≤ 2kp(k−1)λ. Summing over t, we get∑

t Nt,λ ≤ 2kpν+(k−2)λ . Then sum over λ < ν/k (geometric
series) to get

∑

t,λ

Nt,λ ≤ 4kpν+(k−2)ν/k = 4kp2ν(1−1/k).
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The prime power case

Proof of Lemma 5.1.2 As in the Weyl sum estimate, we square
out the sum to get a simpler expression.

Case 1: k = 2. Then, substituting y = x + h,

|Ga,q|2 =
1

q2

∑

x ,y∈Z/qZ

e(
a(y2 − x2)

q
) =

1

q2

∑

h∈Z/qZ

e(
ah2

q
)

∑

x∈Z/qZ

e(
2ahx

q
).

Apply orthogonality to the inner sum and the triangle inequality to
the outer one to get

|Ga,q|2 ≤
1

q

∑

h∈Z/qZ

12ah≡0 (mod q) ≤
2

q
,

since a is coprime to q.
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The prime power case

Case 2: k ≥ 3. Let q = pν . Note that Ga,q = Gabk ,q for b coprime
to q. Also note that any x ∈ (Z/qZ)∗ has ≤ 2k representations as
abk (Lemma 5.3.2).Hence,

pν−1(p − 1)|Ga,pν |2 =
∑

b∈(Z/pνZ)∗

|Gabk ,pν |2 ≤ 2k
∑

r∈Z/pνZ

|Gr ,pν |2.

The RHS expands out as

2k

p2ν

∑

x ,y

∑

r

e(−r(xk − yk)/pν) =
2k

pν
|{(x , y) ∈ (Z/pνZ) : xk = yk}|,

and by Lemma 5.1.2 this is ≤ 2k · 8kpν−2ν/k .Since 1
2p ≤ p − 1,

we get

1

2
pν |Ga,pν |2 ≤ 16k2pν−2ν/k ,

and taking square roots the claim follows.
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Integrals
Gauss sums are p-adic analogues of 1̂X (θ). We will also need to
bound the Archimedean analogues of 1̂X (θ):
Definition

I (t) :=

∫ N1/k

0
e(−txk) dx .

Lemma 5.4.1

We have |I (t)| ≪ |t|−1/k .

Proof. By symmetry, can assume t > 0. Substitute w = txk ,
dx = (1/k)w1/k−1t−1/k to get

I (t) =
1

k
t−1/k

∫ Nt

0
e(−w)w−1+1/k dw .

Now, suffices to show that uniformly for Z > 0 we have

|
∫ Z

0
e(−w)w−1+1/k dw | = O(1).
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Waring’s problem (mod p)

We apply Gauss sums to prove

Lemma 5.2.2

Let p ≥ k4. Then for any N there exist x1, x2, x3 ∈ Z/pZ, not all
zero, such that N ≡ xk1 + xk2 + xk3 (mod p).

Proof. Let T be the number of such triples (x1, x2, x3). Then by
orthogonality

T =
1

p

∑

a,x1,x2,x3∈Z/pZ

e(a(xk1 + xk2 + xk3 − N)/p) = p2
∑

a

G 3
a,pe(aN/p).

Separating the contribution of a = 0, we get

T ≥ p2 − p2
∑

a∈(Z/pZ)∗

|Ga,p|3.
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Waring’s problem (mod p)

We now have

T ≥ p2 − p2
∑

(a∈Z/pZ)∗

|Ga,p|3.

In the case where p is a prime, we have the sharper bound
|Ga,p| ≤ kp−1/2 (Lemma 5.2.1), so

∑

a∈(Z/pZ)∗

|Ga,p|3 ≤
k√
p

∑

a∈(Z/pZ)∗

|Ga,p|2

=
k√
p
(
1

p
|{(x , y) : xk ≡ yk (mod p)}| − 1)

≤ k(k − 1)

p1/2
.

Thus, T ≥ p2 − k(k − 1)p3/2, and this is ≥ 2 for p ≥ k4.
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