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Circle method

Recall we need to prove three things to solve Waring's problem:
Prop. 3.2.1 (Major arcs)
Let s > 2k +1, X = {n*: n < NVk}. Then,

/m Tx(6)°e(N6) db = & s(N)N*/51 1 o(N*/k1),

Prop. 3.2.2 (Minor arcs)
Let s > 100%. Then,

/ 1x(0)e(N6) db = o(N*/k1).

Prop. 3.1.1 (Singular series)

Let s > k* Then 1 < &, s(N) < 1 (i.e., Gks(N) =< 1).




Gauss sums

We now begin to study 1x(6) for § € M. For 6 = a/q, we have

. 1/k
Ix(0)= > e(—ank/q)qu > e(—ab*/q) + 0(q).
n<N1/k beZ/qZ

Thus, we are lead to study

Definition (Gauss sum)

For a € Z/qZ, define

Ga,q = - Z e(_abk/q)'

bEZ/qZ

Trivial bound: |G, 4| < 1. For a € (Z/qZ)*, expect cancellation.

Prop. 5.0.1 (Pointwise bound for Gauss sums)

Let a € (Z/qZ)*. Then |G, 4| < g~ 1/k+o(1),

This is optimal up to the o(1) in the exponent (Sheet 2).



Multiplicativity of Gauss sums

The first step in proving Prop. 5.0.1 is a multiplicativity relation.

Let g1, g2 > 1 be coprime and a; € (Z/q;Z)*. Then

G31,Q1 632,Q2 = Yai1q2+a2q1,q192+

Proof. By making the changes of variables x| = gox1, X5 = g1x2,

k92 k
Gay,q1 Gar,q2 = q q Z Z _? (qaxq)" — ? (q1x2)").
142 X: EZ/q12x2EZ/q22 2

By the binomial theorem,

a ar a a
2 (o) + 2 (q1x2>k - ( T ) (g2 + )" (mod 1)
q1 a2 q1 q2

aiqe + axqi
= Gay,q1Garq0 = Py Z Z T(‘DX{ + q1x3)").
X| €L/ QL Xy €L] G

Since each element of Z/(g1g27Z) has a unique representation as
q2x] + q1xb, the RHS is Ga,q,12:q1,010- O



Reduction to prime power moduli

We now claim that it suffices to prove

Lemma 5.1.2 (prime power case)

Let g be a prime power and a € (Z/qZ)*. Then

(Gagl < kg%, (1)

Proof that Lemma 5.1.2 implies Prop. 5.0.1: By the
multiplicativity relation and (1), for any g and a coprime to g,

|Gagl < (6K)“1Pg VK,

where w(q) is the number of distinct prime factors of q. If
w(q) = o(log q), we are done. Note that for any C > 2 we have
CW(Q)*C <gq

f— )

so w(q) < C+ (logq)/(log C). Then let C — co. O



The prime power case

We first need a few lemmas about the number of solutions to
congruences in Z/qZ.

If g is an odd prime power, there are < k kth roots of unity in
(Z/qZ)*. If q is a power of two, there are < 2k kth roots of unity

in (Z/qZ)"

Proof. By [Part A NT], if g is an odd prime power then (Z/qZ)*
is cyclic. Note that in a cyclic group Z/mZ there are < k solutions
to kx = 0.

If g =2" is a power of two, then by [Part A NT] (Z/qZ)* is
isomorphic to (Z/27) x (Z/2"~2Z), so there are < 2k kth roots of
unity. L]



The prime power case

The second lemma we need is

Let kK > 3, and let g be a prime power. Then the number of
solutions to xK = yk in Z/qZ is < 8kg?(1=1/4),

Proof. Let x = p*t, y = ptu, 0 <t < p* > 0 < u< p’™*
where t, u are coprime to p. Then, either (1) A = p and the
congruence reduces to tX = uk (mod p*~**), or (2) u, A > v/k.

The number of solutions satisfying (2) is < p?*(1=1/k).,

Let N; \ be the number of solutions satisfying (1) with fixed t and
A. By Lemma 5.3.2, there are < 2k choices for u (mod p"~**).
Thus N, < 2kptDA. Summing over t, we get

S0, Ni < 2kp?T(k=2A  Then sum over A < v/k (geometric
series) to get

Z N, < 4kpl/+(k—2)1//k _ 4kp2y(1—1/k). ]
A



The prime power case

Proof of Lemma 5.1.2 As in the Weyl sum estimate, we square
out the sum to get a simpler expression.

Case 1: kK = 2. Then, substituting y = x + h,

‘Ga,q‘zz% Z e(M):i2 Z ) Z 2ahx

q x,yE€Z/qZ q q heZ/qZ X€Z/qZ

Apply orthogonality to the inner sum and the triangle inequality to
the outer one to get

)

QN

1
‘G37Q|2 < - Z Loan=0 (mod q) <
heZ/qZ.

since a is coprime to q.



The prime power case

Case 2: k > 3. Let g = p”. Note that G, 4 = G,k 4 for b coprime
to g. Also note that any x € (Z/qZ)* has < 2k representations as
ab¥ (Lemma 5.3.2).Hence,

P DGopl = Y (GupP 2k 3 (Gl
be(Z/p¥Z)* re€Z/p¥Z

The RHS expands out as

2k o 2k ,

S 2 e=rl =y p) = Sy € 2/ ) X = yHY,
X,y r

and by Lemma 5.1.2 this is < 2k - 8kp”~2//¥ Since Ip <p -1,
we get

1
Ep’/’ Ga,p” ‘2 < 16k2pu72u/k,

and taking square roots the claim follows. [



Integrals

Gauss sums are p-adic analogues of T)Z(\G) We will also need to
bound the Archimedean analogues of 1x(0):
Definition

I(t) = /Nl/k e(—tx¥) dx.

|

Lemma 5.4.1
We have |/(t)| < [t|~2/¥.

Proof. By symmetry, can assume t > 0. Substitute w = tx¥,
dx = (1/k)wt/k=1t=1/k to get

1 Nt
I(t) = kt_l/k/ e(—w)w VK gw,
0
Now, suffices to show that uniformly for Z > 0 we have
z
|/ e(—w)w Hkgw| = 0(1).
0

This is true by integration by parts. O



Waring's problem (mod p)

We apply Gauss sums to prove

Let p > k*. Then for any N there exist x1, xo, x3 € Z/pZ, not all
zero, such that N = xf + x5 + x5 (mod p).

Proof. Let T be the number of such triples (x1, x2, x3). Then by
orthogonality

1
T== > elaxd+x+x5—N)/p)=p") G],e(aN/p).
p
a,Xl,XQ,Xg;EZ/pZ a
Separating the contribution of a = 0, we get

T>p=p" ) G,
ac(Z/pZ)*



Waring's problem (mod p)

We now have

T>p—p* Y (Gl

(acZ/pL)*

In the case where p is a prime, we have the sharper bound
|Gap| < kp~t/2 (Lemma 5.2.1), so

3 <«
Y. Gl <

ac(Z/pZ)*

Thus, T > p? — k(k —

2
f Z |Ga,pl

€(Z/pL)*
T(EH( y): y¥ (mod p)}| —1)
k(k —1)
p1/2

1)p3/2, and this is > 2 for p > k*. O



