C3.10 Additive and Combinatorial NT Lecture 5: Gauss sums and integrals

Joni Teräväinen

Mathematical Institute

Circle method

Recall we need to prove three things to solve Waring's problem:

Prop. 3.2.1 (Major arcs)

Let
$$s \ge 2k + 1$$
, $X = \{n^k : n \le N^{1/k}\}$. Then,

$$\int_{\mathfrak{M}} \widehat{1_X}(\theta)^s e(N\theta) d\theta = \mathfrak{S}_{k,s}(N)N^{s/k-1} + o(N^{s/k-1}).$$

Prop. 3.2.2 (Minor arcs)

Let
$$s \ge 100^k$$
. Then,
 $\int_{\mathfrak{m}} \widehat{1_X}(\theta)^s e(N\theta) \, d\theta = o(N^{s/k-1}).$

Prop. 3.1.1 (Singular series)

Let $s \ge k^4$. Then $1 \ll \mathfrak{S}_{k,s}(N) \ll 1$ (i.e., $\mathfrak{S}_{k,s}(N) \asymp 1$).

Gauss sums

We now begin to study $\widehat{1_X}(\theta)$ for $\theta \in \mathfrak{M}$. For $\theta = a/q$, we have

$$\widehat{1_X}(heta) = \sum_{n \leq N^{1/k}} e(-an^k/q) = rac{N^{1/k}}{q} \sum_{b \in \mathbb{Z}/q\mathbb{Z}} e(-ab^k/q) + O(q).$$

Thus, we are lead to study

Definition (Gauss sum)

For $a \in \mathbb{Z}/q\mathbb{Z}$, define

$$\mathcal{G}_{\mathsf{a},q} = rac{1}{q} \sum_{b \in \mathbb{Z}/q\mathbb{Z}} e(-\mathsf{a}b^k/q).$$

Trivial bound: $|\mathcal{G}_{a,q}| \leq 1$. For $a \in (\mathbb{Z}/q\mathbb{Z})^*$, expect cancellation.

Prop. 5.0.1 (Pointwise bound for Gauss sums)

Let $a \in (\mathbb{Z}/q\mathbb{Z})^*$. Then $|G_{a,q}| \ll q^{-1/k+o(1)}$.

This is optimal up to the o(1) in the exponent (Sheet 2).

Multiplicativity of Gauss sums

The first step in proving Prop. 5.0.1 is a multiplicativity relation.

Lemma 5.1.1

Let $q_1, q_2 \geq 1$ be coprime and $a_i \in (\mathbb{Z}/q_i\mathbb{Z})^*$. Then

$$G_{a_1,q_1}G_{a_2,q_2}=G_{a_1q_2+a_2q_1,q_1q_2}.$$

Proof. By making the changes of variables $x'_1 = q_2 x_1$, $x'_2 = q_1 x_2$,

$$G_{a_1,q_1}G_{a_2,q_2} = \frac{1}{q_1q_2} \sum_{x_1' \in \mathbb{Z}/q_1\mathbb{Z}} \sum_{x_2' \in \mathbb{Z}/q_2\mathbb{Z}} e(-\frac{a_1}{q_1}(q_2x_1')^k - \frac{a_2}{q_2} \cdot (q_1x_2')^k).$$

By the binomial theorem,

$$\begin{aligned} &\frac{a_1}{q_1}(q_2 x_1')^k + \frac{a_2}{q_2} \cdot (q_1 x_2')^k \equiv \left(\frac{a_1}{q_1} + \frac{a_2}{q_2}\right) (q_2 x_1' + q_1 x_2')^k \pmod{1} \\ &\Rightarrow G_{a_1,q_1} G_{a_2,q_2} = \frac{1}{q_1 q_2} \sum_{x_1' \in \mathbb{Z}/q_1 \mathbb{Z}} \sum_{x_2' \in \mathbb{Z}/q_2 \mathbb{Z}} e(-\frac{a_1 q_2 + a_2 q_1}{q_1 q_2} (q_2 x_1' + q_1 x_2')^k). \end{aligned}$$

Since each element of $\mathbb{Z}/(q_1q_2\mathbb{Z})$ has a unique representation as $q_2x'_1 + q_1x'_2$, the RHS is $G_{a_1q_2+a_2q_1,q_1q_2}$.

Reduction to prime power moduli

We now claim that it suffices to prove

Lemma 5.1.2 (prime power case)

Let q be a prime power and $a \in (\mathbb{Z}/q\mathbb{Z})^*$. Then

$$|G_{a,q}| \le 6kq^{-1/k}.$$
 (1)

Proof that Lemma 5.1.2 implies Prop. 5.0.1: By the multiplicativity relation and (1), for any q and a coprime to q,

$$|G_{a,q}| \leq (6k)^{\omega(q)}q^{-1/k},$$

where $\omega(q)$ is the number of distinct prime factors of q. If $\omega(q) = o(\log q)$, we are done. Note that for any $C \ge 2$ we have

$$C^{\omega(q)-C} \leq q,$$

so $\omega(q) \leq C + (\log q)/(\log C)$. Then let $C \to \infty$.

We first need a few lemmas about the number of solutions to congruences in $\mathbb{Z}/q\mathbb{Z}$.

Lemma 5.3.2

If q is an odd prime power, there are $\leq k$ kth roots of unity in $(\mathbb{Z}/q\mathbb{Z})^*$. If q is a power of two, there are $\leq 2k$ kth roots of unity in $(\mathbb{Z}/q\mathbb{Z})^*$

Proof. By [Part A NT], if q is an odd prime power then $(\mathbb{Z}/q\mathbb{Z})^*$ is cyclic. Note that in a cyclic group $\mathbb{Z}/m\mathbb{Z}$ there are $\leq k$ solutions to kx = 0.

If $q = 2^{\nu}$ is a power of two, then by [Part A NT] $(\mathbb{Z}/q\mathbb{Z})^*$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2^{\nu-2}\mathbb{Z})$, so there are $\leq 2k$ kth roots of unity.

The prime power case

The second lemma we need is

Lemma 5.3.3

Let $k \ge 3$, and let q be a prime power. Then the number of solutions to $x^k = y^k$ in $\mathbb{Z}/q\mathbb{Z}$ is $\le 8kq^{2(1-1/k)}$.

Proof. Let $x = p^{\lambda}t$, $y = p^{\mu}u$, $0 < t < p^{\nu-\lambda}$, $0 < u < p^{\nu-\mu}$, where t, u are coprime to p. Then, either (1) $\lambda = \mu$ and the congruence reduces to $t^k \equiv u^k \pmod{p^{\nu-k\lambda}}$, or (2) $\mu, \lambda \ge \nu/k$.

The number of solutions satisfying (2) is $\leq p^{2\nu(1-1/k)}$.

Let $N_{t,\lambda}$ be the number of solutions satisfying (1) with fixed t and λ . By Lemma 5.3.2, there are $\leq 2k$ choices for $u \pmod{p^{\nu-k\lambda}}$. Thus $N_{t,\lambda} \leq 2kp^{(k-1)\lambda}$. Summing over t, we get $\sum_t N_{t,\lambda} \leq 2kp^{\nu+(k-2)\lambda}$. Then sum over $\lambda < \nu/k$ (geometric series) to get

$$\sum_{t,\lambda} N_{t,\lambda} \leq 4kp^{\nu+(k-2)\nu/k} = 4kp^{2\nu(1-1/k)}.$$

Proof of Lemma 5.1.2 As in the Weyl sum estimate, we square out the sum to get a simpler expression.

Case 1: k = 2. Then, substituting y = x + h,

$$|G_{a,q}|^2 = \frac{1}{q^2} \sum_{x,y \in \mathbb{Z}/q\mathbb{Z}} e(\frac{a(y^2 - x^2)}{q}) = \frac{1}{q^2} \sum_{h \in \mathbb{Z}/q\mathbb{Z}} e(\frac{ah^2}{q}) \sum_{x \in \mathbb{Z}/q\mathbb{Z}} e(\frac{2ahx}{q}).$$

Apply orthogonality to the inner sum and the triangle inequality to the outer one to get

$$|\mathcal{G}_{a,q}|^2 \leq rac{1}{q} \sum_{h \in \mathbb{Z}/q\mathbb{Z}} \mathbb{1}_{2ah \equiv 0 \pmod{q}} \leq rac{2}{q},$$

since a is coprime to q.

The prime power case

Case 2: $k \ge 3$. Let $q = p^{\nu}$. Note that $G_{a,q} = G_{ab^k,q}$ for *b* coprime to *q*. Also note that any $x \in (\mathbb{Z}/q\mathbb{Z})^*$ has $\le 2k$ representations as ab^k (Lemma 5.3.2).Hence,

$$|p^{\nu-1}(p-1)|G_{a,p^{\nu}}|^2 = \sum_{b \in (\mathbb{Z}/p^{\nu}\mathbb{Z})^*} |G_{ab^k,p^{\nu}}|^2 \le 2k \sum_{r \in \mathbb{Z}/p^{\nu}\mathbb{Z}} |G_{r,p^{\nu}}|^2.$$

The RHS expands out as

$$\frac{2k}{p^{2\nu}}\sum_{x,y}\sum_{r}e(-r(x^{k}-y^{k})/p^{\nu})=\frac{2k}{p^{\nu}}|\{(x,y)\in (\mathbb{Z}/p^{\nu}\mathbb{Z}): x^{k}=y^{k}\}|,$$

and by Lemma 5.1.2 this is $\leq 2k \cdot 8kp^{\nu-2\nu/k}$.Since $\frac{1}{2}p \leq p-1$, we get

$$\frac{1}{2}p^{\nu}|G_{a,p^{\nu}}|^{2} \leq 16k^{2}p^{\nu-2\nu/k},$$

and taking square roots the claim follows.

Integrals

Gauss sums are *p*-adic analogues of $\widehat{1_X}(\theta)$. We will also need to bound the Archimedean analogues of $\widehat{1_X}(\theta)$:

Definition

$$I(t):=\int_0^{N^{1/k}}e(-tx^k)\,dx.$$

Lemma 5.4.1

We have $|I(t)| \ll |t|^{-1/k}$.

Proof. By symmetry, can assume t > 0. Substitute $w = tx^k$, $dx = (1/k)w^{1/k-1}t^{-1/k}$ to get

$$I(t) = \frac{1}{k} t^{-1/k} \int_0^{Nt} e(-w) w^{-1+1/k} \, dw.$$

Now, suffices to show that uniformly for Z > 0 we have

$$|\int_0^Z e(-w)w^{-1+1/k} dw| = O(1).$$

This is true by integration by parts.

Waring's problem $(\mod p)$

We apply Gauss sums to prove

Lemma 5.2.2

Let $p \ge k^4$. Then for any N there exist $x_1, x_2, x_3 \in \mathbb{Z}/p\mathbb{Z}$, not all zero, such that $N \equiv x_1^k + x_2^k + x_3^k \pmod{p}$.

Proof. Let T be the number of such triples (x_1, x_2, x_3) . Then by orthogonality

$$T = \frac{1}{p} \sum_{a, x_1, x_2, x_3 \in \mathbb{Z}/p\mathbb{Z}} e(a(x_1^k + x_2^k + x_3^k - N)/p) = p^2 \sum_a G_{a,p}^3 e(aN/p).$$

Separating the contribution of a = 0, we get

$$T \geq p^2 - p^2 \sum_{a \in (\mathbb{Z}/p\mathbb{Z})^*} |G_{a,p}|^3.$$

Waring's problem $(\mod p)$

We now have

$$T \geq p^2 - p^2 \sum_{(a \in \mathbb{Z}/p\mathbb{Z})^*} |G_{a,p}|^3.$$

In the case where p is a prime, we have the sharper bound $|G_{a,p}| \le kp^{-1/2}$ (Lemma 5.2.1), so

$$\begin{split} \sum_{a \in (\mathbb{Z}/p\mathbb{Z})^*} |G_{a,p}|^3 &\leq \frac{k}{\sqrt{p}} \sum_{a \in (\mathbb{Z}/p\mathbb{Z})^*} |G_{a,p}|^2 \\ &= \frac{k}{\sqrt{p}} (\frac{1}{p} |\{(x,y) : \ x^k \equiv y^k \pmod{p}\}| - 1) \\ &\leq \frac{k(k-1)}{p^{1/2}}. \end{split}$$

Thus, $T \ge p^2 - k(k-1)p^{3/2}$, and this is ≥ 2 for $p \ge k^4$.