C3.10 Additive and Combinatorial NT Lecture 8: Singular series

Joni Teräväinen

Mathematical Institute

Two identities

In the previous lectures, we proved that

$$r_{k,s}(N) = \mathfrak{S}_{k,s}(N)N^{s/k-1} + o(N^{s/k-1}), \quad s \ge 100^k.$$

In this lecture, we will prove

Theorem (Singular series)

For $s \ge k^4$, we have $1 \ll \mathfrak{S}_{k,s}(N) \ll 1$ (i.e., $\mathfrak{S}_{k,s}(N) \asymp 1$).

Recall $\mathfrak{S}_{k,s}(N) = \prod_{p} \beta_{p}(N)$, where

$$\beta_p(N) = \lim_{n \to \infty} p^{-(s-1)n} |\{(x_1, ..., x_s) \in \mathbb{Z}/p^n\mathbb{Z} : x_1^k + \cdots + x_s^k = N\}|.$$

It suffices to show $\beta_p(N) \gg_{s,k} 1$ and $\beta_p(N) = 1 + O_{s,k}(p^{-1-1/k})$, uniformly in N. Indeed, if we have an infinite product $\prod_{i\geq 1}(1+x_i)$ with $1/C \leq 1 + x_i \leq C$ and $\sum_i |x_i| \leq C$, then $\prod_{i\geq 1}(1+x_i) \asymp_C 1$.

Hensel's lemma

We will need the following simple lemma on lifting congruences.

Lemma (Hensel's lemma)

Let $k \ge 2$ and let p be a prime. Let p^{γ} be the highest power of p dividing k. Then if x is coprime to p and x is a kth power modulo $p^{2\gamma+1}$, x is also a kth power modulo p^n for all $n \ge 2\gamma + 1$.

Proof. We proceed by induction on *n*, starting from the case $n = 2\gamma + 1$. Suppose that case *n* has been proved and consider case n + 1. Let $x \equiv x_0^k \pmod{p^n}$ and $k_0 = k/p^{\gamma}$. Now note that

$$(x_0 + tp^{n-\gamma})^k = x_0^k + k_0 x_0^{k-1} tp^n + \binom{k}{2} x_0^{k-2} t^2 p^{2(n-\gamma)} + \cdots$$
$$\equiv x_0^k + k_0 x_0^{k-1} p^n t \pmod{p^{n+1}}.$$

Since $(k_0 x_0^{k-1}, p) = 1$, we can choose t so that this is $\equiv x \pmod{p^{n+1}}$.

Proposition 7.1.1

(i) For $s \ge 2k + 1$, we have $\beta_p(N) = 1 + O_{s,k}(p^{-1-1/k})$, uniformly in N. (ii) For $s \ge k^4$, we have $\beta_p(N) \gg_{s,k} 1$, uniformly in p and N.

Proof. (i) From the previous lecture, we have

$$\beta_{p}(N) = 1 + \sum_{j \geq 1} A(p^{j}).$$

In Lecture 6, we proved that $|A(p^j)| \ll_{s,k} p^{-(1+1/k)j}$, so the claim is immediate.

Lower bounding $\beta_p(N)$

(ii) We claim that $\beta_p(N) \gg_{s,k} 1$ for $s \ge k^4$. For $p \ge C_{s,k}$, this is true by (i). For the small p, it suffices to show that $\beta_p(N) \gg_{p,s,k} 1$. Let $p^{\gamma} \mid k, p^{\gamma+1} \nmid k$. We first claim that there is at least one solution to

$$y_1^k + \cdots + y_s^k \equiv N \pmod{p^{2\gamma+1}}, \quad y_1 \neq 0.$$

Case 1: $\gamma = 0$ and $p \ge k^4$. Then we can simply take $y_4 = \cdots = y_s = 0$ and apply Lemma 5.2.2 (Lecture 5). **Case 2:** $\gamma = 0$ and $p < k^4$. Then p < s, so we may take $y_i \in \{0, 1\}$. **Case 3:** $\gamma \ge 1$. Then $p^{\gamma} \mid k$, so $p^{2\gamma+1} \le k^3 < s$. Therefore, we can take $y_i \in \{0, 1\}$.

Lower bounding $\beta_p(N)$

Recall we have a solution to

$$y_1^k + \cdots + y_s^k \equiv N \pmod{p^{2\gamma+1}}, \quad y_1 \neq 0.$$

We are left with showing that if $n \ge 2\gamma + 1$, then there are $\ge c_{k,s,p}p^n$ solutions to

$$x_1^k + \dots + x_s^k \equiv N \pmod{p^n}.$$
 (1)

Fix $x_2, \ldots, x_s \pmod{p^n}$ such that $x_i \equiv y_i \pmod{p^{2\gamma+1}}$. Then Lemma 7.1.1 shows that $N - x_2^k + \cdots + x_s^k$ is a *k*th power (mod p^n). Therefore, (**??**) has $\geq (p^{n-2\gamma-1})^s$ solutions, so

$$\beta_{p,n}(N) \geq p^{-(2\gamma+1)s}$$

Thus $eta_{p}(\mathsf{N}) \geq p^{-(2\gamma+1)s} \gg_{p,s,k} 1.$

As noted earlier, the proof of Proposition 7.1 concludes our proof that $\mathfrak{S}_{k,s}(N) \gg 1$ for $s \ge k^4$. Combined with the result

$$r_{k,s}(N) = \mathfrak{S}_{k,s}(N)N^{s/k-1} + o(N^{s/k-1}), \quad s \geq 100^k.$$

of the previous lectures, we see that

$$r_{k,s}(N) \gg_{k,s} N^{s/k-1}, \quad s \geq 100^k.$$

This concludes our proof that $G(k) \leq 100^k$, which solves Waring's problem.