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Plunnecke—Ruzsa inequality

Our eventual goal is to prove

Theorem (Freiman)

Let A C Z satisfy |A+ A| < K|A|. Then there exists a generalized
arithmetic progression P of dimension <k 1 and of size
|P| <k |A| such that A C P.

The following is an ingredient in its proof.

Lemma (Pliinnecke—Ruzsa inequality)

Let A and B be additive sets with |A+ B| < K|A|. Let k, ¢ be
nonnegative integers. Then |kB — (B| < KKt|A|.




A lemma on sumsets

Let B C G, G abelian. Let K > 0, and define

$:2° 5 R, ¢(A):=|A+B|—K|A| (1)

Lemma (Lemma 10.3.1)

We have the submodularity relation

(AU A) + 9(ANA) < ¢(A) + ¢(A').




A lemma on sumsets

Proof: Write o(A) := A+ B. Note that
a(ANA) C o(A)Na(A).
This implies

|0(A) Ua(A)] = [o(A)] + |o(A)| = [o(A) N (A)
< |o(A) + o (A) - |o(AN AT,

Thus, |o| satisfies the submodularity property
|0(A) N o (A)| + [o(A) N o (A)] < lo(A)] + o (A)].
Combine this with
JAUA|+ |ANA| = |Al +|A|

to conclude the proof. O



A property of submodular functions

Let ¢ be any submodular function. Let Aj, ..., A, be sets with the
following property: ¢(A;) =0, and ¢(Z;) > 0 for every subset
Z; C A Then ¢(UPL; A) <O.

Proof: By submodularity, we have
(A US) < o(AiUS) + (AN S) < ¢(A) + ¢(S) = ¢(S).

We then conclude by induction on n. O



Petridis’s inequality

Proposition (Petridis)

Let A, B be additive sets. Suppose |A+ B| = K|A| and
|Z + B| > K|Z| for all Z C A. Then, for any further set S in the
group, |[A+ B+ S| < KIA+S|.

Proof: Apply Lemma 10.3.2 with ¢(A) = |A+ B| — K|A|. Take
A;i = A+ s, where S = {s;}. The hypotheses of Lemma 10.3.2
hold, since ¢(Z) > 0 for all Z C A and ¢(A;) = 0. Note that

UL, Ai= A+ S, so the lemma implies that ¢(A+ S) <0, i.e.
|A+ B+ S| < KIA+S|. O



Petridis’s inequality

We will apply Petridis's inequality in the following form.

Corollary 10.3.1

Let A, B be additive sets. Suppose that |A+ B| < K|A|. Let
() # X C A be a set for which the ratio | X + B|/|X]| is minimal.
Then for any set S we have

S+ X + B| < K|S + X|.

Proof: Apply the previous proposition with X in place of A. [



Proof of Plinnecke—Ruzsa inequality

Lemma 10.4.1

Let A, B be finite additive sets. Suppose |A+ B| < K|A|. Then
there exists X C A such that |X + kB| < KX|X| for all k > 0.

Proof: Choose X as the subset of A for which the ratio
|X + B|/|X| is minimal. Petridis's inequality (Corollary 10.3.1)
with S = (k — 1)B gives

X + kB| = |X + (k —1)B + B| < K|X + (k— 1)B].

Now use induction on k. O
Proof of Pliinnecke—Ruzsa inequality: Let A, B be finite
additive sets for which |A+ B| < K|A|. Apply Ruzsa's triangle
inequality with (U, V, W) = (X, —kB, —¢B) and Lemma 10.4.1 to
obtain

|kB — (B| |X| < |X + kB| - |X + (B] < KK X2,
Thus, since X C A, |kB — (B| < KK X| < KK A O



