C3.10 Additive and Combinatorial NT Lecture 10: Plünnecke–Ruzsa inequality

Joni Teräväinen

Mathematical Institute

Our eventual goal is to prove

Theorem (Freiman)

Let $A \subset \mathbb{Z}$ satisfy $|A + A| \leq K|A|$. Then there exists a generalized arithmetic progression P of dimension $\ll_{K} 1$ and of size $|P| \ll_{K} |A|$ such that $A \subset P$.

The following is an ingredient in its proof.

Lemma (Plünnecke–Ruzsa inequality)

Let A and B be additive sets with $|A + B| \le K|A|$. Let k, ℓ be nonnegative integers. Then $|kB - \ell B| \le K^{k+\ell}|A|$.

Let $B \subset G$, G abelian. Let $K \ge 0$, and define

$$\phi: 2^G \to \mathbb{R}, \quad \phi(A) := |A + B| - K|A|. \tag{1}$$

Lemma (Lemma 10.3.1)

We have the submodularity relation

$$\phi(A \cup A') + \phi(A \cap A') \le \phi(A) + \phi(A').$$

A lemma on sumsets

Proof: Write $\sigma(A) := A + B$. Note that $\sigma(A \cap A') \subset \sigma(A) \cap \sigma(A').$

This implies

$$\begin{aligned} |\sigma(A)\cup\sigma(A')| &= |\sigma(A)| + |\sigma(A')| - |\sigma(A)\cap\sigma(A')| \\ &\leq |\sigma(A)| + |\sigma(A')| - |\sigma(A\cap A')|. \end{aligned}$$

Thus, $|\sigma|$ satisfies the submodularity property

$$|\sigma(A) \cap \sigma(A')| + |\sigma(A) \cap \sigma(A')| \le |\sigma(A)| + |\sigma(A')|.$$

Combine this with

$$|A \cup A'| + |A \cap A'| = |A| + |A'|$$

to conclude the proof.

Lemma 10.3.2

Let ϕ be any submodular function. Let A_1, \ldots, A_n be sets with the following property: $\phi(A_i) = 0$, and $\phi(Z_i) \ge 0$ for every subset $Z_i \subseteq A_i$. Then $\phi(\bigcup_{i=1}^n A_i) \le 0$.

Proof: By submodularity, we have

$$\phi(A_i \cup S) \leq \phi(A_i \cup S) + \phi(A_i \cap S) \leq \phi(A_i) + \phi(S) = \phi(S).$$

We then conclude by induction on n.

Proposition (Petridis)

Let A, B be additive sets. Suppose |A + B| = K|A| and $|Z + B| \ge K|Z|$ for all $Z \subseteq A$. Then, for any further set S in the group, $|A + B + S| \le K|A + S|$.

Proof: Apply Lemma 10.3.2 with $\phi(A) = |A + B| - K|A|$. Take $A_i = A + s_i$, where $S = \{s_i\}$. The hypotheses of Lemma 10.3.2 hold, since $\phi(Z) \ge 0$ for all $Z \subset A$ and $\phi(A_i) = 0$. Note that $\bigcup_{i=1}^{n} A_i = A + S$, so the lemma implies that $\phi(A + S) \le 0$, i.e. $|A + B + S| \le K|A + S|$.

We will apply Petridis's inequality in the following form.

Corollary 10.3.1

Let A, B be additive sets. Suppose that $|A + B| \le K|A|$. Let $\emptyset \ne X \subseteq A$ be a set for which the ratio |X + B|/|X| is minimal. Then for any set S we have

$$|S+X+B| \le K|S+X|.$$

Proof: Apply the previous proposition with *X* in place of *A*.

Proof of Plünnecke-Ruzsa inequality

Lemma 10.4.1

Let A, B be finite additive sets. Suppose $|A + B| \le K|A|$. Then there exists $X \subset A$ such that $|X + kB| \le K^k|X|$ for all $k \ge 0$.

Proof: Choose X as the subset of A for which the ratio |X + B|/|X| is minimal. Petridis's inequality (Corollary 10.3.1) with S = (k - 1)B gives

$$|X + kB| = |X + (k - 1)B + B| \le K|X + (k - 1)B|.$$

Now use induction on k.

Proof of Plünnecke–Ruzsa inequality: Let A, B be finite additive sets for which $|A + B| \le K|A|$. Apply Ruzsa's triangle inequality with $(U, V, W) = (X, -kB, -\ell B)$ and Lemma 10.4.1 to obtain

$$|kB - \ell B| |X| \le |X + kB| \cdot |X + \ell B| \le K^{k+\ell} |X|^2.$$

Thus, since $X \subset A$, $|kB - \ell B| \le K^{k+\ell}|X| \le K^{k+\ell}|A|$.