C3.10 Additive and Combinatorial NT Lecture 11: Freiman homomorphisms and Ruzsa's model lemma

Joni Teräväinen

Mathematical Institute

Our eventual goal is to prove

Theorem (Freiman)

Let $A \subset \mathbb{Z}$ satisfy $|A + A| \leq K|A|$. Then there exists a generalized arithmetic progression P of dimension $\ll_{K} 1$ and of size $|P| \ll_{K} |A|$ such that $A \subset P$.

In this lecture, we will prove Ruzsa's model lemma, which is an ingredient for this.

Definition (Freiman homomorphisms)

Let A, B be additive sets, and let $s \ge 2$. We say that $\phi : A \to B$ is a *Freiman s-homomorphism* if

$$a_1 + \dots + a_s = a'_1 + \dots + a'_s, \quad a_i, a'_i \in A \ \Longrightarrow \phi(a_1) + \dots + \phi(a_s) = \phi(a'_1) + \dots + \phi(a'_s).$$

Definition (Freiman isomorphisms)

We say that $\phi: A \to B$ is a *Freiman s-isomorphism* if ϕ is a Freiman *s*-homomorphism, and ϕ^{-1} exists and is also a Freiman *s*-homomorphism.

Examples of Freiman s-homomorphisms:

- Any group homomorphism $\phi: G_1 \rightarrow G_2, G_i$ abelian.
- Any map $\phi : A \rightarrow B$, where A contains no nontrivial additive relations.
- The canonical map π_m: [1, m] ∩ Z → Z/mZ (x ↦ x (mod m)) is a Freiman s-homomorphism, and is also a Freiman isomorphism if m is a prime large enough in terms of s.
- The canonical map φ : {0,1}ⁿ → (Z/2Z)ⁿ ((x_i) → (x_i (mod 2))) is a Freiman s-homomorphism and a bijection, but is not a Freiman 2-isomorphism.

Lemma (Basic properties of Freiman isomorphisms)

- If φ : A → B, ψ : B → C are Freiman s-homomorphisms, so is ψ ∘ φ : A → C.
- If φ is a Freiman s-homomorphism, it is also a Freiman s'-homomorphism, s' < s.
- If φ : A → B is a Freiman s-homomorphism, for any k, l ≥ 0 it induces a Freiman [s/(k + l)]-homomorphism kA lA → kB lB.
- Ill of the above holds for isomorphisms as well.
- **5** If P is a GAP and $\phi : P \to B$ is a Freiman 2-isomorphism, then $\phi(B)$ is a GAP of the same dimension.
- π_m : ℤ → ℤ/mℤ is a Freiman s-isomorphism when restricted to [t, t + m/s).

Basic properties

Proof: (1) Trivial. (2) Trivial, since we can consider relations $a_1 + \cdots + a_{s'} + 0 + \cdots + 0 = a'_1 + \cdots + a'_{s'} + 0 + \cdots + 0.$ (3) Define a map $\tilde{\phi} : kA - \ell A \rightarrow kB - \ell B$ by

 $ilde{\phi}(\mathsf{a}_1+\cdots+\mathsf{a}_k-\mathsf{a}_1'-\cdots+\mathsf{a}_\ell')=\phi(\mathsf{a}_1)+\cdots+\phi(\mathsf{a}_k)-\phi(\mathsf{a}_1')-\cdots-\phi(\mathsf{a}_\ell').$

One easily checks that $\tilde{\phi}$ is well-defined and a Freiman homomorphism of order $\lfloor s/(k+\ell) \rfloor$. (4) Similar to the above. (5) Let $P = \{x_0 + \ell_1 x_1 + \dots + \ell_k x_k : 0 \le \ell_i < L_i\}$. Define y_i by $y_0 = \phi(x_0), y_0 + y_i = \phi(x_0 + x_i)$. We claim that $\phi(x_0 + \dots + \ell_k x_k) = y_0 + \dots + \ell_k y_k$. For this use induction on $\ell_1 + \dots + \ell_k$. (6) π_m is clearly a Freiman homomorphism of any order. By translation, we may assume that t = 0. Now, note that since

 $a_i \in [0, m/s)$, we have $a_1 + \cdots + a_s \pmod{m} = a_1 + \cdots + a_s$.

Proposition (Ruzsa)

Let $A \subset \mathbb{Z}$ be a finite set and $s \geq 2$ is an integer. Let $m \geq |sA - sA|$. Then there $A' \subset A$ with $|A'| \geq |A|/s$ which is Freiman *s*-isomorphic to a subset of $\mathbb{Z}/m\mathbb{Z}$.

Proof. By translation, we may assume that A consists of positive integers. Let q be a large enough prime number. Then $\pi_q: A \to \pi_q(A) \subset \mathbb{Z}/q\mathbb{Z}$ is a Freiman s-isomorphism. We will choose $\phi = \phi_\lambda$ for some $\lambda \in (\mathbb{Z}/q\mathbb{Z})^*$, where $\phi_\lambda := \pi_m \circ \pi_q^{-1} \circ D_\lambda \circ \pi_q$ is given by

$$\mathbb{Z} \xrightarrow{\pi_q} \mathbb{Z}/q\mathbb{Z} \xrightarrow{D_{\lambda}} \mathbb{Z}/q\mathbb{Z} \xrightarrow{\pi_q^{-1}} \{1,\ldots,q\} \xrightarrow{\pi_m} \mathbb{Z}/m\mathbb{Z},$$

where $D_{\lambda}(x) = \lambda x$.

Here π_q , D_λ and π_m are Freiman homomorphisms of any order. By part (6) of the Lemma, π_q^{-1} is a Freiman homomorphism on any $\pi_q(I_j)$, $j = 0, 1, \ldots, s - 1$, where $I_j := \{n \in \mathbb{Z} : \frac{jq}{s} < n \le \frac{(j+1)q}{s}\}$. Since the $\pi_q(I_j)$ partition $\mathbb{Z}/q\mathbb{Z}$, it follows from the pigeonhole principle that for each λ there is some j such that

$$A'_{\lambda} := \{ a \in A : D_{\lambda}(\pi_q(a)) \in \pi_q(I_j) \},$$

satisfies $|A'_{\lambda}| \ge |A|/s$. Thus, ϕ_{λ} is a Freiman *s*-homomorphism on A'_{λ} .

We need to show that there is a choice of λ for which ϕ_{λ} is invertible when restricted to A'_{λ} , and for which its inverse is also a Freiman *s*-homomorphism.

If this is not true, then for every λ there exists $d = d_{\lambda} \neq 0$ such that for some $a_i, a_i' \in A_{\lambda}$ we have $d = a_1 + ... + a_s - a_1' - ... - a_s'$ and $\pi_m(\pi_q^{-1}(\lambda d)) = 0$. Fix d and say that λ is *bad for* d if this happens. Note that $\pi_q^{-1} \circ \pi_q(\lambda d)$ takes every value in $\{1, ..., q - 1\}$ exactly once as λ varies. The number of $x \in \{1, ..., q - 1\}$ such that $\pi_m(x) = 0$ is $\leq (q - 1)/m$. Since d takes values in $sA - sA \setminus \{0\}$, we have

$$|igcup_d \{\lambda \in (\mathbb{Z}/q\mathbb{Z})^*: \lambda ext{ bad for } d\}| \leq rac{q-1}{m} \cdot (|\mathit{sA}-\mathit{sA}|-1) < q-1,$$

so a suitable λ exists.

The following corollary will be used in the proof of Freiman's theorem.

Corollary

Let $A \subset \mathbb{Z}$ be a finite set with doubling constant K. Then there is a prime $q \leq 2K^{16}|A|$ and a subset $A' \subset A$ with $|A'| \geq |A|/8$ such that A' is Freiman 8-isomorphic to a subset of $\mathbb{Z}/q\mathbb{Z}$.

Proof. The Plünnecke–Ruzsa inequality gives $|8A - 8A| \le K^{16}|A|$. Now Bertrand's postulate gives that there is a prime *p* satisfying $|8A - 8A| \le q \le 2|8A - 8A| \le 2K^{16}|A|$. By Ruzsa's model lemma there is a subset $A' \subset A$ with $|A'| \ge |A|/8$ which is Freiman 8-isomorphic to a subset of $\mathbb{Z}/q\mathbb{Z}$.