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Freiman’s theorem

In this lecture we will prove

Theorem (Freiman)

Let A C Z satisfy |A+ A| < K|A|. Then there exists a generalized
arithmetic progression P of dimension <k 1 and of size

|P| <k |A| such that A C P.
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Bogolyubov's lemma

Definition
Let R={r,...,r} CZ/qZ\ {0}, and let € > 0. We define the
Bohr set B(R, ¢) with frequency set R and width € by
riX ;
B(R,e) :=={x € Z/qZ: HFH <efori=1,2,... k}.

The parameter k is called the dimension of the Bohr set.

| A\

Proposition (Bogulyobov)

Let S C Z/qZ, |S| = 0q. Then 25 — 2§ contains a Bohr set of
dimension at most 4/02 and width at least 1—10.
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Proof of Bogolyubov's lemma

Proof. We use Fourier analysis. Consider f :=1gx1g*x1_gsx1_gs.

This is supported on 25 — 2S. Note also that 1_s(r) = 15(r), and
so £(r) = [1s(r) %

By the Fourier inversion formula and the real-valuedness of f, we
have

fx) =) I1s(r)[*e(re/q) =Y 1s(r)|* cos(2nrx/q). (1)

r r

Let R={r #0:|1s(r)| > 03/2/2}. By Parseval’s identity,

o3 A A 1
Rl < lis(NP <D As(P == > 1s()* =0,
rer r qer/qZ
and so
|R| < 4/02. (2)
We claim that B(R, %) C 25 —2S. For this it suffices to show

that f(x) > 0 for x € B(R, {5).
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Proof of Bogolyubov's lemma

To show that f(x) > 0 for x € B(R, 1), we will use the formula
(1). We split the sum over r into three pieces: the term r =0, the

terms with r € R, and all other terms. Clearly
11s(0)|* = o*.
If r € R then cos(2mrx/q) > 0, so the sum of these terms is

nonnegative. Finally,

4

TrX A o3 . o
> lsf sy =~ 3 As(t > -5 Y is()2 =%

r¢ RU{0} qa r¢ RU{0}

the last step coming from Parseval. Putting this together, we get

as required. []
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GAPs inside Bohr sets

Proposition (Proposition 12.2.1)

Let R C Z/qZ\ {0}, |R| = k. Let 0 < & < 3. Then the Bohr set
B(R, ¢) contains a proper GAP of dimension d and size > (¢/k)Xq.

Proof. We shall use Minokwski's second theorem (Appendix A).
Let K C R? be a centrally symmetric (that is, x € K implies

—x € K) convex body , and let A C R be a lattice. It can be
shown that A = Zvy ® Zvo & - - - & Zvy for linearly independent
vi,...,Vq, which are then called an integral basis for A. The set
F:={xqvi+ -+ x4vq : 0 < x; < 1} is then called a fundamental
region for A. The determinant det(A) is the volume of a
fundamental region of A. We define the successive minima
A1,...,Ag of K wrt. A as follows: J; is the infimum of those A for
which the dilate AK contains j linearly independent elements of A.

Proposition (Minkowski's second theorem)

We have A; - - - Agvol(K) < 29 det(A).
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GAPs inside Bohr sets

Returning to the proof of Prop. 12.2.1, let R ={n,..., rx} and
consider the lattice

A= qZk+(n,...,n)Z.

Since q is prime, this may be written as a direct sum

qZ* ©{0,1,...,g—1} - (r1,...,rk). Thus A has index g as a
subgroup of gZ¥, and from this and det(gZ*) = g* it follows that
det(A) = gL
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GAPS in Bohr sets

Take K C RX to be the box {x: [|x|[cc < £q}. Let A1,..., \x be
the successive minima of K wrt. A. Since K is closed, \;K
contains j linearly independent elements of A. We may, by
choosing each element in turn, select a basis by, ..., by for R¥
with b; € AN A;K for all j. Thus b; € A and ||bj||o < Ajeq. Set
Lj:=[1/Ajk] for j=1,..., k. Thenif 0 < /; < L; we have
|libjllec < €q/k and therefore

Ilhb1 + -+ - + Ikbk|loo < eq.

Each b; lies in A and hence is congruent to x;(ri, ..., rx) (mod q)
for some x;, 0 < x; < g. We think of these x; as lying in Z/qZ.
The preceding observation implies that

/ oo :
et tlewdny

q

for each i/, i.e. the GAP {hx1 + -+ Ikxx : 0 < i < L;} is
contained in the Bohr set B(R,¢).
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Proof of Freiman's theorem

It remains to prove a lower bound on the size of this progression
and also to establish its properness. The lower bound is clearly at
least k=%(\1--- Ax) ™! which, by Minkowski's Second Theorem and
the fact that det(A) = ¢¥~1 and vol(K) = (2¢q)k, is at least

(e/k) q.
To prove the properness, suppose that

hxy+ -+ hxx = lixy + -+ [xe  (mod q),
where |/j|,|I!| < [1/kA;]. Then the vector
b= (h—f)br 4+ (k — l)bk
lies in gZ* and

k
1
[blloc < § QLWJHbiHm < 2eq.
i=1 !

Since we are assuming that € < 1/2 it follows that b =0 and
hence, due to the linear independence of the b;, that /; = /,f for all

i. Hence the progression is indeed proper. 012



Proof of Freiman's theorem

Proof.

Step 1: embedding to a cyclic group. By the corollary of
Ruzsa's model lemma, there is a prime g < 2K'°|A| and A’ C A
with |A’| > |A]/8 such that A’ is Freiman 8-isomorphic to a set

S CZ/qZ. If o :=|S|/q then ¢ > K10,

Step 2: finding a Bohr set structure. By Bogolyubov's lemma,
25 — 25 contains a Bohr set of dimension at most 21°K32 and
width at least 1—10.

Step 3: Finding a GAP inside a Bohr set. By Proposition
12.2.1, that Bohr set (and hence 25 — 2S) contains a proper GAP
P of dimension at most K1) and size at least exp(—K°(M)gq.
Step 4: Undoing the embedding Now A’ is Freiman
8-isomorphic to S, and so by basic property (iii) of Freiman
isomorphisms, 2A" — 2A’ is Freiman 2-isomorphic to 25 —2S. The
inverse of this restricts to a Freiman isomorphism

¢ P — ¢(P) C2A" —2A’. By basic property (v) of Freiman
isomorphisms, Q = ¢(P) is also a proper generalised progression,
of the same dimension and size as P. 10/12



Proof of Freiman's theorem

Now we have shown that 2A — 2A contains a proper GAP @ of
dimension K1) and

Q| = exp(~KOW)|Al. (3)

Step 5: Covering lemma. We apply Ruzsa’s covering lemma to
the sets @ and A. Since

Q+AC (2A—-2A)+A=3A-2A,
the Pliinnecke—Ruzsa inequality and (3) give
@+ Al < K3|A] < exp(K°M)|Q).
By the covering lemma, there is some set Y = {y1,...,¥m},
m < exp(KOM), (4)

such that
AC(Q-Q)+Y.
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Proof of Freiman's theorem

Step 6: Finishing the proof. Suppose that
Q={xo+hxi+ -+ lgxg:0< [ < L;}

and
Y ={y1,-- s Ym}-
Then
(Q-Q+Y C{o+ ) lixi+ ) fiy,0<l<2L,0< <2}
i<d i<m
= Q,
where

)?0 = —([_1X1 + -+ LdXd).

Note that Q is a generalised progression of dimension d + m and

Q| =29TMLy - Ly =29HM|Q| < 297M2A — 24| <k |A].
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