C3.10 Additive and Combinatorial NT Lecture 12: Freiman's theorem

Joni Teräväinen

Mathematical Institute

In this lecture we will prove

Theorem (Freiman)

Let $A \subset \mathbb{Z}$ satisfy $|A + A| \leq K|A|$. Then there exists a generalized arithmetic progression P of dimension $\ll_{K} 1$ and of size $|P| \ll_{K} |A|$ such that $A \subset P$.

Definition

Let $R = \{r_1, \ldots, r_k\} \subset \mathbb{Z}/q\mathbb{Z} \setminus \{0\}$, and let $\varepsilon > 0$. We define the Bohr set $B(R, \varepsilon)$ with frequency set R and width ε by

$$B(R, \varepsilon) := \{ x \in \mathbb{Z}/q\mathbb{Z} : \|rac{r_i x}{q}\| \leq \varepsilon ext{ for } i = 1, 2, \dots, k \}.$$

The parameter k is called the *dimension* of the Bohr set.

Proposition (Bogulyobov)

Let $S \subset \mathbb{Z}/q\mathbb{Z}$, $|S| = \sigma q$. Then 2S - 2S contains a Bohr set of dimension at most $4/\sigma^2$ and width at least $\frac{1}{10}$.

Proof of Bogolyubov's lemma

Proof. We use Fourier analysis. Consider $f := 1_S * 1_S * 1_{-S} * 1_{-S}$. This is supported on 2S - 2S. Note also that $\hat{1}_{-S}(r) = \overline{\hat{1}_S(r)}$, and so $\hat{f}(r) = |\hat{1}_S(r)|^4$. By the Fourier inversion formula and the real-valuedness of f, we have

$$f(x) = \sum_{r} |\hat{1}_{S}(r)|^{4} e(rx/q) = \sum_{r} |\hat{1}_{S}(r)|^{4} \cos(2\pi rx/q).$$
(1)

Let $R = \{r \neq 0 : |\hat{1}_{\mathcal{S}}(r)| \ge \sigma^{3/2}/2\}$. By Parseval's identity,

$$|R|\frac{\sigma^3}{4} \leq \sum_{r \in R} |\hat{1}_{\mathcal{S}}(r)|^2 \leq \sum_r |\hat{1}_{\mathcal{S}}(r)|^2 = \frac{1}{q} \sum_{x \in \mathbb{Z}/q\mathbb{Z}} 1_{\mathcal{S}}(x)^2 = \sigma,$$

and so

$$|R| \le 4/\sigma^2. \tag{2}$$

We claim that $B(R, \frac{1}{10}) \subset 2S - 2S$. For this it suffices to show that f(x) > 0 for $x \in B(R, \frac{1}{10})$.

Proof of Bogolyubov's lemma

To show that f(x) > 0 for $x \in B(R, \frac{1}{10})$, we will use the formula (1). We split the sum over r into three pieces: the term r = 0, the terms with $r \in R$, and all other terms. Clearly

$$|\hat{1}_{\mathcal{S}}(0)|^4 = \sigma^4.$$

If $r \in R$ then $\cos(2\pi rx/q) \ge 0$, so the sum of these terms is nonnegative. Finally,

$$\sum_{r\notin R\cup\{0\}} |\hat{1}_{\mathcal{S}}(r)|^4 \cos(\frac{2\pi rx}{q}) \ge -\sum_{r\notin R\cup\{0\}} |\hat{1}_{\mathcal{S}}(r)|^4 \ge -\frac{\sigma^3}{4} \sum_r |\hat{1}_{\mathcal{S}}(r)|^2 = -\frac{\sigma^4}{4},$$

the last step coming from Parseval. Putting this together, we get

$$f(x) \geq \sigma^4 + 0 - \frac{\sigma^4}{4} > 0,$$

as required.

GAPs inside Bohr sets

Proposition (Proposition 12.2.1)

Let $R \subset \mathbb{Z}/q\mathbb{Z} \setminus \{0\}$, |R| = k. Let $0 < \varepsilon < \frac{1}{2}$. Then the Bohr set $B(R, \varepsilon)$ contains a proper GAP of dimension d and size $\geq (\varepsilon/k)^k q$.

Proof. We shall use Minokwski's second theorem (Appendix A). Let $K \subset \mathbb{R}^d$ be a centrally symmetric (that is, $x \in K$ implies $-x \in K$) convex body, and let $\Lambda \subset \mathbb{R}^d$ be a lattice. It can be shown that $\Lambda = \mathbb{Z}v_1 \oplus \mathbb{Z}v_2 \oplus \cdots \oplus \mathbb{Z}v_d$ for linearly independent v_1, \ldots, v_d , which are then called an *integral basis* for Λ . The set $\mathcal{F} := \{x_1v_1 + \cdots + x_dv_d : 0 \le x_i < 1\}$ is then called a fundamental region for Λ . The determinant det (Λ) is the volume of a fundamental region of Λ . We define the *successive minima* $\lambda_1, \ldots, \lambda_d$ of K wrt. Λ as follows: λ_j is the infimum of those λ for which the dilate λK contains j linearly independent elements of Λ .

Proposition (Minkowski's second theorem)

We have $\lambda_1 \cdots \lambda_d \operatorname{vol}(K) \leq 2^d \det(\Lambda)$.

Returning to the proof of Prop. 12.2.1, let $R = \{r_1, \ldots, r_k\}$ and consider the lattice

$$\Lambda = q\mathbb{Z}^k + (r_1, \ldots, r_k)\mathbb{Z}.$$

Since q is prime, this may be written as a direct sum $q\mathbb{Z}^k \oplus \{0, 1, \ldots, q-1\} \cdot (r_1, \ldots, r_k)$. Thus Λ has index q as a subgroup of $q\mathbb{Z}^k$, and from this and $\det(q\mathbb{Z}^k) = q^k$ it follows that $\det(\Lambda) = q^{k-1}$.

GAPS in Bohr sets

Take $K \subset \mathbb{R}^k$ to be the box $\{x : ||x||_{\infty} \leq \varepsilon q\}$. Let $\lambda_1, \ldots, \lambda_k$ be the successive minima of K wrt. Λ . Since K is closed, $\lambda_j K$ contains j linearly independent elements of Λ . We may, by choosing each element in turn, select a basis b_1, \ldots, b_k for \mathbb{R}^k with $b_j \in \Lambda \cap \lambda_j K$ for all j. Thus $b_j \in \Lambda$ and $||b_j||_{\infty} \leq \lambda_j \varepsilon q$. Set $L_j := \lceil 1/\lambda_j k \rceil$ for $j = 1, \ldots, k$. Then if $0 \leq l_j < L_j$ we have $||l_j b_j||_{\infty} \leq \varepsilon q/k$ and therefore

$$\|I_1\mathsf{b}_1+\cdots+I_k\mathsf{b}_k\|_{\infty}\leq\varepsilon q.$$

Each b_i lies in Λ and hence is congruent to $x_i(r_1, \ldots, r_k) \pmod{q}$ for some x_i , $0 \le x_i < q$. We think of these x_i as lying in $\mathbb{Z}/q\mathbb{Z}$. The preceding observation implies that

$$\|rac{(l_1x_1+\dots+l_kx_k)r_i}{q}\|\leq arepsilon$$

for each *i*, i.e. the GAP $\{I_1x_1 + \cdots + I_kx_k : 0 \le I_i < L_i\}$ is contained in the Bohr set $B(R, \varepsilon)$.

Proof of Freiman's theorem

It remains to prove a lower bound on the size of this progression and also to establish its properness. The lower bound is clearly at least $k^{-k}(\lambda_1 \cdots \lambda_k)^{-1}$ which, by Minkowski's Second Theorem and the fact that $\det(\Lambda) = q^{k-1}$ and $\operatorname{vol}(K) = (2\varepsilon q)^k$, is at least $(\varepsilon/k)^k q$.

To prove the properness, suppose that

$$l_1x_1+\cdots+l_kx_k=l_1'x_1+\cdots+l_k'x_k\pmod{q},$$

where $|I_i|, |I'_i| < \lceil 1/k\lambda_i \rceil$. Then the vector

$$\mathbf{b} = (I_1 - I_1')\mathbf{b}_1 + \dots + (I_k - I_k')\mathbf{b}_k$$

lies in $q\mathbb{Z}^k$ and

$$\|\mathbf{b}\|_{\infty} \leq \sum_{i=1}^{k} 2\lfloor \frac{1}{\lambda_{i}k} \rfloor \|\mathbf{b}_{i}\|_{\infty} \leq 2\varepsilon q.$$

Since we are assuming that $\varepsilon < 1/2$ it follows that b = 0 and hence, due to the linear independence of the b_i , that $l_i = l'_i$ for all *i*. Hence the progression is indeed proper.

Proof.

Step 1: embedding to a cyclic group. By the corollary of Ruzsa's model lemma, there is a prime $q \leq 2K^{16}|A|$ and $A' \subset A$ with $|A'| \geq |A|/8$ such that A' is Freiman 8-isomorphic to a set $S \subset \mathbb{Z}/q\mathbb{Z}$. If $\sigma := |S|/q$ then $\sigma \geq \frac{1}{16}K^{-16}$.

Step 2: finding a Bohr set structure. By Bogolyubov's lemma, 2S - 2S contains a Bohr set of dimension at most $2^{10}K^{32}$ and width at least $\frac{1}{10}$.

Step 3: Finding a GAP inside a Bohr set. By Proposition 12.2.1, that Bohr set (and hence 2S - 2S) contains a proper GAP P of dimension at most $K^{O(1)}$ and size at least $\exp(-K^{O(1)})q$. **Step 4: Undoing the embedding** Now A' is Freiman 8-isomorphic to S, and so by basic property (iii) of Freiman isomorphisms, 2A' - 2A' is Freiman 2-isomorphic to 2S - 2S. The inverse of this restricts to a Freiman isomorphism $\phi: P \rightarrow \phi(P) \subset 2A' - 2A'$. By basic property (v) of Freiman isomorphisms, $Q = \phi(P)$ is also a proper generalised progression, of the same dimension and size as P.

Proof of Freiman's theorem

Now we have shown that 2A - 2A contains a proper GAP Q of dimension $K^{O(1)}$ and

$$|Q| \ge \exp(-K^{O(1)})|A|.$$
(3)

Step 5: Covering lemma. We apply Ruzsa's covering lemma to the sets *Q* and *A*. Since

$$Q+A\subset (2A-2A)+A=3A-2A,$$

the Plünnecke-Ruzsa inequality and (3) give

$$|Q+A| \leq K^5|A| \leq \exp(K^{O(1)})|Q|.$$

By the covering lemma, there is some set $Y = \{y_1, \ldots, y_m\}$,

$$m \le \exp(\mathcal{K}^{O(1)}),\tag{4}$$

such that

$$A \subset (Q-Q) + Y.$$

Proof of Freiman's theorem

Step 6: Finishing the proof. Suppose that

$$Q = \{x_0 + l_1 x_1 + \dots + l_d x_d : 0 \le l_i < L_i\}$$

and

$$Y = \{y_1, \ldots, y_m\}.$$

Then

$$egin{aligned} (Q-Q)+Y \subset \{ ilde{x}_0+\sum_{i\leq d}\ell_ix_i+\sum_{i\leq m}l'_iy_i, 0\leq l_i<2L_i, 0\leq l'_j<2\}\ &= ilde{Q}, \end{aligned}$$

where

$$\tilde{x}_0 = -(L_1x_1 + \cdots + L_dx_d).$$

Note that $ilde{Q}$ is a generalised progression of dimension d+m and

$$|\tilde{Q}| = 2^{d+m}L_1 \cdots L_d = 2^{d+m}|Q| \le 2^{d+m}|2A - 2A| \ll_{\mathcal{K}} |A|.$$

12/12