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Mathematical Institute

1 / 12



Freiman’s theorem

In this lecture we will prove

Theorem (Freiman)

Let A ⊂ Z satisfy |A + A| ≤ K |A|. Then there exists a generalized
arithmetic progression P of dimension �K 1 and of size
|P| �K |A| such that A ⊂ P.
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Bogolyubov’s lemma

Definition

Let R = {r1, . . . , rk} ⊂ Z/qZ \ {0}, and let ε > 0. We define the
Bohr set B(R, ε) with frequency set R and width ε by

B(R, ε) := {x ∈ Z/qZ : ‖ rix
q
‖ ≤ ε for i = 1, 2, . . . , k}.

The parameter k is called the dimension of the Bohr set.

Proposition (Bogulyobov)

Let S ⊂ Z/qZ, |S | = σq. Then 2S − 2S contains a Bohr set of
dimension at most 4/σ2 and width at least 1

10 .
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Proof of Bogolyubov’s lemma

Proof. We use Fourier analysis. Consider f := 1S ∗ 1S ∗ 1−S ∗ 1−S .

This is supported on 2S − 2S . Note also that 1̂−S(r) = 1̂S(r), and
so f̂ (r) = |1̂S(r)|4.
By the Fourier inversion formula and the real-valuedness of f , we
have

f (x) =
∑
r

|1̂S(r)|4e(rx/q) =
∑
r

|1̂S(r)|4 cos(2πrx/q). (1)

Let R = {r 6= 0 : |1̂S(r)| ≥ σ3/2/2}. By Parseval’s identity,

|R|σ
3

4
≤

∑
r∈R
|1̂S(r)|2 ≤

∑
r

|1̂S(r)|2 =
1

q

∑
x∈Z/qZ

1S(x)2 = σ,

and so
|R| ≤ 4/σ2. (2)

We claim that B(R, 1
10) ⊂ 2S − 2S . For this it suffices to show

that f (x) > 0 for x ∈ B(R, 1
10).
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Proof of Bogolyubov’s lemma

To show that f (x) > 0 for x ∈ B(R, 1
10), we will use the formula

(1). We split the sum over r into three pieces: the term r = 0, the
terms with r ∈ R, and all other terms. Clearly

|1̂S(0)|4 = σ4.

If r ∈ R then cos(2πrx/q) ≥ 0, so the sum of these terms is
nonnegative. Finally,∑
r /∈R∪{0}

|1̂S(r)|4 cos(
2πrx

q
) ≥ −

∑
r /∈R∪{0}

|1̂S(r)|4 ≥ −σ
3

4

∑
r

|1̂S(r)|2 = −σ
4

4
,

the last step coming from Parseval. Putting this together, we get

f (x) ≥ σ4 + 0− σ4

4
> 0,

as required.
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GAPs inside Bohr sets

Proposition (Proposition 12.2.1)

Let R ⊂ Z/qZ \ {0}, |R| = k . Let 0 < ε < 1
2 . Then the Bohr set

B(R, ε) contains a proper GAP of dimension d and size≥ (ε/k)kq.

Proof. We shall use Minokwski’s second theorem (Appendix A).
Let K ⊂ Rd be a centrally symmetric (that is, x ∈ K implies
−x ∈ K ) convex body , and let Λ ⊂ Rd be a lattice. It can be
shown that Λ = Zv1 ⊕ Zv2 ⊕ · · · ⊕ Zvd for linearly independent
v1, . . . , vd , which are then called an integral basis for Λ. The set
F := {x1v1 + · · ·+ xdvd : 0 ≤ xi < 1} is then called a fundamental
region for Λ. The determinant det(Λ) is the volume of a
fundamental region of Λ. We define the successive minima
λ1, . . . , λd of K wrt. Λ as follows: λj is the infimum of those λ for
which the dilate λK contains j linearly independent elements of Λ.

Proposition (Minkowski’s second theorem)

We have λ1 · · ·λdvol(K ) ≤ 2d det(Λ).
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GAPs inside Bohr sets

Returning to the proof of Prop. 12.2.1, let R = {r1, . . . , rk} and
consider the lattice

Λ = qZk + (r1, . . . , rk)Z.

Since q is prime, this may be written as a direct sum
qZk ⊕ {0, 1, . . . , q − 1} · (r1, . . . , rk). Thus Λ has index q as a
subgroup of qZk , and from this and det(qZk) = qk it follows that
det(Λ) = qk−1.
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GAPS in Bohr sets

Take K ⊂ Rk to be the box {x : ‖x‖∞ ≤ εq}. Let λ1, . . . , λk be
the successive minima of K wrt. Λ. Since K is closed, λjK
contains j linearly independent elements of Λ. We may, by
choosing each element in turn, select a basis b1, . . . , bk for Rk

with bj ∈ Λ ∩ λjK for all j . Thus bj ∈ Λ and ‖bj‖∞ ≤ λjεq. Set
Lj := d1/λjke for j = 1, . . . , k. Then if 0 ≤ lj < Lj we have
‖ljbj‖∞ ≤ εq/k and therefore

‖l1b1 + · · ·+ lkbk‖∞ ≤ εq.

Each bi lies in Λ and hence is congruent to xi (r1, . . . , rk) (mod q)
for some xi , 0 ≤ xi < q. We think of these xi as lying in Z/qZ.
The preceding observation implies that

‖(l1x1 + · · ·+ lkxk)ri
q

‖ ≤ ε

for each i , i.e. the GAP {l1x1 + · · ·+ lkxk : 0 ≤ li < Li} is
contained in the Bohr set B(R, ε).
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Proof of Freiman’s theorem

It remains to prove a lower bound on the size of this progression
and also to establish its properness. The lower bound is clearly at
least k−k(λ1 · · ·λk)−1 which, by Minkowski’s Second Theorem and
the fact that det(Λ) = qk−1 and vol(K ) = (2εq)k , is at least
(ε/k)kq.
To prove the properness, suppose that

l1x1 + · · ·+ lkxk = l ′1x1 + · · ·+ l ′kxk (mod q),

where |li |, |l ′i | < d1/kλie. Then the vector

b = (l1 − l ′1)b1 + · · ·+ (lk − l ′k)bk

lies in qZk and

‖b‖∞ ≤
k∑

i=1

2b 1

λik
c‖bi‖∞ ≤ 2εq.

Since we are assuming that ε < 1/2 it follows that b = 0 and
hence, due to the linear independence of the bi , that li = l ′i for all
i . Hence the progression is indeed proper.

9 / 12



Proof of Freiman’s theorem

Proof.
Step 1: embedding to a cyclic group. By the corollary of
Ruzsa’s model lemma, there is a prime q ≤ 2K 16|A| and A′ ⊂ A
with |A′| ≥ |A|/8 such that A′ is Freiman 8-isomorphic to a set
S ⊂ Z/qZ. If σ := |S |/q then σ ≥ 1

16K
−16.

Step 2: finding a Bohr set structure. By Bogolyubov’s lemma,
2S − 2S contains a Bohr set of dimension at most 210K 32 and
width at least 1

10 .
Step 3: Finding a GAP inside a Bohr set. By Proposition
12.2.1, that Bohr set (and hence 2S − 2S) contains a proper GAP
P of dimension at most KO(1) and size at least exp(−KO(1))q.
Step 4: Undoing the embedding Now A′ is Freiman
8-isomorphic to S , and so by basic property (iii) of Freiman
isomorphisms, 2A′ − 2A′ is Freiman 2-isomorphic to 2S − 2S . The
inverse of this restricts to a Freiman isomorphism
φ : P → φ(P) ⊂ 2A′ − 2A′. By basic property (v) of Freiman
isomorphisms, Q = φ(P) is also a proper generalised progression,
of the same dimension and size as P. 10 / 12



Proof of Freiman’s theorem

Now we have shown that 2A− 2A contains a proper GAP Q of
dimension KO(1) and

|Q| ≥ exp(−KO(1))|A|. (3)

Step 5: Covering lemma. We apply Ruzsa’s covering lemma to
the sets Q and A. Since

Q + A ⊂ (2A− 2A) + A = 3A− 2A,

the Plünnecke–Ruzsa inequality and (3) give

|Q + A| ≤ K 5|A| ≤ exp(KO(1))|Q|.

By the covering lemma, there is some set Y = {y1, . . . , ym},

m ≤ exp(KO(1)), (4)

such that
A ⊂ (Q − Q) + Y .
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Proof of Freiman’s theorem

Step 6: Finishing the proof. Suppose that

Q = {x0 + l1x1 + · · ·+ ldxd : 0 ≤ li < Li}

and
Y = {y1, . . . , ym}.

Then

(Q − Q) + Y ⊂ {x̃0 +
∑
i≤d

`ixi +
∑
i≤m

l ′i yi , 0 ≤ li < 2Li , 0 ≤ l ′j < 2}

= Q̃,

where
x̃0 = −(L1x1 + · · ·+ Ldxd).

Note that Q̃ is a generalised progression of dimension d + m and

|Q̃| = 2d+mL1 · · · Ld = 2d+m|Q| ≤ 2d+m|2A− 2A| �K |A|.
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