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Roth’s theorem

Let [N] := {1, 2, . . . ,N}. Let us say that a three-term AP is
nontrvial if it is of the form x , x + d , x + 2d with d 6= 0.
Our goal in the next two lectures is to prove

Theorem (Roth)

Let r3(N) be the size of the largest subset of [N] that is free of
nontrivial 3-APs. Then r3(N) = o(N). In fact, more precisely
r3(N) ≪ N/(log logN).

Roth’s proof of his theorem introduced Fourier methods to
additive combinatorics.

Roth’s theorem represents the first nontrivial case of
Szemeredi’s theorem: Any subset of [N] that is free of
non-trivial k-APs has size o(N).

Roth’s bound has been improved using deep and insightful
arguments, most recently to r3(N) ≪ N/(logN)1+δ (δ > 0)
by Bloom–Sisask.
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Density increment strategy

Roth’s proof of his theorem splits into two parts:

Proving a “density increment result”,

Deducing the theorem from it.

In what follows, c > 0 is a small constant and C > 1 is a large
constant.

Proposition (Density increment)

Let α > 0, N ≥ 1, and let P be an arithmetic progression of size N.
Then for any A ⊂ P with |A| ≥ αN and N ≥ Cα−C at least one of
the following holds.

1 A contains a nontrivial 3-AP,

2 There exists an AP P ′ ⊂ P with |P ′| ≥ Nc such that
|A ∩ P ′|/|P ′| ≥ α+ cα2.
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Density increment strategy

Proof that Proposition implies Roth’s theorem: Let A ⊂ [N]
be free of 3-APs. We want to show α ≤ C/ log logN.
Iterate the previous proposition to conclude that there exists a
sequence [N] = P0 ⊃ P1 ⊃ P2 ⊃ ... of APs such that

|Pi | ≥ |Pi−1|
c ,

The relative densities αi := |A ∩ Pi |/|Pi | satisfy
αi ≥ αi−1 + cα2

i−1.

This iteration can be continued as long as |Pi | ≥ Cα−C

i
. Since

|Pi | ≥ Nc i , αi ≥ α, we can continue it for
≥ (log logN − log log(Cα−C ))/ log(1/c) steps. However, after
1/(cα) steps, the relative density αi doubles, and after another
1/(2cα) steps it quadruples, and so on. So in ≤ 2/(cα) steps it
exceeds one.
Hence, 2/(cα) ≥ (log logN − log log(Cα−C ))/ log(1/c), which
implies α ≥ C/ log logN.
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Applying Fourier analysis

We may assume that P = [N] by an affine transformation.
Let fA be the balanced function of A, fA = 1A − α1[N], α = |A|/N.

Proposition (No 3-APs implies large Fourier coefficient)

Let A ⊂ [N] satisfy |A| ≥ αN and N ≥ 4/α2. Then at least one of
the following holds.

1 A contains a nontrivial 3-AP

2 There exists θ ∈ T such that |f̂A(θ)| ≥ α2N/28.

Proof: For compactly supported functions, define the linear
operator

T (f , g , h) :=
∑

x ,d∈Z

f (x)g(x + d)h(x + 2d).

By the orthogonality relations, we have

T (f , g , h) =

∫ 1

0
f̂ (θ)ĝ(−2θ)ĥ(θ) dθ.

On the other hand,
T (1A, 1A, 1A) = |A|+ 2|{nontrivial 3-AP in A}|.
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Applying Fourier analysis

We now conclude that if A contains no 3-APs, then
T (1A, 1A, 1A) ≤ αN ≤ α3N/4.
But by writing 1A = fA + α1[N], we can split T (1A, 1A, 1A) as a
sum of 8 terms

T (fA, fA, fA) + · · ·+ T (α1[N], α1[N]], α1[N]).

But T (α1[N], α1[N]], α1[N]) ≥ α3N2/2, so one of the other 7 terms
is ≥ α3N2/28 in modulus.
Say |T (f1, f2, f3)| ≥ α3N2/28, fi ∈ {fA, α1[N]}, and e.g. f1 = fA.
By the Fourier representation,

∫ 1

0
f̂1(θ)f̂2(−2θ)f̂3(θ) dθ ≥ α3N2/28.
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Applying Fourier analysis

Thus, by Cauchy–Schwarz

sup
θ

|f̂1(θ)|

(∫ 1

0
|f̂2(θ)|

2 dθ

∫ 1

0
|f̂3(θ)|

2 dθ

)1/2

≥ α3N2/28.

By Parseval, we get

sup
θ

|f̂1(θ)|

(
∑

n

|f2(n)|
2
∑

n

|f3(n)|
2

)1/2

≥ α3N2/28.

We have
∑

n
|fi (n)|

2 ≤ αN, so

sup
θ

|f̂1(θ)| = sup
θ

|f̂A(θ)| ≥ α2N/28.

In the next lecture, we will use this Fourier proposition to conclude
the proof.
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