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The Goldbach conjectures

Conjecture (The ternary Goldbach conjecture)

Every odd integer N > 7 is the sum of three primes.

Conjecture (The binary Goldbach conjecture)

Every even integer N > 4 is the sum of two primes.

Since N odd =⇒ N − 3 is even, the binary conjecture =⇒ the
ternary conjecture.
However, the binary Goldbach problem remains open, whereas the
ternary Goldbach conjecture was solved by Vinogradov in 1937.

Theorem (Vinogradov’s three primes theorem)

There exists a large N0 such that every odd N > N0 is the sum of
three primes.
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Vinogradov’s three primes theorem

The proof actually gives an asymptotic for solutions to
N = p1 + p2 + p3. As usual, we count the primes with the weight

Λ(n) =

{

log p, n = pk , k > 1, p prime

0, n not a prime power

Theorem (Vinogradov’s three primes theorem, quantitative)

Let

r(N) =
∑

N=n1+n2+n3

Λ(n1)Λ(n2)Λ(n3)

be the weighted count of solutions to N = p1 + p2 + p3. Then

r(N) =
1

2
S(N)N2 + OC (N

2(logN)−C )

for any C > 1, where the singular series is given by

S(N) =
∏

p|N

(

1−
1

(p − 1)2

)

∏

p∤N

(

1 +
1

(p − 1)3

)

.
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Vinogradov’s theorem

Note that the quantitative version of Vinogradov’s theorem easily
implies the qualitative version: we have

r(N) 6 (logN)3
∑

N=p1+p2+p3

1 + O(N3/2),

with the error term coming from higher prime powers, and for odd
N we have

r(N) ≫ N2
∏

p|N

(1− 1/(p − 1)2) ≫ N2.

Therefore, it suffices to prove the preceding theorem.
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Two assumptions

We are going to assume two theorems from analytic NT as a
given, as their proofs would take us too far from the main topic.

Theorem (Siegel–Walfisz theorem)

Let A > 1 and x > 2. Then for any coprime a, q > 1 we have
∑

n6x ,n≡a (mod q)

Λ(n) =
x

ϕ(q)
+ OA(x/(log x)

A).

Theorem (Davenport’s bound)

Let x > 2, A > 1, and let α ∈ R satisfy

inf
16q6(log x)A

‖qα‖R/Z > (log x)100A/x .

Then we have

|
∑

n6x

Λ(n)e(αn)| ≪A x(log x)−A.
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Major and minor arcs

By the orthogonality relations, we have

r(N) =

∫ 1

0
S(α)3e(−Nα),

where
S(α) =

∑

n6N

Λ(n)e(αn).

Let A > 1 be a large enough constant, and let P = (logN)A,
Q = N/(logN)2A. Define the major arcs as

M =
⋃

16q6P

⋃

16a6q
(a,q)=1

Ma,q, Ma,q = {α ∈ T : ‖α− a/q‖R/Z 6 1/(qQ)}

and the minor arcs as
m = T \M.

Note that the major arcs Ma,q are pairwise disjoint, since if
a/q, a′/q′ are the midpoints of two different major arcs, we have
‖a/q − a′/q′‖R/Z > 1/(qq′) > 1/P2 > 10/Q.
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Minor arc case

Using Parseval’s identity, we estimate
∣

∣

∣

∣

∫

m

S(α)3e(−Nα) dα

∣

∣

∣

∣

6 sup
α∈m

|S(α)|

∫ 1

0
|S(α)|2 dα

= sup
m

|S(α)| ·
∑

n6N

Λ(n)2

≪ sup
m

|S(α)| · N(logN),

where we used the prime number theorem in the last step. Now,
since α ∈ m =⇒ ‖qα‖ > 1/Q = (logN)2A/x ∀ q 6 (logN)A,
Davenport’s theorem gives

sup
m

|S(α)| ≪ N(logN)−A/100.

Combining this with the above and taking A = 200C , say, we see
that the minor arc contribution is ≪C N2/(logN)C .
We are left with the major arc case, where we need

∫

M

S(α)3e(−Nα) dα =
1

2
S(N)N2 + OC (N

2(logN)−C ).
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Dirichlet characters

A character of an abelian group G is simply a homomorphism
χ : G → C \ {0}. Consider the case G = Z/qZ. In this case, we
can extend the character from Z/qZ to Z by periodicity.

Definition

We say that χ : Z → C is a Dirichlet character modulo q if
χ(n) = 0 for (n, q) = 1, and χ is q-periodic, and
χ(mn) = χ(m)χ(n) for all m, n ∈ Z.

The function χ0(n) = 1(n,q)=1 is clearly a Dirichlet character; it is
called the principal character.
Example: A character (mod 5): χ(0) = 0, χ(1) = 1, χ(2) = i ,
χ(3) = −i , χ(4) = −1.

8 / 11



Character orthogonality

Lemma

1 Let q > 1 and let a, b be coprime to q. Then

∑

χ (mod q)

χ(a)χ(b) = ϕ(q)1a≡b (mod q).

2 Let q > 1, and let χ1, χ2 (mod q) be Dirichlet characters.
Let a be coprime to q. Then

∑

a (mod q)

χ1(a)χ2(a) = ϕ(q)1χ1=χ2 .

Proof: The first claim follows from the facts that (i) {χ (mod q)}
is a group, (ii) |{χ (mod q)}| = ϕ(q), (iii) if a 6≡ 1 (mod q), then
χ(a) 6= 1 for some χ (mod q). These facts can be verified
relatively easily using primitive roots.
The second claim is proved very similarly.
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Siegel–Walfisz again

We can reformulate the Siegel–Walfisz in terms of characters.

Theorem (Siegel–Walfisz theorem, characters)

Let A > 1, x > 2. For any χ (mod q) with q 6 (log x)A we have

ψ(x , χ) :=
∑

n6x

Λ(n)χ(n) = x1χ=χ0 + OA(x(log x)
−A).

Proof: Applying Siegel–Walfisz, we have
∑

n6x

Λ(n)χ(n) =
∑

a (mod q)

χ(a)
∑

n6x
n≡a (mod q)

Λ(n)

=
∑

a (mod q)

χ(a)
x

ϕ(q)
+ OA(

qx

(log x)2A
)

= x1χ=χ0 + O(
x

(log x)A
),

where the last step used the orthogonality of characters.
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Fourier expansion of exponential

Lemma

For n, q > 1 and (n, q) = 1, we have

e

(

n

q

)

=
1

ϕ(q)

∑

χ (mod q)

τ(χ)χ(n), (1)

where

τ(χ) =
∑

16n6q

χ(n)e

(

−
n

q

)

. (2)

Proof. This follows by substituting (2) into (1) and using the
orthogonality relations.
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