C3.10 Additive and Combinatorial NT Lecture 15: The ternary Goldbach problem I

Joni Teräväinen

Mathematical Institute

Conjecture (The ternary Goldbach conjecture)

Every odd integer $N \ge 7$ is the sum of three primes.

Conjecture (The binary Goldbach conjecture)

Every even integer $N \ge 4$ is the sum of two primes.

Since N odd \implies N – 3 is even, the binary conjecture \implies the ternary conjecture.

However, the binary Goldbach problem remains open, whereas the ternary Goldbach conjecture was solved by Vinogradov in 1937.

Theorem (Vinogradov's three primes theorem)

There exists a large N_0 such that every odd $N \ge N_0$ is the sum of three primes.

Vinogradov's three primes theorem

The proof actually gives an asymptotic for solutions to $N = p_1 + p_2 + p_3$. As usual, we count the primes with the weight $\Lambda(n) = \begin{cases} \log p, & n = p^k, & k \ge 1, \ p \text{ prime} \\ 0, & n \text{ not a prime power} \end{cases}$

Theorem (Vinogradov's three primes theorem, quantitative)

Let

$$r(N) = \sum_{N=n_1+n_2+n_3} \Lambda(n_1) \Lambda(n_2) \Lambda(n_3)$$

be the weighted count of solutions to $N = p_1 + p_2 + p_3$. Then $r(N) = \frac{1}{2} \mathfrak{S}(N) N^2 + O_C(N^2 (\log N)^{-C})$

for any $C \ge 1$, where the singular series is given by $\mathfrak{S}(N) = \prod_{i=1}^{N} \left(1 - \frac{1}{(p-1)^2} \right) \prod_{p \in \mathcal{N}} \left(1 + \frac{1}{(p-1)^3} \right).$ Note that the quantitative version of Vinogradov's theorem easily implies the qualitative version: we have

$$r(N) \leq (\log N)^3 \sum_{N=p_1+p_2+p_3} 1 + O(N^{3/2}),$$

with the error term coming from higher prime powers, and for odd N we have

$$r(N) \gg N^2 \prod_{p|N} (1 - 1/(p - 1)^2) \gg N^2.$$

Therefore, it suffices to prove the preceding theorem.

Two assumptions

We are going to assume two theorems from analytic NT as a given, as their proofs would take us too far from the main topic.

Theorem (Siegel-Walfisz theorem)

Let $A \ge 1$ and $x \ge 2$. Then for any coprime $a, q \ge 1$ we have

$$\sum_{n \leqslant x, n \equiv a \pmod{q}} \Lambda(n) = \frac{x}{\varphi(q)} + O_A(x/(\log x)^A).$$

Theorem (Davenport's bound)

Let $x \ge 2$, $A \ge 1$, and let $\alpha \in \mathbb{R}$ satisfy $\inf_{1 \le q \le (\log x)^A} \|q\alpha\|_{\mathbb{R}/\mathbb{Z}} \ge (\log x)^{100A}/x.$

Then we have

$$|\sum_{n\leqslant x} \Lambda(n)e(\alpha n)| \ll_A x(\log x)^{-A}.$$

Major and minor arcs

By the orthogonality relations, we have

$$r(N) = \int_0^1 S(\alpha)^3 e(-N\alpha),$$

where

$$S(\alpha) = \sum_{n \leq N} \Lambda(n) e(\alpha n).$$

Let $A \ge 1$ be a large enough constant, and let $P = (\log N)^A$, $Q = N/(\log N)^{2A}$. Define the major arcs as $\mathfrak{M} = \bigcup_{\substack{1 \le q \le P \ (a,q)=1}} \mathfrak{M}_{a,q}, \quad \mathfrak{M}_{a,q} = \{\alpha \in \mathbb{T} : \|\alpha - a/q\|_{\mathbb{R}/\mathbb{Z}} \le 1/(qQ)\}$

and the minor arcs as

$$\mathfrak{m} = \mathbb{T} \setminus \mathfrak{M}.$$

Note that the major arcs $\mathfrak{M}_{a,q}$ are pairwise disjoint, since if a/q, a'/q' are the midpoints of two different major arcs, we have $||a/q - a'/q'||_{\mathbb{R}/\mathbb{Z}} \ge 1/(qq') \ge 1/P^2 > 10/Q$.

Minor arc case

Using Parseval's identity, we estimate

$$\left| \int_{\mathfrak{m}} S(\alpha)^{3} e(-N\alpha) \, d\alpha \right| \leq \sup_{\alpha \in \mathfrak{m}} |S(\alpha)| \int_{0}^{1} |S(\alpha)|^{2} \, d\alpha$$
$$= \sup_{\mathfrak{m}} |S(\alpha)| \cdot \sum_{n \leq N} \Lambda(n)^{2}$$
$$\ll \sup_{\mathfrak{m}} |S(\alpha)| \cdot N(\log N),$$

where we used the prime number theorem in the last step. Now, since $\alpha \in \mathfrak{m} \implies ||q\alpha|| \ge 1/Q = (\log N)^{2A}/x \forall q \le (\log N)^A$, Davenport's theorem gives

$$\sup_{\mathfrak{m}} |S(\alpha)| \ll N(\log N)^{-A/100}$$

Combining this with the above and taking A = 200C, say, we see that the minor arc contribution is $\ll_C N^2/(\log N)^C$. We are left with the major arc case, where we need

$$\int_{\mathfrak{M}} S(\alpha)^3 e(-N\alpha) \, d\alpha = \frac{1}{2} \mathfrak{S}(N) N^2 + O_C(N^2 (\log N)^{-C}).$$

A *character* of an abelian group *G* is simply a homomorphism $\chi : G \to \mathbb{C} \setminus \{0\}$. Consider the case $G = \mathbb{Z}/q\mathbb{Z}$. In this case, we can extend the character from $\mathbb{Z}/q\mathbb{Z}$ to \mathbb{Z} by periodicity.

Definition

We say that $\chi : \mathbb{Z} \to \mathbb{C}$ is a *Dirichlet character* modulo q if $\chi(n) = 0$ for (n, q) = 1, and χ is q-periodic, and $\chi(mn) = \chi(m)\chi(n)$ for all $m, n \in \mathbb{Z}$.

The function $\chi_0(n) = 1_{(n,q)=1}$ is clearly a Dirichlet character; it is called the *principal character*. Example: A character (mod 5): $\chi(0) = 0$, $\chi(1) = 1$, $\chi(2) = i$, $\chi(3) = -i$, $\chi(4) = -1$.

Character orthogonality

Lemma

• Let $q \ge 1$ and let a, b be coprime to q. Then

а

$$\sum_{\substack{\chi \pmod{q}}} \chi(a) \overline{\chi}(b) = \varphi(q) \mathbb{1}_{a \equiv b \pmod{q}}.$$

 2 Let q ≥ 1, and let x₁, x₂ (mod q) be Dirichlet characters. Let a be coprime to q. Then

$$\sum_{(\mathsf{mod } q)} \chi_1(a) \overline{\chi_2}(a) = arphi(q) \mathbb{1}_{\chi_1 = \chi_2}.$$

Proof: The first claim follows from the facts that (i) $\{\chi \pmod{q}\}$ is a group, (ii) $|\{\chi \pmod{q}\}| = \varphi(q)$, (iii) if $a \not\equiv 1 \pmod{q}$, then $\chi(a) \neq 1$ for some $\chi \pmod{q}$. These facts can be verified relatively easily using primitive roots. The second claim is proved very similarly.

Siegel-Walfisz again

We can reformulate the Siegel-Walfisz in terms of characters.

Theorem (Siegel–Walfisz theorem, characters)

Let $A \ge 1$, $x \ge 2$. For any $\chi \pmod{q}$ with $q \le (\log x)^A$ we have

$$\psi(x,\chi) := \sum_{n \leqslant x} \Lambda(n)\chi(n) = x \mathbb{1}_{\chi=\chi_0} + O_A(x(\log x)^{-A}).$$

Proof: Applying Siegel-Walfisz, we have

$$\sum_{n \leqslant x} \Lambda(n)\chi(n) = \sum_{a \pmod{q}} \chi(a) \sum_{\substack{n \leqslant x \\ n \equiv a \pmod{q}}} \Lambda(n)$$
$$= \sum_{a \pmod{q}} \chi(a) \frac{x}{\varphi(q)} + O_A(\frac{qx}{(\log x)^{2A}})$$
$$= x \mathbf{1}_{\chi = \chi_0} + O(\frac{x}{(\log x)^A}),$$

where the last step used the orthogonality of characters.

Lemma

For $n, q \ge 1$ and (n, q) = 1, we have

$$e\left(\frac{n}{q}\right) = \frac{1}{\varphi(q)} \sum_{\chi \pmod{q}} \tau(\overline{\chi})\chi(n), \qquad (1)$$

where

$$\tau(\chi) = \sum_{1 \le n \le q} \chi(n) e\left(-\frac{n}{q}\right).$$
(2)

Proof. This follows by substituting (2) into (1) and using the orthogonality relations.