C3.10 Additive and Combinatorial NT

Lecture 16: The ternary Goldbach problem Il
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To finish the proof of Vinogradov's theorem, we must show that
1
/ S(a)®e(—Na)da = EG(N)/v2 + Oc(N?(log N)~€),
m

where

6(N):H<l‘(p—ln2> MN(”(p—llP)‘

Here the major arcs are given by

M = U U Mag, Mag = {a eT: Ha - a/qHR/Z < 1/(qQ)}
1<q<P 1<a<q
(a,9)=1

and P = (log N)A, Q = N/(log N)?A.
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Midpoint of a major arc

We first consider S(a/q) for1 < a< g < P.
By the character expanS|on of e(an/q) and Siegel-Walfisz,

=) An)e

n<N

= ) Ane(=) + O((log 9)°)

n<N
(nq)=
1
= ) Z 7(X)x Z/\(n
P9 (mod q) n<N

_ N N
= > T(0x(@) gy be=vo + Ol pyioa)

x (mod q)

— 7—(XO) ( )
v(q) (log V)10A~

Lastly, note that 7(xo) = u(q) by Mdbius inversion. Thus

S(a/q) = ':EZ;N + O(N(log N)~104),
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Arbitrary point on a major arc

To generalize this to the case a € M, 4, we apply partial
summation (C3.8 course). Let o = a/q + (. Partial summation
and the bound on the previous slide give

( + ) —eBN)Z/\ 2 —27”5/ Z/\ Bt) dt

n<N n<t
E ; (Ne(Nﬂ —277/6/ te(Bt) dt)
O((1 + |BIN)N/(log N)**%).
Again applying partial summation, and denoting
T(8)= ) e(Bn),
n<N

we obtain

wq) N
( +8) = 2(q) (5)+W,

say, since |B|N < N/Q < (log N)?A 4/9



Summing over major arcs

It is easy to see that the error term is small, even after summing
over all the major arcs. It suffices to prove that

#Q p(q) _» N2
/a/CI—l/Q (q)? T(a)e(~Na) da = - &(N) + Oniog Wy

q<Q
1<a<q
(a,q)=1

We first consider the integral
6= | T(3)%e(~NB) d.
[-1/Q,1/Q]

We have | T(8)| < 1/||Bllr/z < Q for 3 € T\ [-1/Q,1/Q)], so
1 4p
1/Q§
The integral is counting solutions to N = n; + ny + n3 with
1 < n; < N, and their number is clearly %Nz + O(N). Hence,

1(8) = N?/2 + O(Q?).

1(5) = /0 T(5)e(~NB) df + O ) = /0 T(8)%e(~NB) dj + O(Q?).
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Summing over major arcs

Using 1(8) = N?/2 4+ O(Q?), and making a change of variables,
the sum that we are considering becomes

1
> Y K e+ o)
q<Q 1<a<q q)
(a,9)=1

Here the error term is < N?(log N)~2A.
We now define the Ramanujan sum

co(N) = ga:gq e ("2’) .

(a,9)=1

With this notation, we can write the main term above as

u(q 1
QO )3 q §N2' (1)
q<Q
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Ramanujan sums

Crudely estimating |cq(N)| < ¢(q), we have

2.

q>P

1(q) 1 -0.9
cq(N)| < E < P
379 2 ’
v(q) = #la)
since (q) > q%%°. Therefore, we can complete the g sum to
reduce matters to

3 :((:))3 cg(N) = G(N).
g>1
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Ramanujan sums

We need one more lemma before we can prove this identity.

Let n > 1. Then
Q@ g — cq4(n) is multiplicative.

@ For primes p, we have ¢,(n) = pl,, — 1.

Proof. For proving (i), let ¢ = g1g2 with (g1, g2) = 1. Using the
fact that every reduced reside class (mod gi1g2) is uniquely of the
form gix + qoy with x € (Z/q2Z)* and y € (Z/q17Z)*, we see that

- Y (1IN o)

1<x<q2 1<y<q1
(x%,92)=1(y,q1)=1

For proving (ii), we use the orthogonality relations to write

cp(n) = Z e(an/p) —1=pl,, -1

1<agp

This is the desired claim. ] 6/9



Finishing the proof

By the previous lemma f(q) = 1(q)cq(N)/(q)® is multiplicative
with |f(q)| < q71°. Hence, we have the Euler product

1 -1
>t =TT+ oy =TT (1- 525 ).

q>1 p p

which can be verified by truncating the product on the right,
expanding out, and estimating the error terms from the truncation
trivially.

But since the product on the right-hand side is precisely S(N) (as
is seen by separating the primes p | N), we obtain

3 “(q)3 cg(N) = G(N).

= #(a)

This finishes the proof of Vinogradov's theorem.
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