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Recap

To finish the proof of Vinogradov’s theorem, we must show that∫
M
S(α)3e(−Nα) dα =

1

2
S(N)N2 + OC (N2(logN)−C ),

where

S(N) =
∏
p|N

(
1− 1

(p − 1)2

)∏
p-N

(
1 +

1

(p − 1)3

)
.

Here the major arcs are given by

M =
⋃

16q6P

⋃
16a6q
(a,q)=1

Ma,q, Ma,q = {α ∈ T : ‖α− a/q‖R/Z 6 1/(qQ)}

and P = (logN)A, Q = N/(logN)2A.
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Midpoint of a major arc

We first consider S(a/q) for 1 6 a 6 q 6 P.
By the character expansion of e(an/q) and Siegel–Walfisz,

S(
a

q
) =

∑
n6N

Λ(n)e(
an

q
)

=
∑
n6N

(n,q)=1

Λ(n)e(
an

q
) + O((log q)2)

=
1

ϕ(q)

∑
χ (mod q)

τ(χ)χ(a)
∑
n6N

Λ(n)χ(n)

=
∑

χ (mod q)

τ(χ)χ(a)
N

ϕ(q)
1χ=χ0 + O(

N

(logN)10A
)

=
τ(χ0)

ϕ(q)
N + O(

N

(logN)10A
).

Lastly, note that τ(χ0) = µ(q) by Möbius inversion. Thus

S(a/q) =
µ(q)

ϕ(q)
N + O(N(logN)−10A).
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Arbitrary point on a major arc

To generalize this to the case α ∈Ma,q, we apply partial
summation (C3.8 course). Let α = a/q + β. Partial summation
and the bound on the previous slide give

S(
a

q
+ β) = e(βN)

∑
n6N

Λ(n)e(
an

q
)− 2πiβ

∫ N

1

∑
n6t

Λ(n)e(
an

q
)e(βt) dt

=
µ(q)

ϕ(q)

(
Ne(Nβ)− 2πiβ

∫ N

1
te(βt) dt

)
+ O((1 + |β|N)N/(logN)10A).

Again applying partial summation, and denoting

T (β) =
∑
n6N

e(βn),

we obtain

S(
a

q
+ β) =

µ(q)

ϕ(q)
T (β) +

N

(logN)8A
,

say, since |β|N 6 N/Q 6 (logN)2A. 4 / 9



Summing over major arcs

It is easy to see that the error term is small, even after summing
over all the major arcs. It suffices to prove that∑
q6Q
16a6q
(a,q)=1

∫ a/q+1/Q

a/q−1/Q

µ(q)

ϕ(q)3
T (α)3e(−Nα) dα =

N2

2
S(N) + OA(

N2

(logN)A/2
)

We first consider the integral

I (β) =

∫
[−1/Q,1/Q]

T (β)3e(−Nβ) dβ.

We have |T (β)| � 1/‖β‖R/Z � Q for β ∈ T \ [−1/Q, 1/Q], so

I (β) =

∫ 1

0

T (β)3e(−Nβ) dβ + O(

∫ 1

1/Q

dβ

β3
) =

∫ 1

0

T (β)3e(−Nβ) dβ + O(Q2).

The integral is counting solutions to N = n1 + n2 + n3 with
1 6 ni 6 N, and their number is clearly 1

2N
2 + O(N). Hence,

I (β) = N2/2 + O(Q2).
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Summing over major arcs

Using I (β) = N2/2 + O(Q2), and making a change of variables,
the sum that we are considering becomes∑

q6Q

∑
16a6q
(a,q)=1

µ(q)

ϕ(q)3
e(

aN

q
) · 1

2
N2 + O(P2Q2)

Here the error term is � N2(logN)−2A.
We now define the Ramanujan sum

cq(N) =
∑

16a6q
(a,q)=1

e

(
aN

q

)
.

With this notation, we can write the main term above as∑
q6Q

µ(q)

ϕ(q)3
cq(N) · 1

2
N2. (1)
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Ramanujan sums

Crudely estimating |cq(N)| 6 ϕ(q), we have∣∣∣∣∣∣
∑
q>P

µ(q)

ϕ(q)3
cq(N)

∣∣∣∣∣∣ 6
∑
q>P

1

ϕ(q)2
� P−0.9,

since ϕ(q)� q0.99. Therefore, we can complete the q sum to
reduce matters to ∑

q>1

µ(q)

ϕ(q)3
cq(N) = S(N).
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Ramanujan sums

We need one more lemma before we can prove this identity.

Lemma

Let n > 1. Then

1 q 7→ cq(n) is multiplicative.

2 For primes p, we have cp(n) = p1p|n − 1.

Proof. For proving (i), let q = q1q2 with (q1, q2) = 1. Using the
fact that every reduced reside class (mod q1q2) is uniquely of the
form q1x + q2y with x ∈ (Z/q2Z)∗ and y ∈ (Z/q1Z)∗, we see that

cq(n) =
∑

16x6q2
(x ,q2)=1

∑
16y6q1
(y ,q1)=1

e

(
(q1x + q2y)n

q

)
= cq1(n)cq2(n).

For proving (ii), we use the orthogonality relations to write

cp(n) =
∑

16a6p

e(an/p)− 1 = p1p|n − 1.

This is the desired claim.
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Finishing the proof

By the previous lemma f (q) = µ(q)cq(N)/ϕ(q)3 is multiplicative
with |f (q)| � q−1.9. Hence, we have the Euler product∑

q>1

f (q) =
∏
p

(1 + f (q)) =
∏
p

(
1−

p1p|N − 1

(p − 1)3

)
,

which can be verified by truncating the product on the right,
expanding out, and estimating the error terms from the truncation
trivially.
But since the product on the right-hand side is precisely S(N) (as
is seen by separating the primes p | N), we obtain∑

q>1

µ(q)

ϕ(q)3
cq(N) = S(N).

This finishes the proof of Vinogradov’s theorem.
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