C3.4 ALGEBRAIC GEOMETRY 2020 - EXERCISE SHEET 1

Comments and corrections are welcome: szendroi@maths.ox.ac.uk

In these questions, k denotes an algebraically closed field.

- (1) Zariski topology
 - (a) Verify that arbitrary intersections and finite unions of affine varieties are affine varieties.
 - (b) List the open and closed subsets of \mathbb{A}^1_k in the Zariski topology.
 - (c) Describe carefully the Zariski closed subsets of \mathbb{A}^2_k , proving your statements.
 - (d) Show that the Zariski topology on \mathbb{A}^2_k is not the product topology on $\mathbb{A}^1_k \times \mathbb{A}^1_k$.

(2) Irreducibility

- (a) Show that affine *n*-space \mathbb{A}_k^n is irreducible.
- (b) Show that an affine variety $X \subset \mathbb{A}_k^n$ is irreducible if and only if every non-empty open subset $U \subset X$ is dense in the Zariski topology¹.
- (c) Let X be an irreducible affine variety. Show that any two non-empty open sets intersect in a non-empty open dense set.
- (3) The variety of nilpotent matrices We work in the affine space \mathbb{A}^4 parametrising 2×2 matrices over k, with variables being the matrix entries x_{ij} .
 - (a) Prove that the following conditions are equivalent for a 2×2 matrix A over a field k:
 - A is *nilpotent*: there exists an $n \ge 1$ such that $A^n = 0$;
 - $A^2 = 0;$
 - $\det A = \operatorname{tr} A = 0.$
 - Let $I \triangleleft R = k[x_{11}, x_{12}, x_{21}, x_{22}]$ be the ideal formed by the polynomials $d = \det A, t = \operatorname{tr} A$, viewed as polynomials in the matrix entries. Let $J \triangleleft R$ be the ideal formed by the entries of A^2 , as polynomials in the matrix entries. Show the following.
 - (b) The ideal J is not radical: it contains a power of t but not t itself.
 - (c) The ideal I is radical².
 - (d) Deduce that $X = \mathbb{V}(I) = \mathbb{V}(J) \subset \mathbb{A}^4$ with $\sqrt{J} = I$, and conversely $\mathbb{I}(X) = I$.
- (4) Reduced algebras as coordinate rings
 - (a) Show that $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$ for ideals I, J of a finitely generated k-algebra R.
 - (b) Show that the ideal $(xy, xz) \subset k[x, y, z]$ is radical but not prime. Sketch the variety it defines in \mathbb{A}^3_k .
 - (c) Let $X \subset \mathbb{A}_k^n$ be an affine variety. Show that a radical ideal in k[X] is the intersection of all the maximal ideals containing it³.
 - (d) (Harder) Show that a variety $X \subset \mathbb{A}_k^n$ is a union of two disjoint closed subvarieties if and only if its coordinate ring k[X] may be written as the product of two non-trivial finitely generated reduced k-algebras⁴.

¹Hint: the converse statement is easier to show.

²Hint: aim to show that I is prime and therefore radical. Show this by mapping R/I to an isomorphic ring using the linear generator.

³Hint: using methods of this course, it is easier to first translate this into a geometrical statement, and prove that. For an algebraic proof, you might find helpful the following theorem due to Krull: the nilradical $nil(A) = \{x : x^m = 0 \text{ some } m\}$ of a ring A equals the intersection of all its prime ideals.

⁴Hint: recall the algebraic form of the Chinese Remainder Theorem: if I_1, I_2 are coprime ideals in a ring R, meaning $I_1 + I_2 = R$, then $I_1 \cap I_2 = I_1 \cdot I_2$ and there is a ring isomorphism $R/(I_1 \cap I_2) \to R/I_1 \times R/I_2$ given by $f \mapsto (f + I_1, f + I_2)$.

- (5) The pull-back map between coordinate rings. Suppose that $F: X \to Y$ is a morphism of affine varieties over a field k, associated to a map $F^*: k[Y] \to k[X]$ between their coordinate rings.
 - (a) Show that F^* is injective if and only if F is dominant, i.e. the image set F(X) is dense in Y.
 - (b) Show that F^* is surjective if and only if F defines an isomorphism between X and some algebraic subvariety of Y.
 - (c) Find an example where F is injective but F^* is not surjective.
- (6) The affine normal curve. Consider the homomorphism of rings

$$F^*: k[x_0, \dots, x_{n-1}] \to k[t]$$

given by $x_i \mapsto t^i$.

- (a) Show that the corresponding morphism of affine varieties $F : \mathbb{A}^1_k \to \mathbb{A}^n_k$ defines an isomorphism between \mathbb{A}^1_k and its image under F.
- (b) Find generators for the ideal defining the image of F in \mathbb{A}_k^n .