C3.4 ALGEBRAIC GEOMETRY 2020 - EXERCISE SHEET 3 Comments and corrections are welcome: szendroi@maths.ox.ac.uk

- (1) Another set of equations for the twisted cubic curve
 - (a) Let $Q = \{x_0x_2 = x_1^2\} \subset \mathbb{P}^3$ and $F = \{x_0x_3^2 2x_1x_2x_3 + x_2^3 = 0\} \subset \mathbb{P}^3$. Prove that $C = Q \cap F \subset \mathbb{P}^3$ is the twisted cubic curve, the image of the third Veronese embedding $\nu_3(\mathbb{P}^1) \subset \mathbb{P}^3$. Hint: multiply the second equation with x_2 and use the first equation to put it in the form of a perfect square...
 - (b) Does this mean that the ideal $\mathbb{I}(\nu_3(\mathbb{P}^1))$ can in fact be generated by two elements? (Compare Sheet 2, Question (2).)
- (2) **Projecting a space curve**

Let $Q_0 = \{x_0x_3 = x_1^2\} \subset \mathbb{P}^3$ and $Q_1 = \{x_1x_3 = x_2^2\} \subset \mathbb{P}^3$. Consider the projective variety $C = Q_0 \cap Q_1 \subset \mathbb{P}^3$. Show that the formula $\pi \colon [x_0 \colon x_1 \colon x_2 \colon x_3] \mapsto [x_0 \colon x_1 \colon x_2]$ defined on a Zariski open subset of C can be extended to a projective morphism $\pi \colon C \to \mathbb{P}^2$. Show that π maps C isomorphically to the projective variety (plane curve) $D = \{x_0x_2^2 = x_1^3\} \subset \mathbb{P}^2$.

Hint: to extend π , try to express the ratios $x_0 : x_1 : x_2$ in a different way using the equations of C.

(3) Degree of a conic, explicitly

Let $C = \{x_0^2 + x_1^2 + x_2^2 = 0\} \subset \mathbb{P}^2_{x_0, x_1, x_2}$. Consider lines

$$= \{a_0 x_0 + a_1 x_1 + a_2 x_2 = 0\} \subset \mathbb{P}^2_{x_0, x_1, x_2}$$

Find the set of coefficients (a_0, a_1, a_2) so that the intersection $L \cap C$ does not consist of two distinct points.

Cultural Remark: The coefficients a_i parametrize the dual projective plane $\mathbb{P}^2_{a_0,a_1,a_2}$, which plays the role of the general Grassmannian in the definition of degree. The locus you have just computed is the bad locus inside this Grassmannian; its complement is the generic locus in the definition of degree.

(4) Dimension, degree and Hilbert polynomial

- (a) Show carefully that if X is a reducible projective variety with equidimensional irreducible components X_i , then deg $X = \sum_i \deg X_i$.
- (b) Find the Hilbert polynomial of the Veronese image $\nu_d(\mathbb{P}^n)$. Verify that this projective variety has dimension n and degree d^n .
- (c) Compute the degree deg $\nu_d(\mathbb{P}^1)$ directly, without using the Hilbert polynomial.
- (d) Let F be a homogeneous irreducible polynomial of degree d in $k[x_0, \ldots, x_n]$, and let $X = \mathbb{V}(F) \subset \mathbb{P}^n$. Find the Hilbert polynomial of X. Deduce that, as expected, dim X = n - 1 and deg X = d.

(5) Affine and quasi-projective varieties

- (a) Find an open affine cover of $\mathbb{A}^2 \setminus \{(0,0)\}$.
- (b) Show that GL(n,k) is an affine variety, i.e. that it is isomorphic as a quasiprojective variety to a Zariski closed subset of an affine space.
- (c) Let X be an affine variety and $f \in k[X]$. Show that f vanishes nowhere on X if and only if f is invertible in k[X].