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What is algebraic geometry about?

Algebraic geometry is the study of geometric spaces given by polynomial equa-

tions. More precisely, it is the study of geometric spaces given by the vanishing

of polynomial equations of (Cartesian) coordinates.

Polynomials: very natural notion. As soon as we have “numbers” that we can

add and multiply, we can take a bunch of variables and write down polynomials.

We get polynomial rings S[x1, x2, . . .] over rings S.

In this course,

• we will consider polynomial rings over fields k, and

• we will have a finite number of indeterminates (variables), so

R = k[x1, . . . , xn].

We will think of variables x1, . . . , xn as Cartesian coordinates on affine space

p = (x1, . . . , xn) ∈ An = An
k = kn.



Familiar examples

You already know some examples from earlier studies!

• Fix constants a1, . . . , an, c ∈ k. Then

H =

{
n∑
i=1

aixi − c = 0

}
⊂ An

is an affine hyperplane. If c = 0, thenH is a hyperplane (codimension

one linear subspace).

• More generally, if we take several such equations, we get affine linear

subspaces, respectively (if all constants are zero) linear subspaces.

• Take k = R. Then

{x2 + y2 − 1 = 0} ⊂ A2
R

is a circle. More generally, any quadratic equation in (x, y) describes a

(real) plane conic or conic section.



More familiar examples

• Take k = C. Then

{p(x, y) = 0} ⊂ A2
C

for any polynomial p ∈ C[x, y] is a (complex) affine plane curve, studied

in the Oxford Part B course on Complex Algebraic Curves (and of course

elsewhere).

• Take k = R again. Then

{x2 + y2 − z2 − c = 0} ⊂ A3
R

is a hyperboloid, with number of sheets depending on the sign of c 6= 0.

For c = 0, we get the quadric cone.

• With k = R and arbitrary n, we have the (real) (n− 1)-sphere

Sn−1 =

{
n∑
i=1

x2i − 1 = 0

}
⊂ An

R.



Familiar examples over R in pictures



General features

• A lot of the theory works for arbitrary fields k. We will assume

– k has characteristic 0;

– k is algebraically closed.

• Just take k = C if you wish!

• Number of variables will be arbitrary (finite!).

• Number of equations will also be arbitrary (finite! but now not a restric-

tion).

• Drawing pictures remains a lot easier if k = R and n ≤ 3...

• Don’t forget other fields such as Fp,Fq,Qp,C(t), . . . in further studies.



Applications of algebraic geometry

• Within pure mathematics: interacts with many different fields!

– Key role in Wiles’ proof of Fermat’s Last Theorem

• Recent prominent role in theoretical physics

– Spacetime models in string theory from algebraic geometry via super-

symmetry

• Prominent applications in other areas

– Algebraic robotics: describe motion of automate constrained by poly-

nomial conditions.

– Cryptography: cryptosystems from geometry (elliptic curves, abelian

varieties...)

– Algebraic systems biology: describe equilibria of complicated polyno-

mial interaction systems



Sources of information

• Lecture notes by Prof Ritter on course website

– Will follow the same notation.

– The material in lectures forms a subset of the notes; will ignore categor-

ical aspects but feel free to read those sections for a different, important

point of view.

• Books

– Many books around. Reid: UAG is perhaps the most useful. Hartshorne:

Algebraic geometry is the “bible” but is too advanced just for this course.

• Problem sheets

– There will be 5 problem sheets in total. Sheet 0 is not for handing in.



Commutative algebra in algebraic geometry

k denotes a field, algebraically closed and of characteristic 0, with unit 1 ∈ k.

R a finitely generated, unital, commutative k-algebra: finitely generated as a

commutative ring, has multiplication by elements of k, also has unit 1 ∈ R.

For example,

R = k[x1, . . . , xn].

We will consider ideals I CR, their intersections, products, quotient rings, etc.

Also ring/algebra homomorphisms, kernels, images, etc.

I will quote results from Commutative Algebra. They can be taken without

proof in this course; the Part B course Commutative algebra proves most of

these results.



A simple but important proposition

Proposition Let k be a field, S a finitely generated commutative k-algebra.

Then

S ∼= k[x1, . . . , xn]/I

for some n and an ideal I C k[x1, . . . , xn].

Proof Let s1, . . . sn ∈ S be a set of k-algebra generators of S. Consider the

ring homomorphism

ϕ : k[x1, . . . , xn]→ S

defined by ϕ(xi) = si. Then ϕ is surjective, since si generate S. Considering

I = kerϕC k[x1, . . . , xn],

we get indeed

S ∼= k[x1, . . . , xn]/I

by the Isomorphism Theorem for rings. �



Vanishing sets

We are working in the space kn = {a = (a1, . . . , an) : aj ∈ k}.
This space corresponds to the polynomial ring R = k[x1, . . . , xn].

X ⊂ kn is an affine (algebraic) variety, if X = V(I) for some ideal I ⊂ R,

where

V(I) = {a ∈ kn : f (a) = 0 for all f ∈ I} ⊂ kn.

Examples

• For the zero ideal, V(0) = kn.

• For the ideal 〈1〉 = R generated by the identity, V(R) = ∅.

• For some nonconstant f ∈ R \k generating principal ideal 〈f〉CR, we get

Vf = V(〈f〉) = {a ∈ kn : f (a) = 0},

the hypersurface defined by f .



An easy but important example

Let a = (a1, . . . , an) ∈ kn and consider

ma = 〈x1 − a1, . . . , xn − an〉CR.

The following are all easy to check:

• V(ma) = {a} ⊂ kn.

• The ideal ma CR is the kernel of the evaluation homomorphism

eva : R→ k

defined by f 7→ f (a).

• The ideal ma CR is a maximal ideal of R.

Recall that an ideal m C R of a ring is maximal if it is not equal to R, nor

is properly contained in another proper ideal of R. Remember that m C R is

maximal if and only if the quotient R/m is a field.



Some basic properties of vanishing sets

1. I ⊂ J ⇒ V(I) ⊃ V(J).

2. V(I) ∪ V(J) = V(I · J) = V(I ∩ J).

3. V(I) ∩ V(J) = V(I + J). (Note: 〈I ∪ J〉 = I + J .)

4. V(I),V(J) are disjoint if and only if I, J are relatively prime (i.e. I + J =

〈1〉)

The proofs are easy exercises.



Hilbert’s Basis Theorem

Hilbert’s Basis Theorem R = k[x1, . . . , xn] is a Noetherian ring. In other

words, it satisfies the following equivalent conditions.

1. Every ideal is finitely generated (f.g.)

I = 〈f1, . . . , fm〉 = Rf1 + · · · + Rfm.

2. ACC (Ascending Chain Condition) on ideals:

I1 ⊂ I2 ⊂ · · · ideals ⇒ IN = IN+1 = · · · eventually all become equal.



Equations of affine varieties

Corollary Any vanishing set V = V(I) is the common zero locus in kn of a

finite number of polynomials:

V = {a ∈ An : f1(a) = . . . = fm(a) = 0} .

Proof Use the Hilbert Basis Theorem: take a set of generators f1, . . . , fm of

the ideal I . So

I = 〈f1, . . . , fm〉CR.
Then clearly f (a) = 0 for all f ∈ I if and only if fi(a) = 0 for all i = 1, . . . ,m.

�

We will often refer to f1 . . . , fm as the “equations of V ”, even though the set

of equations is not really well defined.



On Noetherian rings

Easy proposition If R is Noetherian, any quotient of R is also Noetherian.

Corollary A finitely generated k-algebra S is Noetherian.

Easy proposition If R is Noetherian, any ideal of I is contained in a maximal

ideal m.

Proof Keep adding elements; eventually you must get to a maximal ideal by

the ACC. �

This statement is true in fact in arbitrary rings, but the proof is harder and

requires Zorn’s Lemma.



Hilbert’s Weak Nullstellensatz

Theorem (Weak Nullstellensatz) Assume that k is algebraically closed.

Then every maximal ideal of the ring R = k[x1, . . . , xn] is of the form maCR
for some a = (a1, . . . , an) ∈ kn.

This fails over fields that are not algebraically closed.

Example Let k = R, R = R[x], and I = 〈x2 + 1〉.
Then I = kerψ for ψ : R→ C given by f 7→ f (i).

So R/I is a field, and in particular ICR is maximal. But clearly I is a principal

ideal not generated by degree one polynomial(s).

Corollary V(I) = ∅ ⇔ 1 ∈ I ⇔ I = R.

Proof If 1 /∈ I then I is a proper ideal, so it lies inside some maximal ideal m.

By the Weak Nullstellensatz m = ma for some a ∈ An.

But I ⊂ ma implies V(I) ⊃ V(ma) = {a}. �



The Zariski topology on kn

The Zariski topology on kn is defined by declaring that the closed sets are

the sets of the form V(I).

Easy proposition This is indeed a topology!

Proof Use easy properties of vanishing sets listed above! �

The open sets of the topology look as follows:

UI = kn \ V(I)

= kn \ (V(f1) ∩ · · · ∩ V(fm))

= (kn \ V(f1)) ∪ · · · ∪ (kn \ V(fm))

= Df1 ∪ · · · ∪Dfm,

where I = 〈f1, . . . , fm〉 and the Dfi are called the basic open sets

Df = kn \ V(f ) = {a ∈ kn : f (a) 6= 0}.

Let An be affine n-space, the topological space kn with the Zariski topology.



The Zariski topology on A1

Example. A1 = k has the following closed sets: ∅,A1, and all finite subsets

of A1.

Proof Let I C R = k[x]. As R is a PID, we have I = 〈f〉 for some f ∈ R.

If f is not constant, it has a finite set of roots.

Conversely, any finite subset of k is clearly the root set of some polynomial f .

�

Correspondingly, the open sets in A1 are ∅,A1, and the complement of any

finite set of points.

Some things to observe:

• This topology is not Hausdorff, since any two non-empty open sets intersect.

• The open sets are dense, as the only closed set with infinitely many points

is A1 (note k is infinite).



The Zariski topology on A2

The following statement is not obvious; see Problem Sheet 1.

Example. A2 = k has the following closed sets: ∅,A2, and finite unions of

• plane curves given by equations p(x, y) = 0, and

• points of A2.


