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What is algebraic geometry about?

Algebraic geometry is the study of geometric spaces given by polynomial equa-
tions. More precisely, it is the study of geometric spaces given by the vanishing
of polynomial equations of (Cartesian) coordinates.

Polynomials: very natural notion. As soon as we have “numbers” that we can
add and multiply, we can take a bunch of variables and write down polynomials.

We get polynomial rings S|xy, x9, .. .] over rings S.
In this course,
e we will consider polynomial rings over fields &, and
e we will have a finite number of indeterminates (variables), so
R =klzy,...,z,)
We will think of variables x1, ..., x, as Cartesian coordinates on affine space

p:(ajl);xn)EAn:AZ:kn



Familiar examples

You already know some examples from earlier studies!

e [ix constants aq,...,a,,c € k. Then

H:{iaixi—c:O}CA”

i=1
is an affine hyperplane. If ¢ = 0, then H is a hyperplane (codimension

one linear subspace).

e More generally, if we take several such equations, we get affine linear
subspaces, respectively (if all constants are zero) linear subspaces.

e Take k = R. Then
{r* +9y* —1=0} C A%

is a circle. More generally, any quadratic equation in (z,y) describes a
(real) plane conic or conic section.



More familiar examples

e Take k = C. Then
{p(z,y) = 0} C AL

for any polynomial p € Clz, y] is a (complex) affine plane curve, studied
in the Oxford Part B course on Complex Algebraic Curves (and of course
clsewhere).

e Take k = R again. Then
(2 +y* =22 —c=0} C Aj

is a hyperboloid, with number of sheets depending on the sign of ¢ # 0.
For ¢ = 0, we get the quadric cone.

e With £ = R and arbitrary n, we have the (real) (n — 1)-sphere

Sl = {fo —1= O} C Ap.
i=1



Familiar examples over R in pictures




General features

e A lot of the theory works for arbitrary fields k. We will assume

— k has characteristic 0;

— k is algebraically closed.
e Just take k = C if you wish!
e Number of variables will be arbitrary (finite!).

e Number of equations will also be arbitrary (finite! but now not a restric-
tion).

e Drawing pictures remains a lot easier if k = R and n < 3...

e Don't forget other fields such as F,,, F,, Q,, C(¢),. .. in further studies.



Applications of algebraic geometry

e Within pure mathematics: interacts with many different fields!
— Key role in Wiles’ proof of Fermat’s Last Theorem
e Recent prominent role in theoretical physics

— Spacetime models in string theory from algebraic geometry via super-
symmetry

e Prominent applications in other areas
— Algebraic robotics: describe motion of automate constrained by poly-

nomial conditions.

— Cryptography: cryptosystems from geometry (elliptic curves, abelian
varieties...)

— Algebraic systems biology: describe equilibria of complicated polyno-
mial interaction systems



Sources of information

e Lecture notes by Prof Ritter on course website

— Will follow the same notation.

— The material in lectures forms a subset of the notes; will ignore categor-
ical aspects but feel free to read those sections for a different, important
point of view.

e Books

— Many books around. Reid: UAG is perhaps the most useful. Hartshorne:
Algebraic geometry is the “bible” but is too advanced just for this course.

e Problem sheets

— There will be 5 problem sheets in total. Sheet 0 is not for handing in.



Commutative algebra in algebraic geometry

k denotes a field, algebraically closed and of characteristic 0, with unit 1 € k.

R a finitely generated, unital, commutative k-algebra: finitely generated as a
commutative ring, has multiplication by elements of £, also has unit 1 € R.
For example,

R=Fklxy,...,z,)

We will consider ideals I <1 R, their intersections, products, quotient rings, etc.
Also ring/algebra homomorphisms, kernels, images, etc.

[ will quote results from Commutative Algebra. They can be taken without
proof in this course; the Part B course Commutative algebra proves most of
these results.



A simple but important proposition

Proposition Let £ be a field, S a finitely generated commutative k-algebra.
Then
S = lﬁ[ﬂfl, N ,CEn]/I

for some n and an ideal I < k[z1,...,x,].

Proof Let s1,...s, € S be a set of k-algebra generators of S. Consider the
ring homomorphism
o klry,... x5 — 9

defined by @(x;) = s;. Then ¢ is surjective, since s; generate S. Considering
I =kerp < klxy, ..., x,),

we get indeed
S=klxy, ..., x,)/1

by the Isomorphism Theorem for rings. [l



Vanishing sets

We are working in the space k" = {a = (a1, ...,a,) : a; € k}.
This space corresponds to the polynomial ring R = k[x1, ..., x,).

X C k" is an affine (algebraic) variety, if X = V(I) for some ideal I C R,
where

V(I)={a€k": fla)=0forall fel} CEk"
Examples
e For the zero ideal, V(0) = k",
e For the ideal (1) = R generated by the identity, V(R) = ().
e For some nonconstant f € R\ k generating principal ideal (f) <t R, we get
Vi =V({(f)) ={a € k": fla) =0},
the hypersurface defined by f.



An easy but important example

Let a = (aq,...,a,) € k™ and consider
m, ={(r1—ay,...,r, —a,) <R.

The following are all easy to check:

o V(m,) = {a} C k"

e The ideal m, < R is the kernel of the evaluation homomorphism

evy: R — k
defined by f +— f(a).
e The ideal m, < R is a maximal ideal of R.

Recall that an ideal m < R of a ring is maximal if it is not equal to R, nor
is properly contained in another proper ideal of R. Remember that m <1 R is
maximal if and only if the quotient R/m is a field.



Some basic properties of vanishing sets

.IcJ=V({I) D>V(J).
2. V(HUV()=V({I-J)=V(INJ).
nHnvJ)=V({I+J). (Note: ({UJ)=1+J.)

3. V(I)N
4. V(I),V(J) are disjoint if and only if I, J are relatively prime (i.e. I +J =
()

The proofs are easy exercises.



Hilbert’s Basis Theorem

Hilbert’s Basis Theorem R = k|z1, ..., ;] is a Noetherian ring. In other
words, it satisfies the following equivalent conditions.

1. Every ideal is finitely generated (f.g.)
I={fi,. .., fm)=Rfi+- -+ Rfp.
2. ACC (Ascending Chain Condition) on ideals:

Iy C I, C---ideals = Iy = Iy = --- eventually all become equal.



Equations of affine varieties

Corollary Any vanishing set V' = V(I) is the common zero locus in k" of a
finite number of polynomials:

V={acA": fi(a)=...= fula) =0}.

Proof Use the Hilbert Basis Theorem: take a set of generators fi,..., f,, of
the ideal I. So
I={f1i,-.., fm) <R.

Then clearly f(a) =0 for all f € I'if and only if fj(a) =0foralli =1,...,m.
[]

We will often refer to fi..., f,, as the “equations of V", even though the set
of equations is not really well defined.



On Noetherian rings

Easy proposition If R is Noetherian, any quotient of R is also Noetherian.
Corollary A finitely generated k-algebra S is Noetherian.

Easy proposition If R is Noetherian, any ideal of I is contained in a maximal
ideal m.

Proof Keep adding elements; eventually you must get to a maximal ideal by

the ACC. [

This statement is true in fact in arbitrary rings, but the proof is harder and
requires Zorn's Lemma.



Hilbert’s Weak Nullstellensatz

Theorem (Weak Nullstellensatz) Assume that k is algebraically closed.
Then every maximal ideal of the ring R = k[, ..., x,| is of the form m, < R
for some a = (aq,...,a,) € k"

This fails over fields that are not algebraically closed.

Example Let k =R, R =R[z|, and I = (2* + 1).

Then I = ker e for ¢p: R — C given by f +— f(i).

So R/I is a field, and in particular I <1 R is maximal. But clearly [ is a principal
ideal not generated by degree one polynomial(s).

Corollary V(I) =0 < 1€l < 1 =R.

Proof If 1 ¢ I then [ is a proper ideal, so it lies inside some maximal ideal m.
By the Weak Nullstellensatz m = m, for some a € A".
But I C m, implies V(I) D V(m,) = {a}. O



The Zariski topology on k"

The Zariski topology on k" is defined by declaring that the closed sets are
the sets of the form V(7).

Easy proposition This is indeed a topology!

Proof Use easy properties of vanishing sets listed above! [

The open sets of the topology look as follows:

Ur = k”\V( )
= K"\ (V(fi))n---NV(fn))
= (k”\V( D)UY U(RT\ V()
= Df UDfm,

where I = (f1,..., fi) and the Dy, are called the basic open sets

Dy = K"\ V(f) = {a € K" : f(a) # 0},
Let A" be affine n-space, the topological space k™ with the Zariski topology.

1



The Zariski topology on Al

Example. A' = k has the following closed sets: @, A!, and all finite subsets
of Al.

Proof Let I < R = k[z]. As R is a PID, we have I = (f) for some f € R.
If f is not constant, it has a finite set of roots.

Conversely, any finite subset of k is clearly the root set of some polynomial f.

[

Correspondingly, the open sets in Al are ), A, and the complement of any
finite set of points.

Some things to observe:
e This topology is not Hausdorff, since any two non-empty open sets intersect.

e The open sets are dense, as the only closed set with infinitely many points
is Al (note k is infinite).



The Zariski topology on AZ

The following statement is not obvious; see Problem Sheet 1.
Example. A? = k has the following closed sets: @, A%, and finite unions of

e plane curves given by equations p(x,y) = 0, and

e points of AZ.



