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The Zariski topology on general affine varieties

Recall that the Zariski topology on An = kn is defined by declaring that the

closed sets are the sets of the form V(I) for ideals I CR = k[x1, . . . , xn].

Let X = V(I) be a vanishing set defined by an ideal I CR.

Definition The Zariski topology on X ⊂ An is the subspace topology

inherited from An.

A vanishing set X = V(I) ⊂ An together with its Zariski topology is called an

affine variety.

Note that thus the closed sets in X are V(I + J) = X ∩ V(J) for any ideal

J ⊂ R, or equivalently, V(S) for ideals I ⊂ S ⊂ R.

Definition An affine subvariety Y ⊂ X is a closed subset of X .



Vanishing ideal

For any subset X ⊂ An, let

I(X) = {f ∈ R : f (a) = 0 for all a ∈ X}.

Examples

1. I({a}) = ma = {f ∈ R : f (a) = 0}.

2. I(V(x2)) = (x) ⊂ k[x], so I(V(I)) 6= I in general.

Easy properties of the vanishing ideal

1. X ⊂ Y ⇒ I(X) ⊃ I(Y ).

2. I ⊂ I(V(I)).

Lemma V(I(V(I))) = V(I).

Corollary V(I(X)) = X for any affine variety X .



Dictionary between ideals and affine varieties

What we are doing here is building up a dictionary between ideals

I CR = k[x1, . . . , xn]

and affine varieties X ⊂ An.

• From ideals to varieties: I 7→ V(I).

• From varieties to ideals: X 7→ I(X).

• One-sided inverse: V(I(X)) = X for any affine variety X .

• The mappings are inclusion-reversing: subvarieties Y ⊂ X correspond to

over-ideals J ⊃ I .

• Maximal ideals mCR correspond to minimal (closed) subvarieties: points

p ∈ An.



Reducible and irreducible varieties

An affine variety X is reducible if X = X1∪X2 for proper closed subsets Xi

(Xi ( X). Otherwise, we call X irreducible.

Examples and properties

1. V(x1x2) = V(x1) ∪ V(x2) is reducible.

2. If X irreducible, then any non-empty open subset is dense. (Exercise)

3. If X irreducible, then any two non-empty open subsets intersect. (Exercise)

Theorem An affine variety X = V(I) 6= ∅ is irreducible if and only if its ideal

I(X) ⊂ R is a prime ideal.

Note this is a statement about the ideal I(X) ⊂ R, not about I that was used

to define X on the left hand side!

Think about the example I = 〈x2〉C k[x] above.



Irreducible varieties and prime ideals

Theorem An affine variety X = V(I) 6= ∅ is irreducible if and only if its ideal

I(X) ⊂ R is a prime ideal.

Proof If I(X) is not prime, then pick f1, f2 satisfying f1 /∈ I(X), f2 /∈ I(X),

f1f2 ∈ I(X). Then

X ⊂ V(f1f2) = V(f1) ∪ V(f2)

so take Xi = X ∩ V(fi) 6= X (since fi /∈ I(X)).

Conversely, if X is not irreducible, X = X1 ∪ X2, Xi 6= X , so there are

fi ∈ I(Xi) \ I(X) but f1f2 ∈ I(X), so I(X) is not prime. (Here we used

V(I(X)) = X for Xi). �



Irreducible varieties: some examples

Here are some examples of irreducible varieties.

1. The variety An itself is irreducible. Proof: it corresponds to the zero ideal

I = 0, which is prime since R is an integral domain.

2. V(〈xn〉) ⊂ An is irreducible, since I = 〈xn〉 is a prime ideal, as

R/I ∼= k[x1, . . . , xn−1]

is an integral domain.

3. More generally, if f is an irreducible polynomial in R, then Vf = V(〈f〉)
is an irreducible variety. Indeed, I = 〈f〉 is a principal ideal in the UFD

k[x1, . . . , xn] and as f is irreducible, it generates a prime ideal inside it.



Extending the dictionary between ideals and affine varieties

Dictionary between ideals I CR = k[x1, . . . , xn] and affine varieties X ⊂ An.

• Maps: I 7→ V(I) and X 7→ I(X).

• One-sided inverse: V(I(X)) = X for any affine variety X .

• Inclusion-reversing: subvarieties Y ⊂ X correspond to over-ideals J ⊃ I .

• Maximal ideals mCR correspond to points p ∈ An.

• Prime ideals I CR correspond to irreducible subvarieties X ⊂ An.



Decomposition into irreducible components

Theorem An affine variety X ⊂ An can be decomposed into irreducible

components: there exists a decomposition

X = X1 ∪X2 ∪ · · · ∪XN ,

where Xi ⊂ An are irreducible affine varieties, and the decomposition is unique

up to reordering if we ensure Xi 6⊂ Xj for all i 6= j.

Proof We show existence of the decomposition.

Suppose X is not irreducible. Then we can write X = Y1 ∪ Y ′1 for proper

subvarieties Y1, Y
′
1 . Suppose one of these is not irreducible, say Y1 = Y2 ∪ Y ′2 .

Keep going, assume that the process does not end in a finite number of steps.

We obtain a sequence X ) Y1 ) Y2 ) · · · . But then

I(X) ( I(Y1) ( I(Y2) ( · · ·

This contradicts the ACC on ideals of R.

Proof of uniqueness: see notes. �



An example

Consider I = 〈xy, xz〉C k[x, y, z]. Let us work out the irreducible decomposi-

tion of X = V(I).

We have I = 〈x〉.〈y, z〉.
This means that if we let I1 = 〈x〉, I2 = 〈y, z〉 and Xi = V(Ii) then

X = X1 ∪X2.

Clearly X1, X2 are not contained in each other. Also both Xi are irreducible,

since k[x, y, z]/Ii are both integral domains (easy check).

So this is an irreducible decomposition of X .

Geometrically:

• X1 is the (y, z) plane {x = 0}.

• X2 is the x-axis {y = z = 0}.

• X1 ∩X2 = X3 is given by the ideal I3 = I1 + I2 = 〈x, y, z〉: the origin.



An example

Here I = 〈xy, xz〉C k[x, y, z] and X = V(I).



Another example

Consider J = 〈x2−4〉Ck[x, y]. Let us work out the irreducible decomposition

of Y = V(J).

This polynomial is reducible, so we have J = 〈x − 2〉.〈x + 2〉. So if we let

J1 = 〈x− 2〉, J2 = 〈x + 2〉 and Yi = V(Ii) then

Y = Y1 ∪ Y2

a union of two lines in A2. Indeed, both components are irreducible, as the

corresponding ideals are prime (check!).

In this case, the intersection is given by the ideal J3 = J1 + J2 = 〈1〉 = R, so

Y3 = Y1 ∩ Y2 = ∅.



Another example

Here J = 〈x2 − 4〉C k[x, y] and Y = V(J).



Ideals and varieties: completing the dictionary

We have our dictionary between ideals ICR = k[x1, . . . , xn] and affine varieties

X ⊂ An. Maps: I 7→ V(I) and X 7→ I(X), and

V(I(X)) = X.

We also know that I(V(I)) may be different from I . Example: I = 〈x2〉.

Key observation: for any X ⊂ An, I(X) has the property that if fm ∈ I(X)

then f ∈ I(X), as I(X) is defined by a vanishing condition.

Definition An ideal I C R of a ring is called a radical ideal, if rm ∈ I for

some m ≥ 1 implies r ∈ I .

Given any ideal I CR, its radical is the set
√
I = {f ∈ R : fm ∈ I for some m ≥ 1}.



Radicals and radical ideals

Easy Lemma

1.
√
I CR is an ideal of R.

2. I ⊂ R is radical if and only if the quotient R/I has no nilpotent elements.

3. V(I) = V(
√
I).

4. For any X ⊂ An, I(X)CR is a radical ideal.

Example
√
〈x2〉 = 〈x〉.

Expectation: we can only hope for I(V(I)) = I if the right hand side is

radical, since the left hand side is.

Caveat: condition still not sufficient!

Example Let k = R, and I = 〈x2 + 1〉CR[x]. Then V(I) = ∅, so I(V(I)) =

R[x] still does not equal I .



The strong Nullstellensatz and the completion of the dictionary

Theorem (Hilbert’s Nullstellensatz) Assume that k is algebraically

closed. For any ideal I CR = k[x1, . . . , xn], we have

I(V(I)) =
√
I.

In particular, if I is radical then I(V(I)) = I .

Corollary There are order-reversing bijections between affine varieties

X ⊂ An and radical ideals I CR = k[x1, . . . , xn].

X 7→ I(X)

V(I) ←[ I
{varieties} ↔ {radical ideals}

{irreducible varieties} ↔ {prime ideals}
{points} ↔ {maximal ideals}



Towards proof of the Strong Nullstellensatz

We are going to assume the Weak Nullstellensatz, and deduce the strong version.

Let us start with

Lemma For any proper ideal I CR, we have V(I) 6= ∅.
Proof Pick a maximal ideal I ⊂ m ⊂ R.

By the Weak Nullstellensatz, m = ma = (x1−a1, . . . , xn−an) for some a ∈ kn.

Hence V(I) ⊃ V(ma) = {a} ⊃ V(R) = ∅.
Remember this statement already needs k algebraically closed; otherwise it

is false.

Proof of NSZ, easy direction

We showed above that I(V(I)) is always radical, also I ⊂ I(V(I)), so
√
I ⊂ I(V(I)).



Conclusion of the proof of the Strong Nullstellensatz

We want to show I(V(I)) ⊂
√
I . Let I = 〈f1, . . . , fN〉, and take g ∈ I(V(I)).

Trick: let I ′ = 〈I, yg − 1〉 ⊂ k[x1, . . . , xn, y].

Observe that V(I ′) = ∅ ⊂ An+1.

By Lemma on previous page, I ′ = k[x1, . . . , xn, y].

So 1 ∈ I ′, giving an equality

1 = G0(x1, . . . , xn, y) · (yg − 1) +
∑

Gi(x1, . . . , xn, y) · fi
for some polynomials Gj.

Multiplying this with a large power of g, for some large ` we can turn this into

g` = F0(x1, . . . , xn, gy) · (yg − 1) +
∑

Fi(x1, . . . , xn, gy) · fi
for some polynomials Fj.

Finally substitute gy by 1 here, to get

g` =
∑

Fi(x1, . . . , xn, 1) · fi ∈ I.

So g ∈
√
I as required. �


