C3.4 Algebraic Geometry

Lecture 3: The coordinate ring and morphisms of affine varieties

Balázs Szendrői, University of Oxford, Michaelmas 2020

Let $X \subset \mathbb{A}^n$ be a (nonempty) affine variety. Let $R = k[x_1, \ldots, x_n]$ as usual. **Definition** The **coordinate ring** of X is the quotient ring

$$
k[X] = R/\mathbb{I}(X).
$$

Interpretation The ring $k[X]$ is the ring of polynomial functions on the **variety** X. Polynomial functions on \mathbb{A}^n which are zero everywhere along X do not change the value of such a function on X .

Properties

- $k[X]$ is a finitely generated, so Noetherian, k-algebra.
- As discussed before, $\mathbb{I}(X)$ is always a radical ideal, so $k|X|$ is a **reduced** ring (it has no nilpotent elements).
- $k[X]$ is an **integral domain** if and only if X is irreducible.
- $k[X]$ is a field if and only if $X = \{a\}$ a point (k is algebraically closed!).

Let $X \subset \mathbb{A}^n$ be an affine variety. Let $R = k[x_1, \ldots, x_n]$. The **coordinate** ring of X is the quotient ring

$$
k[X]=R/\mathbb{I}(X).
$$

Examples

- For $X = \mathbb{A}^n$, we have $\mathbb{I}(X) = 0$ so $k[X] \cong R$.
- For $a \in \mathbb{A}^n$ a point, we have $\mathbb{I}(a) = \mathfrak{m}_a$, the maximal ideal at a, and as we saw before,

$$
k[a] = R/\mathfrak{m}_a \cong k.
$$

• For $X = V_f$ a hypersurface defined by $f \in R$, we get

$$
k[V_f] = R/\langle f \rangle,
$$

the quotient of R by the principal ideal generared by f .

Consider a ring R and an ideal $I \triangleleft R$. Set $S = R/I$ and let $q: R \to S$ be the quotient map. Easy result in commutative algebra:

Proposition There there is an inclusion-preserving one-to-one correspondence between ideals $I \subset \tilde{J} \lhd R$ and ideals $J \lhd S$, given by $\tilde{J} = q^{-1}(J)$.

Since the correspondence is inclusion-reversing, it preserves maximal ideals. We thus recover a more general version of the ideal-variety correspondence.

Corollary There are order-reversing bijections between affine subvarieties $Y \subset X$ and ideals $J \triangleleft k[X]$.

$$
(Y \subset X) \mapsto (\mathbb{I}_X(Y) \triangleleft k[X])
$$

\n
$$
(\mathbb{V}(\tilde{J}) \subset X) \leftrightarrow (J \triangleleft k[X])
$$

\n
$$
\{\text{irreducible subvarieties } Y \subset X\} \leftrightarrow \{\text{prime ideals } \mathfrak{p} \triangleleft k[X]\}
$$

\n
$$
\{\text{points } a \in X\} \leftrightarrow \{\text{maximal ideals } \mathfrak{m}_a \triangleleft k[X]\}
$$

It is worth spelling this correspondence out one more time from another point of view.

For any subvariety $Y \subset X \subset \mathbb{A}^n$, we have $\mathbb{I}(X) \subset \mathbb{I}(Y) \triangleleft R = k[x_1, \ldots, x_n]$. We also have coordinate rings

$$
k[X] = R/\mathbb{I}(X)
$$

and

$$
k[Y] = R/\mathbb{I}(Y).
$$

From $\mathbb{I}(X) \subset \mathbb{I}(Y)$, we get a surjection

$$
k[X]\twoheadrightarrow k[Y],
$$

with kernel $\mathbb{I}_X(Y) \triangleleft k[X]$, the ideal of **functions on** X that vanish on Y. So closed affine subvarieties (closed inclusions of affine varieties) $Y \subset X$ correspond to surjective ring homomorphisms between their coordinate rings.

We emphasise once more a basic aspect of the Zariski topology on a general affine variety $X \subset \mathbb{A}^n$.

Take $f \in k[X]$, then we get, by the correspondence above, a closed subvariety

$$
\mathbb{V}(f) \subset X \subset \mathbb{A}^n
$$

and hence a Zariski open set, a so-called basic open set

$$
D_f=X\setminus \mathbb{V}(f)=\{p\in X\colon f(p)\neq 0\}.
$$

Proposition The basic open sets form a basis of the Zariski topology on X : any open set is a **finite** union of basic open sets.

Proof Any open set in X is of the following form, for $I = \langle f_1, \ldots, f_m \rangle \triangleleft k[X]$:

$$
U = X \setminus \mathbb{V}(I)
$$

= $X \setminus (\mathbb{V}(f_1) \cap \cdots \cap \mathbb{V}(f_m))$
= $(X \setminus \mathbb{V}(f_1)) \cup \cdots \cup (X \setminus \mathbb{V}(f_m))$
= $D_{f_1} \cup \cdots \cup D_{f_m}$.

It seems worth spelling out the following, equivalent form of this. Let $X \subset \mathbb{A}^n$ be an affine variety.

Corollary Let $p \in X$ and

 $p \in U \subset X$

a Zariski neighbourhood of p. Then there exists $f \in k[X]$ such that

 $p \in D_f \subset U$

is also a Zariski neighbourhood of p.

Proof As proved above, any open set is covered by (finitely many) such. \Box While simple, this is often very useful: when considering neighbourhoods of points in affine varieties, we can restrict to basic affine opens.

A function $F : \mathbb{A}^n \to \mathbb{A}^m$ is a **morphism** (or **polynomial map**) if it is defined by polynomials:

 $F(a) = (f_1(a), \ldots, f_m(a))$ for some $f_1, \ldots, f_m \in R = k[x_1, \ldots, x_n].$

We sometimes colloquially write $y_j = f_j(x_i)$ for the polynomial map F.

Given two affine varieties $X \subset \mathbb{A}^n$, $Y \subset \mathbb{A}^m$, a **morphism of affine vari**eties $F: X \to Y$ is defined by the restriction of a morphism $\mathbb{A}^n \to \mathbb{A}^m$, given by

$$
F(a) = (f_1(a), \dots, f_m(a))
$$
 for some $f_1, \dots, f_m \in k[X]$.

Note that indeed, $f_i \in k[X]$ is enough information to define F on X.

 $F: X \to Y$ is an **isomorphism**, if F is a morphism and there is an inverse morphism $G: Y \to X$ with $F \circ G = id$, $G \circ F = id$.

(E1) Linear projections Let $n \geq m$, and $F: \mathbb{A}^n \to \mathbb{A}^m$ be defined by

$$
F(a_1,\ldots,a_n)=(a_1,\ldots,a_m).
$$

(E2) Inclusions of linear subspaces Let $n \leq m$, and $F: \mathbb{A}^n \to \mathbb{A}^m$ be defined by

$$
F(a_1, ..., a_n) = (a_1, ..., a_n, 0, ..., 0).
$$

These can of course also be applied to subvarieties of \mathbb{A}^n . For example,

(E3) Projection of a hyperbola Let $X = \{xy - 1 = 0\} \subset \mathbb{A}^2$, and let $F: X \to \mathbb{A}^1$ be defined by

$$
F(x,y) = x.
$$

Note that in this example, the image set is $\mathbb{A}^1 \setminus \{0\}$ so the **image of a** morphism does not need to be an affine subvariety.

Examples of morphisms between affine varieties

(E4) A polynomial map defined on the affine line Let $F: \mathbb{A}^1 \to \mathbb{A}^3$ be defined by

$$
F(t) = (t, t^2, t^3).
$$

(E5) The map to the cuspidal cubic Let $X = \mathbb{A}^1$, and

$$
Y = \{x^3 - y^2\} \subset \mathbb{A}^2.
$$

Let $F: X \to Y$ be defined by

$$
f(t) = (t^2, t^3).
$$

This is obviously a polynomial map $\mathbb{A}^1 \to \mathbb{A}^2$; to make it into a map to Y we just need to check that the image is contained in Y . This is easy.

Given affine varieties $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^m$, write $k[X] = k[x_1, \ldots, x_n]/\mathbb{I}(X)$, $k[Y] = k[y_1, \ldots, y_m]/\mathbb{I}(Y)$. Define $Hom(X, Y) = \{morphisms F: X \to Y\}$

and

 $\text{Hom}_{k\text{-alg}}(k[Y], k[X]) = \{k\text{-algebra homes } k[Y] \to k[X]\}.$

Theorem (Fundamental theorem of affine algebraic geometry) There is a one-to-one correspondence

$$
\text{Hom}(X, Y) \longleftrightarrow \text{Hom}_{k\text{-alg}}(k[Y], k[X])
$$
\n
$$
F: X \to Y \quad \mapsto \quad F^*: k[Y] \to k[X]
$$
\n
$$
\varphi^*: X \to Y \quad \leftrightarrow \quad \varphi: k[Y] \to k[X]
$$

with a morphism F given in coordinates by $F(a) = (f_1(a), \ldots, f_m(a))$ and the maps given by

$$
F^*(y_j) = f_j(x_1,\ldots,x_n),
$$

$$
\varphi^*(a) = (\varphi(y_1)(a),\ldots,\varphi(y_m)(a)).
$$

The statement is almost a "tautology": it is easy to check that the maps in the statement are indeed mutual inverses (see Lecture Notes).

Note that in particular, we can think of

 $k[X] = \text{Hom}(X, \mathbb{A}^1),$

since an element $f \in k[X]$ is nothing but a function $a \mapsto f(a)$ from X to \mathbb{A}^1 . In this language, given a morphism $F: X \to Y$, the map

$$
F^*: k[Y] \to k[X]
$$

can be thought of as composition of F with a map to \mathbb{A}^1

$$
F^* : \text{Hom}(Y, \mathbb{A}^1) \to \text{Hom}(X, \mathbb{A}^1), \ g \mapsto F^*g = g \circ F
$$

and in particular, it indeed "goes backwards".

It is easy to run the correspondence in practice!

Work with coordinates $\{x_1, \ldots, x_n\}$ on \mathbb{A}^n and $\{y_1, \ldots, y_m\}$ on \mathbb{A}^m . A morphism $F: \mathbb{A}^n \to \mathbb{A}^m$ is given in these coordinates by a bunch of polynomial expressions

$$
y_j = f_j(x_1,\ldots,x_n), \ \ j=1,\ldots,m,
$$

giving the map

$$
F(x_1,...,x_n) = (f_1(x_i), f_2(x_i),..., f_m(x_i)).
$$

You can read the same formulae as

$$
y_j \mapsto f_j(x_1, \ldots, x_n), \ \ j = 1, \ldots, m
$$

which immediately defines a ring morphism

$$
k[y_1,\ldots,y_m]\longrightarrow k[x_1,\ldots,x_n],
$$

which is exactly the dual map $F^*!$

More generally, for affine varieties $X \subset \mathbb{A}^n$, $Y \subset \mathbb{A}^m$, the story is exactly the same: have F defined by

$$
F(x_1,...,x_n) = (f_1(x_i), f_2(x_i),..., f_m(x_i))
$$

and dually F^* defined by

$$
y_j \mapsto f_j(x_1, \ldots, x_n), \ \ j=1, \ldots, m,
$$

with the following conditions:

- The map F must have the property that $a \in X$ must be mapped to $F(a) \in Y$.
- Dually, the map F^* must descend to a ring map

$$
k[Y] = k[y_1, \ldots, y_m]/\mathbb{I}_Y \longrightarrow k[X] = k[y_1, \ldots, x_n]/\mathbb{I}_X.
$$

(E1) Linear projection Let $n \geq m$, and $F: \mathbb{A}^n \to \mathbb{A}^m$ be defined by

$$
F(a_1,\ldots,a_n)=(a_1,\ldots,a_m).
$$

This corresponds to the k -algebra homomorphism

$$
F^* \ : \ k[y_1, \ldots, y_m] \ \to \ k[x_1, \ldots, x_n]
$$

$$
y_i \ \mapsto \ x_i.
$$

Note that

- The image of F is dense in $Y = \mathbb{A}^n$ (in fact it is equal to \mathbb{A}^m in this case).
- F^* is injective.

(E2) Inclusions of linear subspaces Let $n \leq m$, and $F: \mathbb{A}^n \to \mathbb{A}^m$ be defined by

$$
F(a_1, ..., a_n) = (a_1, ..., a_n, 0, ..., 0).
$$

This corresponds to the k-algebra homomorphism

$$
F^* \; : \; k[y_1, \ldots, y_m] \; \to \; k[x_1, \ldots, x_n]
$$

$$
y_i \qquad \mapsto \begin{cases} x_i & \text{if } i \leq n \\ 0 & \text{otherwise} \end{cases}.
$$

Note that

- F is a closed inclusion.
- F^* is surjective.

(E3) Projection of a hyperbola Let $X = \{xy - 1 = 0\} \subset \mathbb{A}^2$, and let $F: X \to \mathbb{A}^1$ be defined by

$$
F(x,y) = x.
$$

This corresponds to the k -algebra homomorphism

$$
F^* \ : \ k[\mathbb{A}^1] = k[t] \ \to \ k[X] = k[x, y]/\langle xy - 1 \rangle
$$

$$
t \ \mapsto \ x.
$$

Note that

• The image $\mathbb{A}^1 \setminus \{0\}$ of F is dense in \mathbb{A}^1 .

• F^* is injective.

(E4) A polynomial map defined on the affine line Let $F: \mathbb{A}^1 \to \mathbb{A}^3$ be defined by

$$
F(t) = (t, t^2, t^3).
$$

This corresponds to the k -algebra homomorphism

$$
F^* \ : \ k[\mathbb{A}^3] = k[x, y, z] \ \to \ k[\mathbb{A}^1] = k[t]
$$

$$
\begin{array}{ccc}\nx & \mapsto & t \\
y & \mapsto & t^2 \\
z & \mapsto & t^3\n\end{array}
$$

Note that, once again, this is a closed inclusion, and correspondingly the ring map is surjective.

Morphisms and coordinate rings: a variant of Example 4

 $(E4')$ **A variant** Let

$$
Y = \{x^2 - y = 0, xy - z = 0\} \subset \mathbb{A}^3.
$$

Let $F: \mathbb{A}^1 \to Y$ be defined by

$$
F(t) = (t, t^2, t^3).
$$

Note we are using the same formulae; to make sure this is a map to Y , we need to make sure that the image points are contained in Y , but that's easy to check. This corresponds to the k -algebra homomorphism

$$
F^* : k[Y] = k[x, y, z] / \langle xy - z, y - x^2 \rangle \rightarrow k[\mathbb{A}^1] = k[t]
$$

$$
x \mapsto t
$$

$$
y \mapsto t^2
$$

$$
z \mapsto t^3
$$

To make sure that this is well defined, we need to check that polynomials in the defining ideal of Y are mapped to zero, but that's easy.

(E4') **A variant, continued** On the other hand, let $G: Y \to \mathbb{A}^1$ be defined by $G(x, y, z) = x$, so

$$
G^* \ : \ k[\mathbb{A}^1] = k[t] \ \to \ k[Y] = k[x, y, z]/\langle xy - z, y - x^2 \rangle
$$

$$
t \ \mapsto \ x
$$

Compute composites:

$$
(F^* \circ G^*)(t) = F^*(G^*(t)) = F^*(x) = t
$$

whereas

$$
(G^* \circ F^*)(x) = G^*(t) = x
$$

\n
$$
(G^* \circ F^*)(y) = G^*(t^2) = x^2 = y \mod I(Y)
$$

\n
$$
(G^* \circ F^*)(z) = G^*(t^3) = x^3 = z \mod I(Y).
$$

So F^*, G^* are mutual inverses, and so are F, G. In other words, \mathbb{A}^1 and Y are isomorphic affine varieties.

The correspondence between morphisms $F: X \to Y$ between affine varieties, and dual morphisms F^* : $k[Y] \to k[X]$ between coordinate rings, has the following basic properties.

- F is the inclusion of a closed affine subvariety if and only if F^* is surjective. We call such F a **closed embedding**.
- The image of F is a Zariski dense subvariety of Y if and only if F^* is injective.

We call such F dominant.

For proofs, see Problem Sheet 1. For examples, see earlier!