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The coordinate ring of an affine variety

Let X C A" be a (nonempty) affine variety. Let R = k[zy, ..., x,| as usual.

Definition The coordinate ring of X is the quotient ring
kI X] = R/I(X).

Interpretation The ring k[X] is the ring of polynomial functions on the
variety X. Polynomial functions on A" which are zero everywhere along X
do not change the value of such a function on X.

Properties
e k[X] is a finitely generated, so Noetherian, k-algebra.

e As discussed before, I(X) is always a radical ideal, so k[X] is a reduced
ring (it has no nilpotent elements).

e | X] is an integral domain if and only if X is irreducible.

e k| X] is a field if and only if X = {a} a point (k is algebraically closed!).



The coordinate ring of an affine variety: examples

Let X C A" be an affine variety. Let R = k|xy,...,x,]. The coordinate
ring of X is the quotient ring

k[X] = R/I(X).

Examples
e For X = A" we have I(X) = 0 so k[X]| = R.

e For a € A" a point, we have I(a) = m,, the maximal ideal at a, and as we
saw before,

kla] = R/m, = k.
e [or X = V} a hypersurface defined by f € R, we get
k[Vi] = R/(f),

the quotient of R by the principal ideal generared by f.



The ideal-subvariety correspondence for an affine variety

Consider a ring R and an ideal I < R. Set S = R/I and let ¢: R — S be the
quotient map. Easy result in commutative algebra:

Proposition There there is an inclusion-preserving one-to-one correspon-
dence between ideals I C J < R and ideals J <15, given by J = ¢ 1(J).

Since the correspondence is inclusion-reversing, it preserves maximal ideals. We
thus recover a more general version of the ideal-variety correspondence.

Corollary There are order-reversing bijections between affine subvarieties
Y C X and ideals J <1 k[X].

(Y CX) = (Ix(Y) <k[X])

(V(J) € X) < (J<9k[X))

{irreducible subvarieties Y C X} < {prime ideals p < k[X]}
—

{points a € X'} {maximal ideals m, < k[ X]}



Subvarieties and quotient algebras

It is worth spelling this correspondence out one more time from another point
of view.

For any subvariety Y C X C A" we have [(X) CI(Y) < R = k[z1, ..., x,].
We also have coordinate rings

k[ X] = R/I(X)
and
kY] = R/I(Y).
From I(X) C I(Y), we get a surjection
kIX] — kY],

with kernel Iy (Y') <1 k[X], the ideal of functions on X that vanish on Y.

So closed affine subvarieties (closed inclusions of affine varieties) Y C X corre-
spond to surjective ring homomorphisms between their coordinate rings.



A basis for the Zariski topology on general affine varieties

We emphasise once more a basic aspect of the Zariski topology on a general
affine variety X C A".
Take f € k[X], then we get, by the correspondence above, a closed subvariety

V(f)c X C A"

and hence a Zariski open set, a so-called basic open set

Dy = X\V(f)={pe X: f(p) #0}.
Proposition The basic open sets form a basis of the Zariski topology on X:
any open set is a finite union of basic open sets.

Proof Any open set in X is of the following form, for I = (fy, ..., fn) <k[X]:
U= X\V()
= X\ (V(f))n---NV(fm))

= (X\V(f))U--- UX\V(fn))
= Dy U---UDyg . ]



Basic open sets: a restatement

It seems worth spelling out the following, equivalent form of this. Let X C A"
be an affine variety:.

Corollary Let p € X and
pelUCX

a Zariski neighbourhood of p. Then there exists f € k[ X] such that
p < Df cU

is also a Zariski neighbourhood of p.
Proof As proved above, any open set is covered by (finitely many) such. [

While simple, this is often very useful: when considering neighbourhoods of
points in affine varieties, we can restrict to basic affine opens.



Morphisms between affine varieties

A function F' : A" — A™ is a morphism (or polynomial map) if it is
defined by polynomials:

F(a)=(fi(a),..., fi(a)) forsome fi,..., f;n € R=Eklx1,..., 2,

We sometimes colloquially write y; = f;(z;) for the polynomial map F'.

Given two affine varieties X C A", Y C A™, a morphism of affine vari-
eties I' : X — Y is defined by the restriction of a morphism A" — A" given
by

F(a) = (fi(a),..., fi(a)) forsome fi,..., fi, € k[X].
Note that indeed, f; € k[X] is enough information to define F' on X.

F: X — Y is an isomorphism, if F'is a morphism and there is an inverse
morphism G : Y — X with FoG =1id, G o F =id.



Examples of morphisms between affine varieties

(E1) Linear projections Let n > m, and F': A" — A™ be defined by
Flai,...,a,) = (ay,...,an).

(E2) Inclusions of linear subspaces Let n < m, and F': A" — A™ be
defined by
F(ai,...,a,) = (ay,...,a,,0,...,0).

These can of course also be applied to subvarieties of A”. For example,

(E3) Projection of a hyperbola Let X = {zy — 1 = 0} C A® and let
F: X — A'! be defined by

F(z,y) = x.

Note that in this example, the image set is A\ {0} so the image of a
morphism does not need to be an affine subvariety.



Examples of morphisms between affine varieties




More examples of morphisms between afline varieties

(E4) A polynomial map defined on the affine line Let F': A’ — A® be
defined by
F(t) = (t,1°,t%).

(E5) The map to the cuspidal cubic Let X = A!, and
Y = {2° —y°} C A*.
Let F': X — Y be defined by
ft) = (£,1%).

This is obviously a polynomial map A — A?: to make it into a map to Y’
we just need to check that the image is contained in Y. This is easy.



Morphisms and coordinate rings

Given affine varieties X C A" and Y C A™, write k[ X] = k|xy, ..., z,)/I(X),
kY] = k[yi, ..., ym]/I(Y). Define
Hom(X,Y) = {morphisms F': X — Y}
and
Homy g (k|Y], k[ X]) = {k-algebra homs k[Y] — k[X]}.
Theorem (Fundamental theorem of affine algebraic geometry)
There is a one-to-one correspondence

Hom(X,Y) <— Homya(k[Y], k[ X])

F:X oY — F kY] = k[X]

e X =Y <~ kY] = EX]
with a morphism F' given in coordinates by F'(a) = (fi(a), ..., fim(a)) and the
maps given by

F*(y;) = fil@y, ..., @0),
p*(a) = (p(y1)(a),...,oym)(a)).



More on morphisms and coordinate rings

The statement is almost a “tautology”: it is easy to check that the maps in the
statement are indeed mutual inverses (see Lecture Notes).

Note that in particular, we can think of
k[X] = Hom(X,AY),

since an element f € k[X] is nothing but a function a — f(a) from X to Al.

In this language, given a morphism F': X — Y, the map
F* : k|Y] — k[X]
can be thought of as composition of F with a map to Al
F*: Hom(Y,A') — Hom(X,A'"), g F*g=go F

and in particular, it indeed “goes backwards”.



How the correspondence works in practice

[t is easy to run the correspondence in practice!

Work with coordinates {x1,...,z,} on A" and {y1,...,ymn} on A™. A mor-
phism F': A" — A™ is given in these coordinates by a bunch of polynomial
expressions

yj = fi(z1,...,xn), j=1,...,m,
giving the map

F(zy, ..o xn) = (ful@), fol@i), ooy (i)
You can read the same formulae as
yjléfj(azl,...,a:n), jzl,...,m
which immediately defines a ring morphism
Ely, . Ym] — klx1, ..., 2],

which is exactly the dual map F™!



How the correspondence works in practice

More generally, for affine varieties X C A", Y C A", the story is exactly the
same: have F' defined by

F(xy, ... 2) = (@), fa@i), -, fulzi))
and dually F™* defined by
yi = fi(z1,...,2), j=1,...,m,
with the following conditions:

e The map F' must have the property that a € X must be mapped to
F(a) €Y.

e Dually, the map F* must descend to a ring map

kY] =Eklyr, .- ym) /Iy — k[ X] = Kk[yy, ..., z,]/Lx.



Morphisms and coordinate rings: Example 1

(E1) Linear projection Let n > m, and F': A" — A™ be defined by
Flai,...,a,) = (ay,...,an).
This corresponds to the k-algebra homomorphism

F* o klyr, o ym] — klxr, ... x)]

Note that

e The image of F'is dense in Y = A" (in fact it is equal to A in this case).

e [ is injective.



Morphisms and coordinate rings: Example 2

(E2) Inclusions of linear subspaces Let n < m, and F: A" — A" be
defined by
F(ay,...,a,) = (ag,...,a,,0,...,0).

This corresponds to the k-algebra homomorphism

F* o klyr, oy ym] — Kkl ... xy]

| N r;, ifi<n
Yi 0 otherwise

Note that
e [ is a closed inclusion.

e F™* is surjective.



Morphisms and coordinate rings: Example 3

(E3) Projection of a hyperbola Let X = {zy — 1 = 0} C A? and let
F: X — A'! be defined by

F(z,y) = .
This corresponds to the k-algebra homomorphism

F* o K[AY = k[t] — k[X] = k[z,y]/{zy — 1)
t — I

Note that
e The image A\ {0} of F is dense in Al

e F* is injective.



Morphisms and coordinate rings: Example 4

(E4) A polynomial map defined on the affine line Let F': A’ — A® be
defined by
F(t) = (t,1°,t%).

This corresponds to the k-algebra homomorphism

F* : K[A%] = klx,y, 2] — Kk[AY] = K[t]

T — 1
Y — 12
z — 3

Note that, once again, this is a closed inclusion, and correspondingly the ring
map 1s surjective.



Morphisms and coordinate rings: a variant of Example 4

(E4’) A variant Let
Y={2?—y=0,2y —2=0} CA°
Let F: A — Y be defined by
F(t) = (t, 1%, %),

Note we are using the same formulae; to make sure this is a map to Y, we
need to make sure that the image points are contained in Y, but that’s easy
to check. This corresponds to the k-algebra homomorphism

F* o kY] =k[x,y, 2]/ {xy — 2,y — 2%) — K[Al] = k]

T — T
Y — 2
z — 13

To make sure that this is well defined, we need to check that polynomials in
the defining ideal of Y are mapped to zero, but that’s easy.



Morphisms and coordinate rings: a variant of Example 4

(E4) A variant, continued On the other hand, let G: Y — A! be defined
by G(z,y,2) =z, so
G KA =kl = KY] = kg, 2}/ oy — 2,y — )
t = T

Compute composites:
(F" o G")(t) = F(G"(t)) = F"(x) =t

whereas

(G*o F*)(z) = G*(t) = =

(G* o F)(y) = G*(t°) = a°

(G*o F*)(2) = G*(t?) = 2° =2 mod I(Y).
So F*, G* are mutual inverses, and so are ), G. In other words, A' and Y are
isomorphic affine varieties.



General properties of the correspondence

The correspondence between morphisms F': X — Y between affine varieties,
and dual morphisms F*: k[Y] — k[X] between coordinate rings, has the fol-
lowing basic properties.

e F'is the inclusion of a closed affine subvariety if and only if F™ is
surjective.
We call such F' a closed embedding.

e The image of F'is a Zariski dense subvariety of Y if and only if /™
is injective.
We call such ' dominant.

For proofs, see Problem Sheet 1. For examples, see earlier!



