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The coordinate ring of an affine variety

Let X ⊂ An be a (nonempty) affine variety. Let R = k[x1, . . . , xn] as usual.

Definition The coordinate ring of X is the quotient ring

k[X ] = R/I(X).

Interpretation The ring k[X ] is the ring of polynomial functions on the

variety X . Polynomial functions on An which are zero everywhere along X

do not change the value of such a function on X .

Properties

• k[X ] is a finitely generated, so Noetherian, k-algebra.

• As discussed before, I(X) is always a radical ideal, so k[X ] is a reduced

ring (it has no nilpotent elements).

• k[X ] is an integral domain if and only if X is irreducible.

• k[X ] is a field if and only if X = {a} a point (k is algebraically closed!).



The coordinate ring of an affine variety: examples

Let X ⊂ An be an affine variety. Let R = k[x1, . . . , xn]. The coordinate

ring of X is the quotient ring

k[X ] = R/I(X).

Examples

• For X = An, we have I(X) = 0 so k[X ] ∼= R.

• For a ∈ An a point, we have I(a) = ma, the maximal ideal at a, and as we

saw before,

k[a] = R/ma
∼= k.

• For X = Vf a hypersurface defined by f ∈ R, we get

k[Vf ] = R/〈f〉,

the quotient of R by the principal ideal generared by f .



The ideal-subvariety correspondence for an affine variety

Consider a ring R and an ideal I CR. Set S = R/I and let q : R→ S be the

quotient map. Easy result in commutative algebra:

Proposition There there is an inclusion-preserving one-to-one correspon-

dence between ideals I ⊂ J̃ CR and ideals J C S, given by J̃ = q−1(J).

Since the correspondence is inclusion-reversing, it preserves maximal ideals. We

thus recover a more general version of the ideal-variety correspondence.

Corollary There are order-reversing bijections between affine subvarieties

Y ⊂ X and ideals J C k[X ].

(Y ⊂ X) 7→ (IX(Y )C k[X ])

(V(J̃) ⊂ X) ←[ (J C k[X ])

{irreducible subvarieties Y ⊂ X} ↔ {prime ideals pC k[X ]}
{points a ∈ X} ↔ {maximal ideals ma C k[X ]}



Subvarieties and quotient algebras

It is worth spelling this correspondence out one more time from another point

of view.

For any subvariety Y ⊂ X ⊂ An, we have I(X) ⊂ I(Y )CR = k[x1, . . . , xn].

We also have coordinate rings

k[X ] = R/I(X)

and

k[Y ] = R/I(Y ).

From I(X) ⊂ I(Y ), we get a surjection

k[X ]� k[Y ],

with kernel IX(Y )Ck[X ], the ideal of functions on X that vanish on Y .

So closed affine subvarieties (closed inclusions of affine varieties) Y ⊂ X corre-

spond to surjective ring homomorphisms between their coordinate rings.



A basis for the Zariski topology on general affine varieties

We emphasise once more a basic aspect of the Zariski topology on a general

affine variety X ⊂ An.

Take f ∈ k[X ], then we get, by the correspondence above, a closed subvariety

V(f ) ⊂ X ⊂ An

and hence a Zariski open set, a so-called basic open set

Df = X \ V(f ) = {p ∈ X : f (p) 6= 0}.
Proposition The basic open sets form a basis of the Zariski topology on X :

any open set is a finite union of basic open sets.

Proof Any open set in X is of the following form, for I = 〈f1, . . . , fm〉Ck[X ]:

U = X \ V(I)

= X \ (V(f1) ∩ · · · ∩ V(fm))

= (X \ V(f1)) ∪ · · · ∪ (X \ V(fm))

= Df1 ∪ · · · ∪Dfm. �



Basic open sets: a restatement

It seems worth spelling out the following, equivalent form of this. Let X ⊂ An

be an affine variety.

Corollary Let p ∈ X and

p ∈ U ⊂ X

a Zariski neighbourhood of p. Then there exists f ∈ k[X ] such that

p ∈ Df ⊂ U

is also a Zariski neighbourhood of p.

Proof As proved above, any open set is covered by (finitely many) such. �

While simple, this is often very useful: when considering neighbourhoods of

points in affine varieties, we can restrict to basic affine opens.



Morphisms between affine varieties

A function F : An → Am is a morphism (or polynomial map) if it is

defined by polynomials:

F (a) = (f1(a), . . . , fm(a)) for some f1, . . . , fm ∈ R = k[x1, . . . , xn].

We sometimes colloquially write yj = fj(xi) for the polynomial map F .

Given two affine varieties X ⊂ An, Y ⊂ Am, a morphism of affine vari-

eties F : X → Y is defined by the restriction of a morphism An → Am, given

by

F (a) = (f1(a), . . . , fm(a)) for some f1, . . . , fm ∈ k[X ].

Note that indeed, fi ∈ k[X ] is enough information to define F on X .

F : X → Y is an isomorphism, if F is a morphism and there is an inverse

morphism G : Y → X with F ◦G = id, G ◦ F = id.



Examples of morphisms between affine varieties

(E1) Linear projections Let n ≥ m, and F : An → Am be defined by

F (a1, . . . , an) = (a1, . . . , am).

(E2) Inclusions of linear subspaces Let n ≤ m, and F : An → Am be

defined by

F (a1, . . . , an) = (a1, . . . , an, 0, . . . , 0).

These can of course also be applied to subvarieties of An. For example,

(E3) Projection of a hyperbola Let X = {xy − 1 = 0} ⊂ A2, and let

F : X → A1 be defined by

F (x, y) = x.

Note that in this example, the image set is A1 \ {0} so the image of a

morphism does not need to be an affine subvariety.



Examples of morphisms between affine varieties



More examples of morphisms between affine varieties

(E4) A polynomial map defined on the affine line Let F : A1 → A3 be

defined by

F (t) = (t, t2, t3).

(E5) The map to the cuspidal cubic Let X = A1, and

Y = {x3 − y2} ⊂ A2.

Let F : X → Y be defined by

f (t) = (t2, t3).

This is obviously a polynomial map A1 → A2; to make it into a map to Y

we just need to check that the image is contained in Y . This is easy.



Morphisms and coordinate rings

Given affine varieties X ⊂ An and Y ⊂ Am, write k[X ] = k[x1, . . . , xn]/I(X),

k[Y ] = k[y1, . . . , ym]/I(Y ). Define

Hom(X, Y ) = {morphisms F : X → Y }
and

Homk-alg(k[Y ], k[X ]) = {k-algebra homs k[Y ]→ k[X ]}.
Theorem (Fundamental theorem of affine algebraic geometry)

There is a one-to-one correspondence

Hom(X, Y ) ←→ Homk-alg(k[Y ], k[X ])

F : X → Y 7→ F ∗ : k[Y ]→ k[X ]

ϕ∗ : X → Y ← [ ϕ : k[Y ]→ k[X ]

with a morphism F given in coordinates by F (a) = (f1(a), . . . , fm(a)) and the

maps given by
F ∗(yj) = fj(x1, . . . , xn),

ϕ∗(a) = (ϕ(y1)(a), . . . , ϕ(ym)(a)).



More on morphisms and coordinate rings

The statement is almost a “tautology”: it is easy to check that the maps in the

statement are indeed mutual inverses (see Lecture Notes).

Note that in particular, we can think of

k[X ] = Hom(X,A1),

since an element f ∈ k[X ] is nothing but a function a 7→ f (a) from X to A1.

In this language, given a morphism F : X → Y , the map

F ∗ : k[Y ]→ k[X ]

can be thought of as composition of F with a map to A1

F ∗ : Hom(Y,A1)→ Hom(X,A1), g 7→ F ∗g = g ◦ F

and in particular, it indeed “goes backwards”.



How the correspondence works in practice

It is easy to run the correspondence in practice!

Work with coordinates {x1, . . . , xn} on An and {y1, . . . , ym} on Am. A mor-

phism F : An → Am is given in these coordinates by a bunch of polynomial

expressions

yj = fj(x1, . . . , xn), j = 1, . . . ,m,

giving the map

F (x1, . . . , xn) = (f1(xi), f2(xi), . . . , fm(xi)).

You can read the same formulae as

yj 7→ fj(x1, . . . , xn), j = 1, . . . ,m

which immediately defines a ring morphism

k[y1, . . . , ym] −→ k[x1, . . . , xn],

which is exactly the dual map F ∗!



How the correspondence works in practice

More generally, for affine varieties X ⊂ An, Y ⊂ Am, the story is exactly the

same: have F defined by

F (x1, . . . , xn) = (f1(xi), f2(xi), . . . , fm(xi))

and dually F ∗ defined by

yj 7→ fj(x1, . . . , xn), j = 1, . . . ,m,

with the following conditions:

• The map F must have the property that a ∈ X must be mapped to

F (a) ∈ Y .

• Dually, the map F ∗ must descend to a ring map

k[Y ] = k[y1, . . . , ym]/IY −→ k[X ] = k[y1, . . . , xn]/IX .



Morphisms and coordinate rings: Example 1

(E1) Linear projection Let n ≥ m, and F : An → Am be defined by

F (a1, . . . , an) = (a1, . . . , am).

This corresponds to the k-algebra homomorphism

F ∗ : k[y1, . . . , ym] → k[x1, . . . , xn]

yi 7→ xi.

Note that

• The image of F is dense in Y = An (in fact it is equal to Am in this case).

• F ∗ is injective.



Morphisms and coordinate rings: Example 2

(E2) Inclusions of linear subspaces Let n ≤ m, and F : An → Am be

defined by

F (a1, . . . , an) = (a1, . . . , an, 0, . . . , 0).

This corresponds to the k-algebra homomorphism

F ∗ : k[y1, . . . , ym] → k[x1, . . . , xn]

yi 7→
{

xi if i ≤ n

0 otherwise
.

Note that

• F is a closed inclusion.

• F ∗ is surjective.



Morphisms and coordinate rings: Example 3

(E3) Projection of a hyperbola Let X = {xy − 1 = 0} ⊂ A2, and let

F : X → A1 be defined by

F (x, y) = x.

This corresponds to the k-algebra homomorphism

F ∗ : k[A1] = k[t] → k[X ] = k[x, y]/〈xy − 1〉
t 7→ x.

Note that

• The image A1 \ {0} of F is dense in A1.

• F ∗ is injective.



Morphisms and coordinate rings: Example 4

(E4) A polynomial map defined on the affine line Let F : A1 → A3 be

defined by

F (t) = (t, t2, t3).

This corresponds to the k-algebra homomorphism

F ∗ : k[A3] = k[x, y, z] → k[A1] = k[t]

x 7→ t

y 7→ t2

z 7→ t3

Note that, once again, this is a closed inclusion, and correspondingly the ring

map is surjective.



Morphisms and coordinate rings: a variant of Example 4

(E4’) A variant Let

Y = {x2 − y = 0, xy − z = 0} ⊂ A3.

Let F : A1 → Y be defined by

F (t) = (t, t2, t3).

Note we are using the same formulae; to make sure this is a map to Y , we

need to make sure that the image points are contained in Y , but that’s easy

to check. This corresponds to the k-algebra homomorphism

F ∗ : k[Y ] = k[x, y, z]/〈xy − z, y − x2〉 → k[A1] = k[t]

x 7→ t

y 7→ t2

z 7→ t3

To make sure that this is well defined, we need to check that polynomials in

the defining ideal of Y are mapped to zero, but that’s easy.



Morphisms and coordinate rings: a variant of Example 4

(E4’) A variant, continued On the other hand, let G : Y → A1 be defined

by G(x, y, z) = x, so

G∗ : k[A1] = k[t] → k[Y ] = k[x, y, z]/〈xy − z, y − x2〉
t 7→ x

Compute composites:

(F ∗ ◦G∗)(t) = F ∗(G∗(t)) = F ∗(x) = t

whereas
(G∗ ◦ F ∗)(x) = G∗(t) = x

(G∗ ◦ F ∗)(y) = G∗(t2) = x2 = y mod I(Y )

(G∗ ◦ F ∗)(z) = G∗(t3) = x3 = z mod I(Y ).

So F ∗, G∗ are mutual inverses, and so are F,G. In other words, A1 and Y are

isomorphic affine varieties.



General properties of the correspondence

The correspondence between morphisms F : X → Y between affine varieties,

and dual morphisms F ∗ : k[Y ] → k[X ] between coordinate rings, has the fol-

lowing basic properties.

• F is the inclusion of a closed affine subvariety if and only if F ∗ is

surjective.

We call such F a closed embedding.

• The image of F is a Zariski dense subvariety of Y if and only if F ∗

is injective.

We call such F dominant.

For proofs, see Problem Sheet 1. For examples, see earlier!


