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Motivation for projective algebraic geometry

Affine algebraic geometry is a natural and beautiful subject.

However, it lacks an essential “completeness” or “compactness” property.

This is not compactness in the Zariski topology, nor completeness in a metric

sense, but rather the issue of “including points at infinity”.

Bezout’s theorem Two non-overlapping plane curves of degrees d1 and d2

meet in exactly d1 · d2 points.

• We need to work over an algebraically closed field.

• We need to count multiplicities.

• We need to work in projective space.

Simple special case Two distinct lines in the plane meet in exactly one

point.

• No need for an algebraically closed field; no issue with multiplicities.

• Still need to work in projective space!



Ways to discuss projective space

There are different ways to approach projective space and projective geometry,

all having different merits.

(1) Axiomatic approach.

(2) Approach based on linear algebra.

(3) Coordinate-based approach.

Of these, (1) is beautiful but takes a long time to get to substantial results.

We are going to use a combination of (2) and, for the most part, (3), following

on from the Oxford Part A Projective Geometry course.



Definition of projective space via linear algebra

Let V be a finite-dimensional vector space over a field k. We let

P(V ) = {lines through the origin (1-dim linear subspaces) in V },
the projective space of V .

Let k∗ = k \ {0} = be the set of units (invertible elements) of k.

Since every line through the origin in V is determined by a direction (every

1-dim subspace has a generating vector, well defined up to scale), we can write

P(V ) = (V \ {0}) / ∼
where ∼ is the equivalence relation on nonzero vectors in V given by

v ∼ w if and only if w = λv for some λ ∈ k∗.
Sometimes we simply write

P(V ) = (V \ {0}) / k∗

with the rescaling action of k∗ understood.



Coordinate-based definition of projective space

It is easy to turn this description into coordinates. Choosing a basis of V ,

we have V ∼= kn+1, and every vector can be represented in coordinates as

v = (a0, . . . , an).

We get the definition of projective n-space over k:

Pnk = (kn+1 \ {0}) / k∗ for all λ ∈ k∗,

where the rescaling action is

(a0, . . . , an) ∼ (λa0, . . . , λan) for all λ ∈ k∗.

Write [a0 : a1 : . . . : an] for the equivalence class of (a0, a1, . . . , an) ∈ kn+1\{0};
so in these projective or homogeneous coordinates,

[a0 : . . . : an] = [λa0 : . . . : λan] for all λ ∈ k∗.

Note not all ai can be zero: [0 : . . . : 0] is not a valid choice.



Change of coordinates

Always remember: our coordinates [x0 : . . . : xn] on Pn depend on a choice

of basis in the underlying k-vector space.

A change of basis corresponds to a matrix A ∈ GL(n+ 1, k), which gives a new

coordinate system related to the old one by a linear transformation.

Change of basis might allow the simplification of a given polynomial (trick

already used in Part A Projective Geometry course).

Example For P1, these changes of basis correspond to the action of Möbius

transformations:

[x0 : x1] 7→ [ax0 + bx1 : cx0 + dx1]

for (
a b

c d

)
∈ GL(2, k).



The projective line and the projective plane

Consider n = 1.

We have

[a0 : a1] =

{
[1 : 0] if a1 = 0

[a0a1 : 1] otherwise.

So we get

P1
k = A1

k t {∞}.
For k = C, this is the Riemann sphere P1

C = C t {∞}.

Now consider n = 2. We have

[a0 : a1 : a2] =

{
[a0 : a1 : 0] if a2 = 0

[a0a2 : a1a2 : 1] otherwise.

So we get

P2
k = A2

k t P1
k.

This is the description of the projective plane as the affine plane together with

the ideal line at infinity.



Homogeneous polynomials

We continue to work with the ring of polynomials R = k[x0, . . . , xn], thought

of as polynomials in our variables x0, . . . , xn.

We also continue to assume k algebraically closed.

Definition A polynomial F ∈ R is a homogeneous polynomial of

degree d, if all the monomials xi00 · · ·xinn appearing in F have degree

d = i0 + · · · + in.

By convention, 0 ∈ R is homogeneous of every degree.

Lemma F ∈ R is homogeneous of degree d, if and only if for all λ ∈ k∗, we

have

F (λx0, . . . , λxn) = λdF (x0, . . . , xn).

Examples All monomials
∏

i x
di
i are homogeneous (of some degree); x3

0+x1x
2
2

is homogeneous of degree 3; x3
0 + x1x2 + x3 is not homogeneous.



Evaluating polynomials

How to evaluate polynomials on projective space?

• Given a polynomial F ∈ R, it does not make sense to “evaluate F at a point

p ∈ Pn”, since the value of f is not well-defined because of the equivalence

relation.

• Given a homogeneous polynomial F ∈ R, it still does not make sense

to “evaluate F at a point p ∈ Pn”.

• Given a homogeneous polynomial F ∈ R, it does make sense to ask

whether “F vanishes at a point p ∈ Pn”, as

F (λx0, . . . , λxn) = λdF (x0, . . . , xn)

with λ ∈ k∗.



Homogeneous ideals

Definition An ideal I C R is a homogeneous ideal, if it is generated by

homogeneous polynomials.

Notes

• There is no requirement that the generators should all be of the same degree.

• Of course I will contain lots of non-homogeneous elements; the requirement

is that it should be generated by such.

Examples

• I1 = 〈x0, . . . , xk〉Ck[x0, . . . xn] is a homogeneous ideal generated by linear

generators.

• I2 = 〈F 〉 C k[x0, . . . xn] for a homogeneous polynomial F is a principal,

homogeneous ideal generated by a single homogeneous generator.

• I3 = 〈x3
0 +x3

1 +x3
2, x

2
0−x2

1〉Ck[x0, x1, x2] is a homogeneous ideal generated

by a quadric and a cubic.



Projective varieties

Definition X ⊂ Pn is a projective variety if

X = V(I) = {[a] ∈ Pn : F (a) = 0 for all homogeneous F ∈ I}

for some homogeneous ideal I C k[x0 . . . , xn].

Examples

• For I1 = 〈x0, . . . , xk〉C k[x0, . . . xn],

V(I1) = {x0 = . . . = xk = 0} ⊂ Pn

is a projective linear subspace.

• For I2 = 〈F 〉C k[x0, . . . xn] with F a homogeneous polynomial,

V(I2) = {F = 0} ⊂ Pn

is a projective hypersurface.



More projective varieties

Some special cases:

• If F ∈ k[x0, x1, x2] is homogeneous of degree d,

V(〈F 〉) = {F = 0} ⊂ P2

is a projective plane curve of degree d.

• The Fermat hypersurface is

V(〈xd0 + xd1 + . . . + xdn〉) =
{
xd0 + xd1 + . . . + xdn = 0

}
⊂ Pn.

• Consider the vector space V = Mn(k) of n × n matrices over k, with its

standard basis. Then PV ∼= Pn2−1, with homogeneous coordinate variables

being the matrix entries xij. Inside Pn2−1, we have the determinantal

hypersurface

{det(A) = 0} ⊂ Pn2−1.

Indeed det is a homogeneous polynomial of degree n in the matrix entries.



Zariski topology on projective varieties

Definition The Zariski topology on Pn has closed sets being projective

varieties V(I).

The Zariski topology on a projective variety X ⊂ Pn is the subspace topology,

so the closed subsets of X are X ∩ V(J) = V(I + J) for any homogeneous

ideal J .

Equivalently, closed subsets in X are V(K) for homogeneous ideals I ⊂ KCR.

Example The Zariski closed subsets of P1
k (over an algebraically closed field

k) are P1
k itself, ∅, and finite sets of points.

Proof This is basically a homogeneous version of the proof we had for A1. If

F is a homogeneous polynomial of degree d, then

x−d0 F (x0, x1) = f (x1/x0)

for an ordinary polynomial of the ratio x1/x0. The latter has a finite number

of zeros in A1
k ⊂ P1

k. �



Projective subvarieties

A projective subvariety Y ⊂ X is a Zariski closed subset of X = V(I).

So as before, Y = V(K) for a homogeneous ideal I ⊂ K CR.

Examples

• For l ≥ k,

{x0 = . . . = xl = 0} ⊂ {x0 = . . . = xk = 0} ⊂ Pn

is a closed subvariety inside a projective linear subspace.

• In the projective space of matrices PMn(k) ∼= Pn2−1,

{A2 = 0} ⊂ {det(A) = 0} ⊂ Pn2−1

is a projective subvariety defined by quadratic equations. Indeed, for a

matrix over a field k, if A2 = 0, then det(A) = 0.



The affine cone

For a projective variety X ⊂ Pn, the affine cone X̂ ⊂ An+1 is the union of

the straight lines in kn+1 corresponding to the points of X .

Lemma If ∅ 6= X = V(I) ⊂ Pn for some homogeneous ideal I ⊂ R, then X̂

is the affine variety associated to the ideal I ⊂ R:

X̂ = V(I) ⊂ An+1.

This follows basically from the definitions.

Note that the Lemma does not hold if X = ∅. This will happen if I ⊂ R does

not vanish on any line in An+1. By homogeneity of I , this forces V(I) ⊂ An+1 to

be either ∅ or {0}, which by Nullstellensatz corresponds respectively to I = R

or I = 〈x0, . . . , xn〉.
The ideal I = 〈x0, . . . , xn〉 is called the irrelevant ideal of the ring R.



The vanishing ideal

Definition For any set X ⊂ Pn, define the vanishing ideal Ih(X) to be

the homogeneous ideal generated by the homogeneous polynomials vanishing

on X :

Ih(X) = 〈F ∈ R : F homogeneous, F (X) = 0〉.
Lemma If I is homogeneous, then V(Ih(V(I))) = V(I) and I ⊂ Ih(V(I)).

This follows, analogously to the affine case, essentially from definitions.

Lemma For X ⊂ Pn a projective variety, we have an equality of ideals

Ih(X) = I(X̂)

between the homogeneous vanishing ideal of X and the affine vanishing ideal

of the cone over X .

Proof See notes.



The projective Nullstellensatz

Let R = k[x0, . . . , xn], with k algebraically closed. Let Iirr = 〈x0, . . . , xn〉CR
be the irrelevant ideal.

Theorem (Projective Nullstellensatz) For any homogeneous ideal ICR
with

√
I 6= Iirr, we have

Ih(V(I)) =
√
I.

Proof We have Vaffine(I) 6= {0} by the affine Nullstellensatz, as
√
I 6= Iirr.

So X = V(I) ⊂ Pn is non-empty, with affine cone X̂ = V(I) ⊂ An+1.

Using Lemma above and the affine Nullstellensatz, we obtain:

Ih(X) = I(X̂) = I(V(I)) =
√
I.

�



Projective varieties and homogeneous ideals

The maps X 7→ Ih(X) and V(I)← [ I set up 1 : 1 correspondences

{proj. vars. X ⊂ Pn} ↔ {homogeneous radical ideals I 6= Iirr}
{irred. proj. vars. X ⊂ Pn} ↔ {homogeneous prime ideals I 6= Iirr}

{points of Pn} ↔ {“maximal” homogeneous ideals I 6= Iirr}
∅ ↔ {the homogeneous ideal R}.

Here a point p = [a0 : · · · : an] ∈ Pn corresponds to the homogeneous ideal

mp = 〈aixj − ajxi : all i, j〉 = {homogeneous polys vanishing at a}.

These are homogeneous ideals different from Iirr, maximal such with respect to

inclusion.


