C3.4 Algebraic Geometry Lecture 4: Basics of projective algebraic geometry

Balázs Szendrői, University of Oxford, Michaelmas 2020

Affine algebraic geometry is a natural and beautiful subject. However, it lacks an essential "completeness" or "compactness" property. This is **not** compactness in the Zariski topology, **nor** completeness in a metric sense, but rather the issue of "including points at infinity".

Bezout's theorem Two non-overlapping plane curves of degrees d_1 and d_2 meet in **exactly** $d_1 \cdot d_2$ points.

- We need to work over an algebraically closed field.
- We need to count multiplicities.
- We need to work in projective space.

Simple special case Two distinct lines in the plane meet in **exactly** one point.

- No need for an algebraically closed field; no issue with multiplicities.
- Still need to work in projective space!

There are different ways to approach projective space and projective geometry, all having different merits.

- (1) Axiomatic approach.
- (2) Approach based on linear algebra.
- (3) Coordinate-based approach.

Of these, (1) is beautiful but takes a long time to get to substantial results.

We are going to use a combination of (2) and, for the most part, (3), following on from the Oxford Part A Projective Geometry course.

Let V be a finite-dimensional vector space over a field k . We let $\mathbb{P}(V) = \{\text{lines through the origin (1-dim linear subspaces) in } V\},\$ the projective space of V .

Let $k^* = k \setminus \{0\}$ = be the set of units (invertible elements) of k. Since every line through the origin in V is determined by a direction (every 1-dim subspace has a generating vector, well defined up to scale), we can write

 $\mathbb{P}(V) = (V \setminus \{0\}) / \sim$

where \sim is the equivalence relation on nonzero vectors in V given by

 $v \sim w$ if and only if $w = \lambda v$ for some $\lambda \in k^*$.

Sometimes we simply write

$$
\mathbb{P}(V) = \left(V \setminus \{0\}\right) / k^*
$$

with the rescaling action of k^* understood.

It is easy to turn this description into coordinates. Choosing a basis of V , we have $V \cong k^{n+1}$, and every vector can be represented in coordinates as $v = (a_0, \ldots, a_n).$

We get the definition of **projective** *n*-space over k :

$$
\mathbb{P}_k^n = (k^{n+1} \setminus \{0\}) / k^*
$$
 for all $\lambda \in k^*$,

where the rescaling action is

$$
(a_0, \ldots, a_n) \sim (\lambda a_0, \ldots, \lambda a_n)
$$
 for all $\lambda \in k^*$.

Write $[a_0 : a_1 : \ldots : a_n]$ for the equivalence class of $(a_0, a_1, \ldots, a_n) \in k^{n+1} \setminus \{0\};$ so in these projective or homogeneous coordinates,

$$
[a_0: \ldots : a_n] = [\lambda a_0: \ldots : \lambda a_n] \quad \text{for all } \lambda \in k^*.
$$

Note not all a_i can be zero: $[0 : \ldots : 0]$ is not a valid choice.

Always remember: our coordinates $[x_0 : \ldots : x_n]$ on \mathbb{P}^n depend on a **choice** of basis in the underlying k-vector space.

A change of basis corresponds to a matrix $A \in GL(n+1, k)$, which gives a new coordinate system related to the old one by a linear transformation.

Change of basis might allow the simplification of a given polynomial (trick already used in Part A Projective Geometry course).

Example For \mathbb{P}^1 , these changes of basis correspond to the action of **Möbius** transformations:

$$
[x_0 : x_1] \mapsto [ax_0 + bx_1 : cx_0 + dx_1]
$$

for

$$
\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \operatorname{GL}(2,k).
$$

The projective line and the projective plane

Consider $n = 1$. We have

$$
[a_0 : a_1] = \begin{cases} [1 : 0] & \text{if } a_1 = 0\\ \left[\frac{a_0}{a_1} : 1\right] & \text{otherwise.} \end{cases}
$$

So we get

$$
\mathbb{P}^1_k = \mathbb{A}^1_k \sqcup \{\infty\}.
$$

For $k = \mathbb{C}$, this is the **Riemann sphere** $\mathbb{P}_{\mathbb{C}}^1 = \mathbb{C} \sqcup \{\infty\}.$

Now consider $n = 2$. We have

$$
[a_0 : a_1 : a_2] = \begin{cases} [a_0 : a_1 : 0] & \text{if } a_2 = 0\\ \left[\frac{a_0}{a_2} : \frac{a_1}{a_2} : 1\right] & \text{otherwise.} \end{cases}
$$

So we get

$$
\mathbb{P}^2_k = \mathbb{A}^2_k \sqcup \mathbb{P}^1_k.
$$

This is the description of the projective plane as the affine plane together with the ideal line at infinity.

We continue to work with the ring of polynomials $R = k[x_0, \ldots, x_n]$, thought of as polynomials in our variables x_0, \ldots, x_n . We also continue to assume k algebraically closed.

Definition A polynomial $F \in R$ is a homogeneous polynomial of degree d, if all the monomials $x_0^{i_0}$ $\stackrel{i_0}{_0}\cdots\stackrel{i_n}{x_n^n}$ $\frac{i_n}{n}$ appearing in F have degree

 $d = i_0 + \cdots + i_n.$

By convention, $0 \in R$ is homogeneous of every degree.

Lemma $F \in R$ is homogeneous of degree d, if and only if for all $\lambda \in k^*$, we have

$$
F(\lambda x_0,\ldots,\lambda x_n)=\lambda^d F(x_0,\ldots,x_n).
$$

Examples All monomials $\prod_i x_i^{d_i}$ $\epsilon^{d_i}_i$ are homogeneous (of some degree); $x_0^3 + x_1x_2^2$ 2 is homogeneous of degree 3; $x_0^3 + x_1x_2 + x_3$ is not homogeneous.

How to evaluate polynomials on projective space?

- Given a polynomial $F \in R$, it does not make sense to "evaluate F at a point" $p \in \mathbb{P}^{n}$, since the value of f is not well-defined because of the equivalence relation.
- Given a homogeneous polynomial $F \in R$, it still does not make sense to "evaluate F at a point $p \in \mathbb{P}^{n}$ ".
- Given a homogeneous polynomial $F \in R$, it does make sense to ask whether "F vanishes at a point $p \in \mathbb{P}^{n}$ ", as

$$
F(\lambda x_0,\ldots,\lambda x_n)=\lambda^d F(x_0,\ldots,x_n)
$$

with $\lambda \in k^*$.

Definition An ideal $I \triangleleft R$ is a **homogeneous ideal**, if it is generated by homogeneous polynomials.

Notes

- There is no requirement that the generators should all be of the same degree.
- Of course I will contain lots of non-homogeneous elements; the requirement is that it should be **generated** by such.

Examples

- $I_1 = \langle x_0, \ldots, x_k \rangle \triangleleft k[x_0, \ldots, x_n]$ is a homogeneous ideal generated by linear generators.
- $I_2 = \langle F \rangle \langle k[x_0, \ldots x_n]$ for a homogeneous polynomial F is a principal, homogeneous ideal generated by a single homogeneous generator.
- $I_3 = \langle x_0^3 + x_1^3 + x_2^3 \rangle$ $x_2^3, x_0^2 - x_1^2$ $\ket{1} \triangleleft k[x_0, x_1, x_2]$ is a homogeneous ideal generated by a quadric and a cubic.

Projective varieties

Definition $X \subset \mathbb{P}^n$ is a projective variety if

 $X = \mathbb{V}(I) = \{ [a] \in \mathbb{P}^n : F(a) = 0 \text{ for all homogeneous } F \in I \}$

for some homogeneous ideal $I \lhd k[x_0 \ldots, x_n]$.

Examples

• For
$$
I_1 = \langle x_0, \dots, x_k \rangle \triangleleft k[x_0, \dots x_n],
$$

\n
$$
\mathbb{V}(I_1) = \{x_0 = \dots = x_k = 0\} \subset \mathbb{P}^n
$$

is a projective linear subspace.

• For
$$
I_2 = \langle F \rangle \lhd k[x_0, \ldots x_n]
$$
 with F a homogeneous polynomial,
\n
$$
\mathbb{V}(I_2) = \{F = 0\} \subset \mathbb{P}^n
$$

is a projective hypersurface.

Some special cases:

• If $F \in k[x_0, x_1, x_2]$ is homogeneous of degree d,

$$
\mathbb{V}(\langle F\rangle)=\{F=0\}\subset \mathbb{P}^2
$$

is a projective plane curve of degree d .

• The Fermat hypersurface is

$$
\mathbb{V}(\langle x_0^d + x_1^d + \ldots + x_n^d \rangle) = \{ x_0^d + x_1^d + \ldots + x_n^d = 0 \} \subset \mathbb{P}^n.
$$

• Consider the vector space $V = M_n(k)$ of $n \times n$ matrices over k, with its standard basis. Then $\mathbb{P}V \cong \mathbb{P}^{n^2-1}$, with homogeneous coordinate variables being the matrix entries x_{ij} . Inside \mathbb{P}^{n^2-1} , we have the **determinantal** hypersurface

$$
\{\det(A) = 0\} \subset \mathbb{P}^{n^2 - 1}.
$$

Indeed det is a homogeneous polynomial of degree n in the matrix entries.

Definition The **Zariski topology** on \mathbb{P}^n has closed sets being projective varieties $V(I)$.

The Zariski topology on a projective variety $X \subset \mathbb{P}^n$ is the subspace topology, so the closed subsets of X are $X \cap V(J) = V(I + J)$ for any homogeneous ideal J.

Equivalently, closed subsets in X are $\mathbb{V}(K)$ for homogeneous ideals $I \subset K \triangleleft R$.

Example The Zariski closed subsets of \mathbb{P}_k^1 $\frac{1}{k}$ (over an algebraically closed field k) are \mathbb{P}^1_k $\frac{1}{k}$ itself, \emptyset , and finite sets of points.

Proof This is basically a homogeneous version of the proof we had for \mathbb{A}^1 . If F is a homogeneous polynomial of degree d , then

$$
x_0^{-d}F(x_0, x_1) = f(x_1/x_0)
$$

for an ordinary polynomial of the ratio x_1/x_0 . The latter has a finite number of zeros in $\mathbb{A}_k^1 \subset \mathbb{P}_k^1$ k . The contract of the contract of the contract of the contract of \Box

A projective subvariety $Y \subset X$ is a Zariski closed subset of $X = V(I)$. So as before, $Y = \mathbb{V}(K)$ for a homogeneous ideal $I \subset K \triangleleft R$.

Examples

• For $l > k$,

$$
\{x_0 = \ldots = x_l = 0\} \subset \{x_0 = \ldots = x_k = 0\} \subset \mathbb{P}^n
$$

is a closed subvariety inside a projective linear subspace.

• In the projective space of matrices $\mathbb{P}M_n(k) \cong \mathbb{P}^{n^2-1}$,

$$
\{A^2 = 0\} \subset \{\det(A) = 0\} \subset \mathbb{P}^{n^2 - 1}
$$

is a projective subvariety defined by quadratic equations. Indeed, for a matrix over a field k, if $A^2 = 0$, then $\det(A) = 0$.

For a projective variety $X \subset \mathbb{P}^n$, the **affine cone** $\hat{X} \subset \mathbb{A}^{n+1}$ is the union of the straight lines in k^{n+1} corresponding to the points of X.

Lemma If $\emptyset \neq X = \mathbb{V}(I) \subset \mathbb{P}^n$ for some homogeneous ideal $I \subset R$, then \widehat{X} is the affine variety associated to the ideal $I \subset R$:

$$
\widehat{X} = \mathbb{V}(I) \subset \mathbb{A}^{n+1}.
$$

This follows basically from the definitions.

Note that the Lemma does not hold if $X = \emptyset$. This will happen if $I \subset R$ does not vanish on any line in \mathbb{A}^{n+1} . By homogeneity of I, this forces $\mathbb{V}(I) \subset \mathbb{A}^{n+1}$ to be either \emptyset or $\{0\}$, which by Nullstellensatz corresponds respectively to $I = R$ or $I = \langle x_0, \ldots, x_n \rangle$.

The ideal $I = \langle x_0, \ldots, x_n \rangle$ is called the **irrelevant ideal** of the ring R.

Definition For any set $X \subset \mathbb{P}^n$, define the **vanishing ideal** $\mathbb{I}^h(X)$ to be the homogeneous ideal generated by the homogeneous polynomials vanishing on X :

$$
\mathbb{I}^h(X) = \langle F \in R : F \text{ homogeneous}, F(X) = 0 \rangle.
$$

Lemma If *I* is homogeneous, then $\mathbb{V}(\mathbb{I}^h(\mathbb{V}(I))) = \mathbb{V}(I)$ and $I \subset \mathbb{I}^h(\mathbb{V}(I))$. This follows, analogously to the affine case, essentially from definitions.

Lemma For $X \subset \mathbb{P}^n$ a projective variety, we have an equality of ideals $\mathbb{I}^h(X) = \mathbb{I}(\widehat{X})$

between the homogeneous vanishing ideal of X and the affine vanishing ideal of the cone over X .

Proof See notes.

Let $R = k[x_0, \ldots, x_n]$, with k algebraically closed. Let $I_{irr} = \langle x_0, \ldots, x_n \rangle \triangleleft R$ be the irrelevant ideal.

Theorem (Projective Nullstellensatz) For any homogeneous ideal $I \triangleleft R$ **Theorem (Frojective**
with $\sqrt{I} \neq I_{irr}$, we have

 I^h $(\mathbb{V}(I)) = \sqrt{I}.$

Proof We have $\mathbb{V}_{\text{affine}}(I) \neq \{0\}$ by the affine Nullstellensatz, as $\sqrt{I} \neq I_{irr}$. So $X = \mathbb{V}(I) \subset \mathbb{P}^n$ is non-empty, with affine cone $\widehat{X} = \mathbb{V}(I) \subset \mathbb{A}^{n+1}$. Using Lemma above and the affine Nullstellensatz, we obtain:

$$
\mathbb{I}^h(X) = \mathbb{I}(\widehat{X}) = \mathbb{I}(\mathbb{V}(I)) = \sqrt{I}.
$$

 \Box

The maps $X \mapsto \mathbb{I}^h(X)$ and $\mathbb{V}(I) \leftrightarrow I$ set up 1 : 1 correspondences

{proj. vars. $X \subset \mathbb{P}^n$ } \leftrightarrow {homogeneous radical ideals $I \neq I_{irr}$ } {irred. proj. vars. $X \subset \mathbb{P}^n$ } \leftrightarrow {homogeneous prime ideals $I \neq I_{irr}$ } {points of \mathbb{P}^n } \leftrightarrow {"maximal" homogeneous ideals $I \neq I_{irr}$ } $\emptyset \leftrightarrow \{$ the homogeneous ideal R .

Here a point $p = [a_0 : \cdots : a_n] \in \mathbb{P}^n$ corresponds to the homogeneous ideal

 $\mathfrak{m}_p = \langle a_i x_j - a_j x_i : \text{all } i, j \rangle = \{\text{homogeneous polys vanishing at } a\}.$

These are homogeneous ideals different from I_{irr} , maximal such with respect to inclusion.