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Projective space covered by affine spaces

We work in projective space P" over a field k. We have homogeneous coordi-
nates [x] = [zg:...: x,) € P".

Define the Zariski closed sets
H,={[z] eP":2; =0} CP"
and the Zariski open sets
U=P"\H, ={[z] e P": 2, #0} CP"
Easy lemma We have
(1) There are bijections U; <» A" for each 1.
(2) We have

1=0

So P" is covered by the Zariski open sets Uy, . .., U,.



Projective space covered by affine spaces

Proof of Easy Lemma For (1), the bijection between U; and A" is given by

w; U, — A"
[I}: @.Ml%..x_n % @... MM... C(]_n
€y €y Xy €y :L‘Z'7 7332'7.%7 7331'

Next, for every point of P", at least one of the homogeneous coordinates must
be nonzero. So indeed P" = U} ,U;. []

The quantities i—y for fixed ¢ are called affine coordinates in the affine
chart U;.

In calculations, it is often advisable to introduce new variables for these affine
coordinates:

_ Y

Vi =g
are affine coodinates, identifying U; C P with affine space A" with coordinates

Yoy -+ -5 Yi—1,Yi+15- - -y Yn-



Projective line covered by affine spaces

Example Forn =1, we get
P' = Uy U ;.
Points which have both coordinates nonzero are in both open sets.

The complements of the open sets are Hy = {[0 : 1]} and H; = {[1 : 0]}.
On Uy = A!, we have the affine coordinate y = i—é On U; = A!, we have the

affine coordinate z = ;—(1)

For k = C, this is the Riemann sphere as a union of two complex lines (planes),
identified using stereographic projection:

Pt = CyU Cy

with Cy being the chart around 0 = [0 : 1] and C, the chart around co = [1 : 0].
The special points are the north and south poles on the Riemann sphere.



Projective varieties covered by affine varieties

For any projective variety X C P", the sets X N H; are Zariski closed in it, so
the sets X N U, are Zariski open. We have

X =Jxnu.
i=0
Claim X NU; C U; = A" are affine varieties.
Proof The set X NU; C A" is defined by the vanishing of all the equations

of X C P" after the substitution x; = 1 (or, what is equivalent, re-expressing
the equations in the affine coordinates on Uj). [

So indeed “projective varieties are locally affine”: they are covered by open sets
which are affine varieties. This is a very fruitful point of view.

We will call X NU; C A" the affine charts of the projective variety X C P".



Affine charts of a quadric

Example Let us look at the quadric
Q= {xi+ 2] — 25 =0} C P~
We have three affine charts
P* = Uy U Uy U Us.

(0) On Uy, we have zy # 0, and we have affine coordinates y; = i—é, Yy =
Dividing the equation by 3, we get the affine quadric

QNUy={1+y?—y5 =0} C Uy= A~

(1) On Uy, we have x1 # 0, and we choose affine coordinates zy = %)’ 2o =
Dividing the equation by z%, we get the affine quadric

QNU ={z+1—2 =0} CcU =A%
(2) Finally on U, with variables ¢, t1, we get
QHUQI{t%—Ft%—l:O} C UQIAQ.



Affine charts and coordinate changes

Recall: our coordinates [z : ... : x,] on P" depended on a choice of basis
in the underlying k-vector space.

A change of basis corresponds to a matrix A € GL(n+ 1, k), which gives a new
coordinate system related to the old one by a linear transformation.

With respect to a new coordinate system, we get a new system of hyperplanes,
and new system of Zariski open sets identified with A",

Example, continued Use the change of coordinates
Xo=z9, X1 =o1+x9, Xo=x1— 29
to write the equation of our quadric as
Q={X2+X,X,=0} C P
Then in this coordinate system, one of the open charts becomes

QNUy={T;+T, =0} C U= A*



Projective closure

Given an affine variety X C A", we can view X C P" via:
XCcA"=UycP'=A"uP L.

The projective closure X C P" of X is the Zariski closure (closure in the
Zariski topology) of the set X C P".

Note that, by definition,
YHU():XCU():ATL.

How to find equations for X C P"? We need to homogenise.



Homogenizing polynomials

Given a polynomial f € k|xy,...,x,], write f = fo+ f1 + -+ + fq where f;
are the homogeneous parts of f of degree i. The homogenisation of f is

f=aifo+zi  fi+ -+ xofor + fa
Easy Lemma f € k|xo, ...,z is homogeneous of degree d, with
fl:l:():l - f
Examples

e The quadric 2? + y? — 1 € k[z, y] becomes the homogeneous quadric
4 y° — 2 € kln,y, 2]
e The cubic y* — z(z — 1)(x — ¢) € k[x,y] becomes the homogeneous cubic

vz —x(x — 2)(x — c2) € k[x,y, 2].



The ideal of the projective closure

Let X =V(I) C A" be an affine variety defined by an ideal I < k[xy, ..., x,].
Define L

I=(f:fel
be the homogeneous ideal in k[xy, . . ., z,] generated by the homogenisations of

all elements of I (not just generators!).
Proposition The projective closure X C P" of X of X is
X =V(I) cP"
Proof See Lecture Notes. ]

Example The Zariski closure of the affine cubic curve
{y’ =a(z - 1)(x —c)} C A°
is the projective cubic curve

{y’2 = z(x — 2)(x — c2)} C P2



Morphisms of projective varieties

Fix projective varieties X C P" and Y C P". We work with (m + 1)-tuples of
homogeneous polynomials of the projective coordinates xg, ..., z, on X. Let
R = k[[l?(), . ,.I‘n].

Definition A morphism F': X — Y of projective varieties is a function F
such that for every p € X, there is an open neighbourhood p € U C X, and
homogeneous polynomials fy, ..., f,, € R of the same degree, with

F U — Y isgiven by F([a]) = [fo(a) : -+ fi(a)].

(1) The fact that the degrees of the f; are equal ensures that the map is well-
defined:

F([Aa]) = [fo(Aa) - -+ fm(Aa)]
= \fola) - X fu(a)
fola) =+ finla)]

|



Morphisms of projective varieties

A morphism F': X — Y of projective varieties is defined on opensets € U C X
by homogeneous polynomials fy, ..., f,, € R of the same degree:

F U — Y isgiven by F([a]) = [fo(a) : -+ fi(a)].

(2) When constructing F', we have to make sure the f; do not vanish simulta-
neously at any a.

(3) Need to make sure the image point always lands in Y, i.e. the values

fola) =+ fin(a)]
have to satisty all the defining equations of Y.

(4) Often a single set of polynomials fy, - - -, fi, suffices, but already in relatively
simple cases more than one set of polynomials may be needed.

Definition An isomorphism of projective varieties is a morphism F': X —
Y that has a (two-sided) inverse G : Y — X.



An example: a Veronese embedding of P!

Consider the morphism (Veronese embedding)
PP P
given by
[s:t] — [s*: st t7).
This is a morphism:
(1) It is defined on the whole of P! by degree 2 polynomials.

(2) The polynomials do not vanish simultaneously.

(3) There are no equations to check in the image.



The example revisited

Let
Y =V(zz —y*) C P

Consider the morphism (Veronese embedding)
F:P'—Y CP
given by the same formula
[s:t] — [s*: st t7).
This is a morphism from P! to Y
(1) It is defined on the whole of P! by degree 2 polynomials.
(2) The polynomials do not vanish simultaneously.

(3) The image values satisfy the defining polynomial of Y

(s)(t%) = (st)".



The example revisited

We want to build an inverse morphism to F,. Define

G:Y - P
by [x:y:z]l— [z ylife#0,and [x:y: 2| —|y:z]if 2 #0.
Note the Zariski open sets {x # 0} and {z # 0} cover Y.

We get a well-defined map, since on the overlap x # 0, z # 0 we have

@iyl =[rzy2) ="yl =y 2],

It is also easy to check that Fy o G = id, G o Fy, = id. So F5, G are inverse
isomorphisms of projective varieties.



Another example: projection

Consider a projetive variety X C P". Assume [1:0:...:0] ¢ X. Define
m: X =Pt

by the formula

This is a morphism:
(1) It is defined on X by degree 1 polynomials.
(2) The polynomials do not vanish simultaneously as [1:0:...:0] ¢ X.

(3) There are no equations to check in the image.

Geometric interpretation: Projection from the point p=1[1:0:...: 0],

see Lecture Notes.



Last example: projective equivalences

An isomorphism X = Y of projective varieties X,Y C P" is a projective
equivalence, if it is the restriction of a linear isomorphism

P" — P, x| — [Ax]

given by an invertible (n 4+ 1) x (n 4 1) matrix A over k.
This morphism is induced by a linear isomorphism A" — A" 2 — Az,
where A € GL(n+ 1, k).

Since [Ax] = [AAx], we only care about A modulo scalar matrices \ - I.

Thus we only need to consider

Ae PGL(n+1,k)=GL(n+ 1,k)/E".

In particular, the group PGL(n+1, k) acts on projective space P" by projective
equivalences.



