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Projective space covered by affine spaces

We work in projective space Pn over a field k. We have homogeneous coordi-

nates [x] = [x0 : . . . : xn] ∈ Pn.

Define the Zariski closed sets

Hi = {[x] ∈ Pn : xi = 0} ⊂ Pn

and the Zariski open sets

Ui = Pn \Hi = {[x] ∈ Pn : xi 6= 0} ⊂ Pn.

Easy lemma We have

(1) There are bijections Ui ↔ An for each i.

(2) We have

Pn =

n⋃
i=0

Ui.

So Pn is covered by the Zariski open sets U0, . . . , Un.



Projective space covered by affine spaces

Proof of Easy Lemma For (1), the bijection between Ui and An is given by

ϕi : Ui → An

[x] =
[
x0
xi

: · · · : xi−1xi
: 1 :

xi+1
xi

: · · · : xnxi
]
→
(
x0
xi
, · · · , xi−1xi

,
xi+1
xi
, · · · , xnxi

)
Next, for every point of Pn, at least one of the homogeneous coordinates must

be nonzero. So indeed Pn = ∪ni=0Ui. �

The quantities
xj
xi

for fixed i are called affine coordinates in the affine

chart Ui.

In calculations, it is often advisable to introduce new variables for these affine

coordinates:

yj =
xj
xi

are affine coodinates, identifying Ui ⊂ Pn with affine space An with coordinates

y0, . . . , yi−1, yi+1, . . . , yn.



Projective line covered by affine spaces

Example For n = 1, we get

P1 = U0 ∪ U1.

Points which have both coordinates nonzero are in both open sets.

The complements of the open sets are H0 = {[0 : 1]} and H1 = {[1 : 0]}.
On U0 = A1, we have the affine coordinate y = x1

x0
. On U1 = A1, we have the

affine coordinate z = x0
x1

.

For k = C, this is the Riemann sphere as a union of two complex lines (planes),

identified using stereographic projection:

P1
C = C0 ∪ C∞

with C0 being the chart around 0 = [0 : 1] and C∞ the chart around∞ = [1 : 0].

The special points are the north and south poles on the Riemann sphere.



Projective varieties covered by affine varieties

For any projective variety X ⊂ Pn, the sets X ∩Hi are Zariski closed in it, so

the sets X ∩ Ui are Zariski open. We have

X =

n⋃
i=0

(X ∩ Ui).

Claim X ∩ Ui ⊂ Ui = An are affine varieties.

Proof The set X ∩ Ui ⊂ An is defined by the vanishing of all the equations

of X ⊂ Pn after the substitution xi = 1 (or, what is equivalent, re-expressing

the equations in the affine coordinates on Ui). �

So indeed “projective varieties are locally affine”: they are covered by open sets

which are affine varieties. This is a very fruitful point of view.

We will call X ∩Ui ⊂ An the affine charts of the projective variety X ⊂ Pn.



Affine charts of a quadric

Example Let us look at the quadric

Q = {x20 + x21 − x22 = 0} ⊂ P2.

We have three affine charts

P2 = U0 ∪ U1 ∪ U2.

(0) On U0, we have x0 6= 0, and we have affine coordinates y1 = x1
x0
, y2 = x2

x0
.

Dividing the equation by x20, we get the affine quadric

Q ∩ U0 = {1 + y21 − y22 = 0} ⊂ U0 = A2.

(1) On U1, we have x1 6= 0, and we choose affine coordinates z0 = x0
x1
, z2 = x2

x1
.

Dividing the equation by x21, we get the affine quadric

Q ∩ U1 = {z20 + 1− z22 = 0} ⊂ U1 = A2.

(2) Finally on U2 with variables t0, t1, we get

Q ∩ U2 = {t20 + t21 − 1 = 0} ⊂ U2 = A2.



Affine charts and coordinate changes

Recall: our coordinates [x0 : . . . : xn] on Pn depended on a choice of basis

in the underlying k-vector space.

A change of basis corresponds to a matrix A ∈ GL(n+ 1, k), which gives a new

coordinate system related to the old one by a linear transformation.

With respect to a new coordinate system, we get a new system of hyperplanes,

and new system of Zariski open sets identified with An.

Example, continued Use the change of coordinates

X0 = x0, X1 = x1 + x2, X2 = x1 − x2
to write the equation of our quadric as

Q = {X2
0 + X1X2 = 0} ⊂ P2.

Then in this coordinate system, one of the open charts becomes

Q ∩ U ′2 = {T 2
0 + T1 = 0} ⊂ U ′2 = A2.



Projective closure

Given an affine variety X ⊂ An, we can view X ⊂ Pn via:

X ⊂ An = U0 ⊂ Pn = An ∪ Pn−1.

The projective closure X ⊂ Pn of X is the Zariski closure (closure in the

Zariski topology) of the set X ⊂ Pn.

Note that, by definition,

X ∩ U0 = X ⊂ U0 = An.

How to find equations for X ⊂ Pn? We need to homogenise.



Homogenizing polynomials

Given a polynomial f ∈ k[x1, . . . , xn], write f = f0 + f1 + · · · + fd where fi
are the homogeneous parts of f of degree i. The homogenisation of f is

f̃ = xd0f0 + xd−10 f1 + · · · + x0fd−1 + fd.

Easy Lemma f̃ ∈ k[x0, . . . , xn] is homogeneous of degree d, with

f̃ |x0=1 = f.

Examples

• The quadric x2 + y2 − 1 ∈ k[x, y] becomes the homogeneous quadric

x2 + y2 − z2 ∈ k[x, y, z].

• The cubic y2 − x(x− 1)(x− c) ∈ k[x, y] becomes the homogeneous cubic

y2z − x(x− z)(x− cz) ∈ k[x, y, z].



The ideal of the projective closure

Let X = V(I) ⊂ An be an affine variety defined by an ideal I C k[x1, . . . , xn].

Define

Ĩ = 〈f̃ : f ∈ I〉
be the homogeneous ideal in k[x0, . . . , xn] generated by the homogenisations of

all elements of I (not just generators!).

Proposition The projective closure X ⊂ Pn of X of X is

X = V(Ĩ) ⊂ Pn.

Proof See Lecture Notes. �

Example The Zariski closure of the affine cubic curve

{y2 = x(x− 1)(x− c)} ⊂ A2

is the projective cubic curve

{y2z = x(x− z)(x− cz)} ⊂ P2.



Morphisms of projective varieties

Fix projective varieties X ⊂ Pn and Y ⊂ Pm. We work with (m+ 1)-tuples of

homogeneous polynomials of the projective coordinates x0, . . . , xn on X . Let

R = k[x0, . . . , xn].

Definition A morphism F : X → Y of projective varieties is a function F

such that for every p ∈ X , there is an open neighbourhood p ∈ U ⊂ X , and

homogeneous polynomials f0, . . . , fm ∈ R of the same degree, with

F : U → Y is given by F ([a]) = [f0(a) : · · · : fm(a)].

(1) The fact that the degrees of the fi are equal ensures that the map is well-

defined:

F ([λa]) = [f0(λa) : · · · : fm(λa)]

= [λdf0(a) : · · · : λdfm(a)]

= [f0(a) : · · · : fm(a)]

= F ([a]).



Morphisms of projective varieties

A morphism F : X → Y of projective varieties is defined on open sets∈ U ⊂ X

by homogeneous polynomials f0, . . . , fm ∈ R of the same degree:

F : U → Y is given by F ([a]) = [f0(a) : · · · : fm(a)].

(2) When constructing F , we have to make sure the fi do not vanish simulta-

neously at any a.

(3) Need to make sure the image point always lands in Y , i.e. the values

[f0(a) : · · · : fm(a)]

have to satisfy all the defining equations of Y .

(4) Often a single set of polynomials f0, · · · , fm suffices, but already in relatively

simple cases more than one set of polynomials may be needed.

Definition An isomorphism of projective varieties is a morphism F : X →
Y that has a (two-sided) inverse G : Y → X .



An example: a Veronese embedding of P1

Consider the morphism (Veronese embedding)

F1 : P1 → P2

given by

[s : t] 7→ [s2 : st : t2].

This is a morphism:

(1) It is defined on the whole of P1 by degree 2 polynomials.

(2) The polynomials do not vanish simultaneously.

(3) There are no equations to check in the image.



The example revisited

Let

Y = V(xz − y2) ⊂ P2.

Consider the morphism (Veronese embedding)

F2 : P1 → Y ⊂ P2

given by the same formula

[s : t] 7→ [s2 : st : t2].

This is a morphism from P1 to Y :

(1) It is defined on the whole of P1 by degree 2 polynomials.

(2) The polynomials do not vanish simultaneously.

(3) The image values satisfy the defining polynomial of Y :

(s2)(t2) = (st)2.



The example revisited

We want to build an inverse morphism to F2. Define

G : Y → P1

by [x : y : z] 7→ [x : y] if x 6= 0, and [x : y : z] 7→ [y : z] if z 6= 0.

Note the Zariski open sets {x 6= 0} and {z 6= 0} cover Y .

We get a well-defined map, since on the overlap x 6= 0, z 6= 0 we have

[x : y] = [xz : yz] = [y2 : yz] = [y : z].

It is also easy to check that F2 ◦ G = id, G ◦ F2 = id. So F2, G are inverse

isomorphisms of projective varieties.



Another example: projection

Consider a projetive variety X ⊂ Pn. Assume [1 : 0 : . . . : 0] /∈ X . Define

π : X → Pn−1

by the formula

[x0 : . . . : xn] 7→ [x1 : . . . : xn].

This is a morphism:

(1) It is defined on X by degree 1 polynomials.

(2) The polynomials do not vanish simultaneously as [1 : 0 : . . . : 0] /∈ X .

(3) There are no equations to check in the image.

Geometric interpretation: Projection from the point p = [1 : 0 : . . . : 0],

see Lecture Notes.



Last example: projective equivalences

An isomorphism X ∼= Y of projective varieties X, Y ⊂ Pn is a projective

equivalence, if it is the restriction of a linear isomorphism

Pn → Pn, [x] 7→ [Ax]

given by an invertible (n + 1)× (n + 1) matrix A over k.

This morphism is induced by a linear isomorphism An+1 → An+1, x 7→ Ax,

where A ∈ GL(n + 1, k).

Since [Ax] = [λAx], we only care about A modulo scalar matrices λ · I .

Thus we only need to consider

A ∈ PGL(n + 1, k) = GL(n + 1, k)/k∗.

In particular, the group PGL(n+1, k) acts on projective space Pn by projective

equivalences.


