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Graded rings

Definition Let A be a commutative ring. An N-grading of A means a

A:@Ad

as an abelian group under addition, so that the grading is compatible with

direct sum decomposition

multiplication:

A;- A, C Ad+e-
The elements in A, are called the homogeneous elements of degree d.

Note every f € A is uniquely a finite sum > f; of homogeneous elements
fd c A,

A homomorphism of graded rings f : A — B is a homomorphism of
rings which respects the grading so that f|4, : Aq — By.

In all our examples, A will be a f.g. commutative unital k-algebra with Ay = k.



Homogeneous ideals

Suppose A is a graded ring as above. For an ideal I <1 A, let
I, =1NA,.

Definition. I << A is a homogeneous ideal, if

lz@fd.

d>0
Easy lemma

1. I < A is homogeneous if and only if I generated by homogeneous elements.

2. I is homogeneous if and only for every f € I, also all homogeneous parts
fa€ 1.

3. If is I homogeneous,

I a prime ideal <V hgs f,g € A, fg € I implies f € [ or g € 1.

4. Sums, products, intersections, radicals of homogeneous ideals are homoge-
neous.



Examples

Example 1 This is the key example. The ring
R = klxg, ..., 2,
is graded, by declaring that deg x; = 1. The graded pieces are
Ry = klxg, ..., T4,
the spaces of homogeneous polynomials of degree d.

Example 2 We could generalise this! Declare degx; = w;, some positive
integer. We get a different N-grading on the same ring R = k[xg, ..., ;).
We will not use this construction in this course, but it would be an interesting
direction to go in.



Quotients of graded rings

The following is still easy, but it is a key statement.

Proposition Let A = @A, be a graded ring, I << A a homogeneous ideal.
Then the quotient ring S = R/ is also graded, with

Sd = Rd/]d-
Example 3 Let f € klxg, ..., x,]q be a homogeneous polynomial of degree d.
Then the ring

S = R/(f)

is graded, with

o klxg, ..., ZTn)e if e < d;
“ | Klzo,...,x0)e/f  Klzo, ..., x0)e_q otherwise.



The homogeneous coordinate ring of a projective variety

We work with R = k|xq, ..., x,], with the usual grading in which x, ..., x,
all have degree 1.

Consider a projective variety X C P". The homogeneous coordinate
ring S(X) is the graded ring

S(X) = R/T'(X),
where I"(X) <1 R is the homogeneous ideal of X.
Example 1 We have

S(P") = R = K[z, . . . , ).

Example 2 For X = V(yz — 2*) C P?, we have
S(X) = klw,y, 2/ (yz — 27).



Reconstructing a projective variety from a graded ring

There is also a converse process. Suppose that A is a reduced, graded k-algebra
with Ay = k. Suppose also

Key assumption: A is generated by finitely many elements, all in degree 1.

Let go, ..., g, be a set of generators in degree 1 of A as a k-algebra. Consider
the homomorphism of graded k-algebras

o R=Fklxg,...,x5] > A
given by o(x;) = g;. This is surjective, since the elements g; generate A. Let
I =kerp < R.

Then [ is necessarily a graded ideal, since ¢ respects the gradings (as g; is of
degree 1!). I is also a radical ideal, since A is reduced.

Let X = V(I) C P¥. Then by the Nullstellensatz I"(X) = I. Hence
S(X)=R/I = A.

So the projective variety X C P" has homogeneous coordinate ring A.



Veronese subrings of a graded ring

Let A = @®.>0A. be a graded ring, d a fixed integer. Consider

A = @B Aqge.

e>0

the d-th Veronese subring of A. This is a graded ring, with new grading
AY = Ay

Example Let A = k[z,y] in the standard grading. Then for d = 2,
A = k@ (22, xy, ) & (of, By, 2y ey @ L

More general example Let R = k[xg,...,x,] in the standard grading.
Then

R =k@klry,...,Tn)a D klxo,. .., Tploa® ...



Towards the Veronese embedding

We have the graded ring

R(d) = @ k[l‘o, SR xn]ed-

Easy Lemma R@ is reduced, and generated by its degree 1 piece Rgd) = Ry.

Proof R is a subring of the reduced ring R, so it is reduced itself.
Also every monomial of degree e - d in x, ..., x, is a product of d monomials
of degree e (usually in many ways). ]

Natural question What projective variety do we get if we consider this
oraded ring RY and perform the construction of a projective variety from it?



The first example of a Veronese embedding

Example Consider the simplest case n = 1, d = 2. We have, as before,

2 2 2 4,3, .22 3 4
R® = k@ (22, xoxy, 2?) @ (xf, apwy, 2202, xoxd, ahy @

The degree one piece Rf) is generated by three polynomials 2, xoz1, 22. So

we consider the surjection

v klyo, 1, y2) — RP

given by yo +— 22, y1 — xoT1, y2 — x7. The kernel is the ideal

ker o = (yoy2 — v1)-
We get
Y = {yoy2 —yi = 0} C P,
the image of the Veronese embedding Fy: P! — Y C P? we considered in
Lecture 5!



Counting and listing monomials of a given degree

Fix d,n. We need to count the number of monomials of xg, ..., x, of degree d.

Proposition We have

d
dlmk ]{[330, ce ,.I’n]d = (n;_ )

Proof Several proofs are possible. A combinatorial proof is explained in the
Lecture Notes. A proof by double induction on (n, d) is left as an exercise. [

In concrete calculations, it is also useful to be able to list these monomials as
a linear list. The most common way to do so is the lexicographic ordering.
Instead of a detailed explanation, an example should suffice.

Example Forn =2 and d = 3, we have dimy k|xg, x1, T2]o = (g) = 10.
A lexicographically ordered basis of k[zg, x1, 2o is

3,2, .2 2 2 .3 2 2,3
{zy, xix1, xja2, TOTT, ToT1T, XS, TT, T]T2, T1XT5, L5}



Definition of the Veronese embedding

Fix d,n as before. Let N = (”zgd) — 1.

Define the d-th Veronese map on P" to be the projective morphism

Vg P —)PN
o ixn] = [oratll]

where the index set runs over all monomials z/ = z z{ - -z of degree d =

ig + - -+ + ip, in other words a basis of the space k[, ..., .4
The image of v, inside PV is called a Veronese variety.

Note: indeed vy is a projective morphism, as it is defined by homogeneous poly-

d

nomials of the same degree d, not all zero as the monomials include xg, U



Equations satisfied by the image of the Veronese map

We now want to write down equations that the image of v; satisfies.

The morphism is defined by considering all degree d monomials 2! of x, . . . , x,,.
Consider multi-indices of type (ig, ..., 7,) € N*™ with 49+ - - - +1, = d. Note
that if for multi-indices I, J, K, L, we have [ + J = K + L, then

CCI$J = SCKCCL.

This means that, considering variables z; on PV for all possible multi-indices
I, we get
image(vy) C V(2725 — 2zr21) C Py
for all multi-indices I, J, K, L with I +J = K + L.
Example For the familiar case n = 1, d = 2, we have
(wox1)* = (25) (1)
which corresponds to the multi-index identity

(1,1) 4+ (1,1) = (2,0) + (0,2).



The main result

Theorem The Veronese map is a closed embedding v4: P* < PV. It defines
an isomorphism between P" and its image

Image(vy) = V({2125 —2x2p [+ J =K+ L))

= m V(Z[ZJ—ZKZL) C ]P)N
I+J=K+L

where we run over all multi-indices I, J, K, L of type (i, ...,4,) € N*™! with
i+ iy, =d.

Proof, Step 1. Let Y = (1, j_y.; V(zrz7—2K2z1) C P". The discussion
on the previous page showed that Image(ry) C Y. So indeed we can think of
Vg as a morphism v;: P* — Y.

To finish the argument, we will write down an explicit inverse morphism for vy
onY.



The main result: construction of the inverse

Proof, Step 2. Fix J = (ig,...,1,) € N*"' withd — 1 =iy + - - - + 4, and
denote Jy = (Jo,--.,Je + 1,...,Jn); these indices now sum to d. Let

w; Y\ Z; =P defined by [...:2zr:...] = [zg 20 ... 1 27

which is a well-defined morphism away from the closed set Z; where all z;, = 0.
These morphisms ¢ fit together to a morphism

oY — PV,

Indeed for two such J, J', notice J;+ J), = Jp+ J; (this equals J + J' plus add
1 in the two slots £, ).
Hence 212y, = 22 and thus [z, - 2,] = [z - zjél] and so finally

pallz]) = er((2])-



The main result: checking the inverse properties

Proof, Step 3. We show that v, ¢ are inverse morphisms, finally proving

P~y c PV,
Notice
wovylz]) = [CCJO S x‘]”] = |z : Ty,

as we can just rescale by 1/z7.
Conversely, one can also check
vao py(z1]) = 1],

For the somewhat intricate combinatorial argument to prove this, see Lecture
Notes. [



Rational normal curves

The d-th Veronese embedding of P! For n = 1,d arbitrary, we get a
closed inclusion

vg: Pt P!
defined by [xg : 21] > [2d : 2wy .. 2]

The image is traditionally called the rational normal curve of degree d.
In this case, the equations can be written in the following attractive form.
va(P!) = {rank ( Yo Y i ) < 1} C Py.
Y Y2 - Yd

Indeed, the condition that the rank of the given matrix is at most 1 is captured
by the vanishing of 2 x 2 determinants

det ( yz yj ) = YilYj+1 — YjYit1-
Yi+1 Yj+1

These are precisely the quadrics from the Theorem above.



The Veronese surface

The second Veronese embedding of P> For n = 2,d = 2, we get a
closed inclusion

vy: P2 s PP
defined by [z : @1 : 9] ¥ [23 : 2oy : T2 1 TF : 10 1 3.

The image is traditionally called the Veronese surface.



