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Graded rings

Definition Let A be a commutative ring. An N-grading of A means a

direct sum decomposition

A =
⊕
d≥0

Ad

as an abelian group under addition, so that the grading is compatible with

multiplication:

Ad · Ae ⊂ Ad+e.

The elements in Ad are called the homogeneous elements of degree d.

Note every f ∈ A is uniquely a finite sum
∑
fd of homogeneous elements

fd ∈ Ad.

A homomorphism of graded rings f : A → B is a homomorphism of

rings which respects the grading so that f |Ad
: Ad → Bd.

In all our examples, A will be a f.g. commutative unital k-algebra with A0
∼= k.



Homogeneous ideals

Suppose A is a graded ring as above. For an ideal I C A, let

Id = I ∩ Ad.

Definition. I C A is a homogeneous ideal, if

I =
⊕
d≥0

Id.

Easy lemma

1. ICA is homogeneous if and only if I generated by homogeneous elements.

2. I is homogeneous if and only for every f ∈ I , also all homogeneous parts

fd ∈ I .

3. If is I homogeneous,

I a prime ideal ⇔ ∀ hgs f, g ∈ A, fg ∈ I implies f ∈ I or g ∈ I.

4. Sums, products, intersections, radicals of homogeneous ideals are homoge-

neous.



Examples

Example 1 This is the key example. The ring

R = k[x0, . . . , xn]

is graded, by declaring that deg xi = 1. The graded pieces are

Rd = k[x0, . . . , xn]d,

the spaces of homogeneous polynomials of degree d.

Example 2 We could generalise this! Declare deg xi = wi, some positive

integer. We get a different N-grading on the same ring R = k[x0, . . . , xn].

We will not use this construction in this course, but it would be an interesting

direction to go in.



Quotients of graded rings

The following is still easy, but it is a key statement.

Proposition Let A = ⊕Ad be a graded ring, I C A a homogeneous ideal.

Then the quotient ring S = R/I is also graded, with

Sd = Rd/Id.

Example 3 Let f ∈ k[x0, . . . , xn]d be a homogeneous polynomial of degree d.

Then the ring

S = R/〈f〉
is graded, with

Se =

{
k[x0, . . . , xn]e if e < d;

k[x0, . . . , xn]e/f · k[x0, . . . , xn]e−d otherwise.



The homogeneous coordinate ring of a projective variety

We work with R = k[x0, . . . , xn], with the usual grading in which x0, . . . , xn
all have degree 1.

Consider a projective variety X ⊂ Pn. The homogeneous coordinate

ring S(X) is the graded ring

S(X) = R/Ih(X),

where Ih(X)CR is the homogeneous ideal of X .

Example 1 We have

S(Pn) = R = k[x0, . . . , xn].

Example 2 For X = V(yz − x2) ⊂ P2, we have

S(X) = k[x, y, z]/(yz − x2).



Reconstructing a projective variety from a graded ring

There is also a converse process. Suppose that A is a reduced, graded k-algebra

with A0
∼= k. Suppose also

Key assumption: A is generated by finitely many elements, all in degree 1.

Let g0, . . . , gn be a set of generators in degree 1 of A as a k-algebra. Consider

the homomorphism of graded k-algebras

ϕ : R = k[x0, . . . , xn]→ A

given by ϕ(xi) = gi. This is surjective, since the elements gi generate A. Let

I = kerϕCR.

Then I is necessarily a graded ideal, since ϕ respects the gradings (as gi is of

degree 1!). I is also a radical ideal, since A is reduced.

Let X = V(I) ⊂ PN . Then by the Nullstellensatz Ih(X) = I . Hence

S(X) ∼= R/I ∼= A.

So the projective variety X ⊂ Pn has homogeneous coordinate ring A.



Veronese subrings of a graded ring

Let A = ⊕e≥0Ae be a graded ring, d a fixed integer. Consider

A(d) =
⊕
e≥0

Ad·e,

the d-th Veronese subring of A. This is a graded ring, with new grading

A
(d)
e = Ad·e.

Example Let A = k[x, y] in the standard grading. Then for d = 2,

A(2) = k ⊕ 〈x2, xy, y2〉 ⊕ 〈x4, x3y, x2y2, xy3, y4〉 ⊕ . . . .

More general example Let R = k[x0, . . . , xn] in the standard grading.

Then

R(d) = k ⊕ k[x0, . . . , xn]d ⊕ k[x0, . . . , xn]2d ⊕ . . . .



Towards the Veronese embedding

We have the graded ring

R(d) =
⊕
e≥0

k[x0, . . . , xn]ed.

Easy Lemma R(d) is reduced, and generated by its degree 1 piece R
(d)
1 = Rd.

Proof R(d) is a subring of the reduced ring R, so it is reduced itself.

Also every monomial of degree e · d in x0, . . . , xn is a product of d monomials

of degree e (usually in many ways). �

Natural question What projective variety do we get if we consider this

graded ring R(d) and perform the construction of a projective variety from it?



The first example of a Veronese embedding

Example Consider the simplest case n = 1, d = 2. We have, as before,

R(2) = k ⊕ 〈x20, x0x1, x21〉 ⊕ 〈x40, x30x1, x20x21, x0x31, x41〉 ⊕ . . . .

The degree one piece R
(2)
1 is generated by three polynomials x20, x0x1, x

2
1. So

we consider the surjection

ϕ : k[y0, y1, y2]→ R(2)

given by y0 7→ x20, y1 7→ x0x1, y2 7→ x21. The kernel is the ideal

kerϕ = 〈y0y2 − y21〉.

We get

Y = {y0y2 − y21 = 0} ⊂ P2,

the image of the Veronese embedding F2 : P1 → Y ⊂ P2 we considered in

Lecture 5!



Counting and listing monomials of a given degree

Fix d, n. We need to count the number of monomials of x0, . . . , xn of degree d.

Proposition We have

dimk k[x0, . . . , xn]d =

(
n + d

d

)
.

Proof Several proofs are possible. A combinatorial proof is explained in the

Lecture Notes. A proof by double induction on (n, d) is left as an exercise. �

In concrete calculations, it is also useful to be able to list these monomials as

a linear list. The most common way to do so is the lexicographic ordering.

Instead of a detailed explanation, an example should suffice.

Example For n = 2 and d = 3, we have dimk k[x0, x1, x2]2 =
(
5
3

)
= 10.

A lexicographically ordered basis of k[x0, x1, x2]2 is

{x30, x20x1, x20x2, x0x21, x0x1x2, x0x22, x31, x21x2, x1x22, x32}.



Definition of the Veronese embedding

Fix d, n as before. Let N =
(
n+d
d

)
− 1.

Define the d-th Veronese map on Pn to be the projective morphism

νd : Pn −→ PN
[x0 : . . . : xn] 7→ [. . . : xI : . . .]

where the index set runs over all monomials xI = xi00 x
i1
1 · · · xinn of degree d =

i0 + · · · + in, in other words a basis of the space k[x0, . . . , xn]d.

The image of νd inside PN is called a Veronese variety.

Note: indeed νd is a projective morphism, as it is defined by homogeneous poly-

nomials of the same degree d, not all zero as the monomials include xd0, . . . , x
d
n.



Equations satisfied by the image of the Veronese map

We now want to write down equations that the image of νd satisfies.

The morphism is defined by considering all degree dmonomials xI of x0, . . . , xn.

Consider multi-indices of type (i0, . . . , in) ∈ Nn+1 with i0 + · · ·+ in = d. Note

that if for multi-indices I, J,K, L, we have I + J = K + L, then

xIxJ = xKxL.

This means that, considering variables zI on PN for all possible multi-indices

I , we get

image(νd) ⊂ V(zIzJ − zKzL) ⊂ PN

for all multi-indices I, J,K, L with I + J = K + L.

Example For the familiar case n = 1, d = 2, we have

(x0x1)
2 = (x20)(x

2
1)

which corresponds to the multi-index identity

(1, 1) + (1, 1) = (2, 0) + (0, 2).



The main result

Theorem The Veronese map is a closed embedding νd : Pn ↪→ PN . It defines

an isomorphism between Pn and its image

Image(νd) = V(〈zIzJ − zKzL : I + J = K + L〉)
=

⋂
I+J=K+L

V(zIzJ − zKzL) ⊂ PN

where we run over all multi-indices I, J,K, L of type (i0, . . . , in) ∈ Nn+1 with

i0 + · · · + in = d.

Proof, Step 1. Let Y =
⋂
I+J=K+LV(zIzJ−zKzL) ⊂ PN . The discussion

on the previous page showed that Image(νd) ⊂ Y . So indeed we can think of

νd as a morphism νd : Pn → Y .

To finish the argument, we will write down an explicit inverse morphism for νd
on Y .



The main result: construction of the inverse

Proof, Step 2. Fix J = (i0, . . . , in) ∈ Nn+1 with d− 1 = i0 + · · · + in, and

denote J` = (j0, . . . , j` + 1, . . . , jn); these indices now sum to d. Let

ϕJ : Y \ ZJ → Pn defined by [. . . : zI : . . .] 7→ [zJ0 : zJ1 : . . . : zJn]

which is a well-defined morphism away from the closed set ZJ where all zJ` = 0.

These morphisms ϕJ fit together to a morphism

ϕ : Y → PN .

Indeed for two such J, J ′, notice J` +J ′`′ = J`′+J ′` (this equals J +J ′ plus add

1 in the two slots `, `′).

Hence zJ`zJ ′`′
= zJ`′zJ ′`, and thus [zJ` : zJ`′ ] = [zJ ′` : zJ ′

`′
] and so finally

ϕJ([z]) = ϕJ ′([z]).



The main result: checking the inverse properties

Proof, Step 3. We show that νd, ϕ are inverse morphisms, finally proving

Pn ∼= Y ⊂ PN .

Notice

ϕJ ◦ νd([x]) = [xJ0 : . . . : xJn] = [x0 : . . . : xn],

as we can just rescale by 1/xJ .

Conversely, one can also check

νd ◦ ϕJ([zI ]) = [zI ].

For the somewhat intricate combinatorial argument to prove this, see Lecture

Notes. �



Rational normal curves

The d-th Veronese embedding of P1 For n = 1, d arbitrary, we get a

closed inclusion

νd : P1 ↪→ Pd

defined by [x0 : x1] 7→ [xd0 : xd−10 x1 : . . . : xd1].

The image is traditionally called the rational normal curve of degree d.

In this case, the equations can be written in the following attractive form.

νd(P1) =

{
rank

(
y0 y1 . . . yd−1
y1 y2 . . . yd

)
≤ 1

}
⊂ Pd.

Indeed, the condition that the rank of the given matrix is at most 1 is captured

by the vanishing of 2× 2 determinants

det

(
yi yj
yi+1 yj+1

)
= yiyj+1 − yjyi+1.

These are precisely the quadrics from the Theorem above.



The Veronese surface

The second Veronese embedding of P2 For n = 2, d = 2, we get a

closed inclusion

ν2 : P2 ↪→ P5

defined by [x0 : x1 : x2] 7→ [x20 : x0x1 : x0x2 : x21 : x1x2 : x22].

The image is traditionally called the Veronese surface.


