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Products in algebraic geometry

Given two algebraic varieties X and Y (say affine or projective), we would like

to define what it means to form the product X × Y of X and Y .

Reasonable requests from any kind of product:

(1) X×Y should be the same kind of object asX and Y are (affine or projective

variety).

(2) There should be projection maps X×Y → X and X×Y → Y which are

morphisms of the appropriate structures.

(3) The set of points of X × Y should be in one-to-one correspondence with

pairs (x, y) with x ∈ X and y ∈ Y .

A brief reflection shows that for X = An and Y = Am, the natural choice is

X × Y = An+m, with affine projection maps. However, this also shows

(4) We cannot require the Zariski topology on X ×Y to be the product topol-

ogy; that would have too few open sets.



Ways of forming products in algebraic geometry

There are different points of view on how to form products in algebraic geometry.

(1) Algebraic: tensor product

(2) Categorical: using the universal property of the product

(3) Geometric: via defining equations and the Segre embedding

(1) and (2) are briefly discussed in the Lecture Notes (non-examinable). We

will follow approach (3).



The product of two affine varieties

Here we take as our starting point the idea that An × Am = An+m which is

certainly very natural.

Start with general affine varieties given by equations as follows:

X = V(f1, . . . , fN) ⊂ An, fj = fj(x1, . . . , xn) ∈ k[x1, . . . , xn]

and

Y = V(g1, . . . , gM) ⊂ Am, gi = gi(y1, . . . , ym) ∈ k[y1, . . . , ym].

Definition Define the product X × Y to be

X × Y = V(f1, . . . , fN , g1, . . . , gM) ⊂ An+m

using the coordinate ring k[An+m] = k[x1, . . . , xn, y1, . . . , ym].



Checking properties of the product

For X = V(f1, . . . , fN) ⊂ An and Y = V(g1, . . . , gM) ⊂ Am, we define

X × Y = V(f1, . . . , fN , g1, . . . , gM) ⊂ An+m.

Properties:

(1) X × Y thus defined is indeed an affine variety: it is the zero-set of a finite

set of polynomials in An+m.

(2) There is a projection morphism

p1 : X × Y → An

given by p1(xi, yj) = (xi). If (x, y) ∈ X × Y , then the x coordinates

satisfy the polynomials fj and so we can consider p1 as a morphism of

affine varieties

p1 : X × Y → X.

The argument for the other projection is the same.



Checking properties of the product

For X = V(f1, . . . , fN) ⊂ An and Y = V(g1, . . . , gM) ⊂ Am, we define

X × Y = V(f1, . . . , fN , g1, . . . , gM) ⊂ An+m.

(3) The argument used to show (2) also shows that indeed the set of points of

X × Y is in one-to-one correspondence with pairs (x, y) with x ∈ X and

y ∈ Y .

Example Let

X = V(x2 − 1) ⊂ A1

and

Y = V(y2 − 4) ⊂ A1.

Then both X and Y consist of two points x = ±1, respectively y = ±2. Their

product

X × Y = V(x2 − 1, y2 − 4) ⊂ A2

consists of four points (±1,±2).



The algebra of products

A different point of view: assume X = V(I) ⊂ An and Y = V(J) ⊂ Am for

I C k[x1, . . . , xn] and J C k[y1, . . . , ym].

Consider

K = I · k[xi, yj] + J · k[xi, yj]C k[x1, . . . , xn, y1 . . . , , ym].

Then it is immediate from the definitions that

X × Y = V(I + J).

For those who know tensor products, this leads to the following statement.

Proposition The coordinate rings of X, Y and their product are related by

k[X × Y ] = k[X ]⊗k k[Y ].

Proof : See notes.



How to form the product of projective varities?

What should we do when X ⊂ Pn, Y ⊂ Pm?

In the affine case, we used An × Am = An+m.

However, in the projective case Pn × Pm does not have an obvious projective

variety structure. It certainly is not Pn+m.

We need to start by realising the set Pn × Pm as a projective variety.



The Segre map

The Segre map is the function

σn,m : Pn × Pm → P(n+1)(m+1)−1 = Pnm+n+m

([x0 : · · · : xn], [y0 : · · · : ym]) 7→ [x0y0 : x0y1 : · · · : xiyj : · · · : xnym]

The Segre variety is

Σn,m = σn,m(Pn × Pm) ⊂ Pnm+n+m

At the moment, it is best to regard σn,m as a map of sets, and Σn,m as a subset

of Pnm+n+m.



The Segre map in matrix language

One way to understand the Segre map: in the language of matrices.

Its target Pnm+n+m is the projective space of (n + 1)× (m + 1) matrices.

It maps a pair of vectors [xi], [yj] to the matrix whose (i, j) entry is zij = xiyj.

So

• all the columns are multiples of [x], with proportionality constants yj;

• all the rows are multiples of [y], with proportionality constants xi.

Its image is exactly the locus of rank-1 matrices (up to scale).



The Serge variety in P3

Example Look at the first interesting case. We have

σ1,1 : P1 × P1 → P3

mapping ([x : y], [u : v]) 7→ [xu : xv : yu : yv] or perhaps

([x : y], [u : v]) 7→
[(

xu xv

yu yv

)]
From an image point [z00 : z01 : z10 : z11], we can recover

[x : y] = [ux : uy] = [z00 : z10]

if u 6= 0, or

[x : y] = [vx : vy] = [z01 : z11]

if v 6= 0. So in all cases, we can recover [x : y].

Similarly, we can also recover [u : v].

The image of σ1,1 is defined by the equation z00z11 − z10z01 = 0 inside P3.



Properties of the Serge map

Theorem The Segre map is an injection

σn,m : Pn × Pm ↪→ P(n+1)(m+1)−1 = Pnm+n+m.

Its image is exactly the subvariety

V(zijzk` − zkjzi` : 0 ≤ i < k ≤ n, 0 ≤ j < ` ≤ m) ⊂ Pnm+n+m.

Proof Everything follows from the matrix interpretation. From an image

point we can recover both [x] and [y] as the one-dimensional column space,

respectively row space.

The stated equations simply say that a matrix is of rank 1 if and only if all its

2× 2 minors ∣∣∣∣zij zi`
zkj zk`

∣∣∣∣
vanish. �



Products of projective varieties

We can now define the projective variety Pn × Pm to be the projective sub-

variety of Pnm+n+m given by the above equations. The Theorem above shows

that its points are indeed in bijection with points of the set Pn × Pm.

Given X ⊂ Pn, Y ⊂ Pm projective varieties, we can now proceed as before:

consider

σn,m(X × Y ) ⊂ Pnm+n+m.

Proposition The above set is a projective subvariety of Pnm+n+m, whose

points are in bijection with X × Y .

Proof Say X = V(F1, . . . , FN), and Y = V(G1, . . . , GM).

The set σn,m(X × Y ) can then be written as

Σn,m ∩ V(Fk(z0j, . . . , znj), G`(zi0, . . . , zim) : all k, `, i, j) ⊂ Pnm+n+m.

As σn,m is an injection, the rest follows. �



Projective varieties from matrices

Using the language of matrices, we can begin to write down some interesting

chains of projective varieties.

Example Let PMk(3) ∼= P8 be the projective space of 3× 3 matrices over k.

Then there is a chain of subvarities

Σ2,2 ⊂ ∆ ⊂ P8.

Here

∆ = {[A] : detA = 0} ⊂ P8

is a projective cubic hypersurface, defined by the determinant polynomial.

Also Σ2,2
∼= P2 × P2 is the Segre variety in P8.

Note that ∆ ⊂ P8 is the (projective) locus of singular matrices: 3× 3 matrices

of rank at most 2. This locus contains the locus of matrices of rank 1, which is

exactly Σ2,2.


