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Products in algebraic geometry

Given two algebraic varieties X and Y (say affine or projective), we would like
to define what it means to form the product X x Y of X and Y.
Reasonable requests from any kind of product:

(1) X xY should be the same kind of object as X and Y are (affine or projective
variety).

(2) There should be projection maps X XY — X and X xY — Y which are
morphisms of the appropriate structures.

(3) The set of points of X x Y should be in one-to-one correspondence with
pairs (z,y) withx € X andy € Y.

A brief reflection shows that for X = A” and Y = A", the natural choice is
X x Y = A" with affine projection maps. However, this also shows

(4) We cannot require the Zariski topology on X X Y to be the product topol-
ogy; that would have too few open sets.



Ways of forming products in algebraic geometry

There are different points of view on how to form products in algebraic geometry:.
(1) Algebraic: tensor product

(2) Categorical: using the universal property of the product

(3) Geometric: via defining equations and the Segre embedding

(1) and (2) are briefly discussed in the Lecture Notes (non-examinable). We
will follow approach (3).



The product of two affine varieties

Here we take as our starting point the idea that A™ x A™ = A" which is
certainly very natural.

Start with general affine varieties given by equations as follows:
X =V(fi,....fn) CA", fi=fi(x1,...,2,) € K[z1,...,2)
and
Y =V(g,....,90) CA"™, gi=gi(y1,-- -, Ym) € K[y, -, Ym)-
Definition Define the product X x Y to be
XxY=V(fi,....,fn,91,...,9u) C A"

using the coordinate ring k[A"™| = k[xy, ..., T Y1, - -+, Yl



Checking properties of the product

For X =V(f1,...,fn) CA"and Y =V(g1,...,9n) C A™, we define
X ><YZV(fl,...,fN,gl,...,gM) C A"
Properties:

(1) X x Y thus defined is indeed an affine variety: it is the zero-set of a finite
set of polynomials in A",

(2) There is a projection morphism
P XxY — A"

given by pi(zi,y;) = (x;). If (x,y) € X x Y, then the = coordinates
satisfy the polynomials f; and so we can consider p; as a morphism of
affine varieties

X XY = X

The argument for the other projection is the same.



Checking properties of the product

For X =V(f1,...,fn) CA"and Y =V(g1,...,9n) C A™, we define
X><Y:V(fl,...,fN,gl,...,gM)CA”+m.

(3) The argument used to show (2) also shows that indeed the set of points of
X XY is in one-to-one correspondence with pairs (z,y) with z € X and
yecyY.

Example Let
X =V(@*-1)cAl

and
Y =V(y* —4) c A

Then both X and Y consist of two points x = +£1, respectively y = £2. Their

product
X xY =V(z* - 1,y* —4) C A?

consists of four points (1, £2).



The algebra of products

A different point of view: assume X = V(I) C A" and Y = V(J) C A" for
I <Qklzy,...,z,) and J < Elyr, ..., yn).
Consider

K=1- k[xi,yj] + Jk[a:l,yj] < k[ajl,...,ajn,yl...,,ym].
Then it is immediate from the definitions that
XxY=V({I+J).

For those who know tensor products, this leads to the following statement.

Proposition The coordinate rings of X, Y and their product are related by
kX x Y] =Ek[X]®; kY]

Proof : See notes.



How to form the product of projective varities?

What should we do when X C P*, Y C P™?
In the affine case, we used A" x A™ = A",

However, in the projective case P" x P™ does not have an obvious projective
variety structure. It certainly is not P ™.

We need to start by realising the set P x P as a projective variety:.



The Segre map

The Segre map is the function
P x P ]P(n%—l)(m%—l)—l — prmtntm

Onm

([wo - xnlsyo s -t yml) = [Zovo t @oyr -+ 1 Ty = -+ L XY
The Segre variety is
Zn,m — O'n,m(IP)n X Pm) C an—l—n—i—m

At the moment, it is best to regard o, ,,, as a map of sets, and %, ,,, as a subset
Of an—l—n—l—m.



The Segre map in matrix language

One way to understand the Segre map: in the language of matrices.
Its target P"™ "™ is the projective space of (n 4+ 1) x (m + 1) matrices.

It maps a pair of vectors [z;], [y;] to the matrix whose (¢, §) entry is z;; = x;y;.

So
e all the columns are multiples of [x], with proportionality constants y;;

e all the rows are multiples of [y, with proportionality constants x;.

[ts image is exactly the locus of rank-1 matrices (up to scale).



The Serge variety in P?

Example Look at the first interesting case. We have
o1 Pt x P! — P

mapping ([z : y], [u : v]) — |[xu : xv :yu : yv| or perhaps

ool o) | (2000

From an image point [zg0: z01: 210: 211], We can recover

[z y] = [ux : uy] = [z00: 210]
if u # 0, or

@2 y] = [va vy] = [z01: 211
if v # 0. So in all cases, we can recover [z : y].

Similarly, we can also recover |u : v].

The image of 01 is defined by the equation zppz11 — 210201 = 0 inside P3.



Properties of the Serge map

Theorem The Segre map is an injection

T P" x P™ s ]P(n—i—l)(m—i—l)—l _ prmtntm

[ts image is exactly the subvariety
V(zijzie — 21z 0 <i <k <n,0<j <l <m)CPmmm

Proof Everything follows from the matrix interpretation. From an image
point we can recover both [x] and [y] as the one-dimensional column space,
respectively row space.

The stated equations simply say that a matrix is of rank 1 if and only if all its

2 X 2 minors
Zijg il

2kj 2kt

vanish. ]



Products of projective varieties

We can now define the projective variety P" x P™ to be the projective sub-
variety of P" " ojven by the above equations. The Theorem above shows
that its points are indeed in bijection with points of the set P" x P™.

Given X C P", Y C P™ projective varieties, we can now proceed as before:
consider
O-n7m<X X Y) C an+n+m.

Proposition The above set is a projective subvariety of P" "™ whose
points are in bijection with X X Y.

Proof Say X =V(Fy,...,Fy),and Y =V(Gy,...,Gy).
The set 0y, (X % Y) can then be written as

En,m M V(Fk(zoj, Cey an), Gg(Zio, Cey Zim) - all k, f, 27]) C prmtntm

As o, 1s an injection, the rest follows. []



Projective varieties from matrices

Using the language of matrices, we can begin to write down some interesting
chains of projective varieties.

Example Let PM(3) = P® be the projective space of 3 x 3 matrices over k.
Then there is a chain of subvarities
2272 CAC PS.
Here
A ={[A]: det A =0} C P®
is a projective cubic hypersurface, defined by the determinant polynomial.
Also Y99 = P? x P? is the Segre variety in P®.

Note that A C P® is the (projective) locus of singular matrices: 3 x 3 matrices
of rank at most 2. This locus contains the locus of matrices of rank 1, which is
exactly g .



