C3.4 Algebraic Geometry Lecture 8. Grassmannians and Flag Varieties

Balázs Szendrői, University of Oxford, Michaelmas 2020

We first define the Grassmannian as a set.

Definition The Grassmannian of d-planes in k^n is

 $\mathrm{Gr}(d, n) = \{d\text{-dimensional vector subspaces } U \subset k^n\}.$

Examples

- $\text{Gr}(1, n) = \mathbb{P}(k^n) \cong \mathbb{P}^{n-1}$.
- $\text{Gr}(n-1, n) = \mathbb{P}((k^n)^*) \cong \mathbb{P}^{n-1}.$
- Projective duality more generally says

$$
Gr(d, n) \cong Gr(n - d, n).
$$

As the initial examples suggest, $Gr(d, n)$ may always have the structure of a projective variety. We will show this, and work out some equations, at least in a simple case.

The vector space k^n comes with a fixed basis $\{e_1, \ldots, e_n\}.$

Suppose that $U \subset k^n$ is a d-dimensional linear subspace. Choose a basis u_1, \ldots, u_d u_1, \ldots, u_d u_1, \ldots, u_d for it. We can arrange these as rows¹ of a $d \times n$ matrix

$$
A_U \in M_k(d, n)
$$

which has maximal rank d (as u_1, \ldots, u_d form a basis).

If we change the basis in U using a change-of-basis matrix $P \in GL(d)$, we get a new matrix

$$
B_U = PA_U \in M_k(d, n),
$$

also of rank d, that corresponds to the same subspace U.

Proposition There is a one-to-one correspondence

 $Gr(d, n) \leftrightarrow Max(d, n)/GL(d)$

where $\text{Max}(d, n) \subset M_k(d, n)$ is the subset of matrices of maximal rank d.

¹This is a correction compared to the lecture, where I had mistakenly spoken of columns.

Describing the Grassmannian by linear algebra

Proposition There is a one-to-one correspondence

 $Gr(d, n) \leftrightarrow Max(d, n)/GL(d)$

where $\text{Max}(d, n) \subset M_k(d, n)$ is the subset of matrices of maximal rank d.

Example When $d = 1$, this says

 $Gr(1, n) \leftrightarrow Max(1, n)/GL(1).$

Here $Max(1, n)$ is row vectors except the zero vector, so

 $\text{Max}(1, n) = k^n \setminus 0.$

Also

$$
GL(1) = k^*.
$$

We recover

$$
\mathbb{P}^{n-1}\leftrightarrow (k^n\setminus 0)/k^*.
$$

Suppose we want to define a map

$$
\operatorname{Gr}(d,n)\to \mathbb{P}^N
$$

to some projective space. What should our coordinate functions be? We need to define functions on $Max(d, n)$ which are independent of the particular vector representative chosen, i.e. which are invariant under the action of the change of basis group $GL(d)$.

Answer: consider $d \times d$ minors (determinants of $d \times d$ submatrices) of the matrix A_U attached to the subspace U .

We need to choose d columns among the n columns in total, so there are $\binom{n}{d}$ $\binom{n}{d}$ such minors.

The collection of minors is invariant under the group action: if we left-multiply A_U by a $d \times d$ matrix P, all minors change by det P, so the projective point they describe does not change.

Also not all minors are zero by the maximal rank assumption.

Theorem Associating to a subspace U the collection of $d \times d$ minors of its representing matrix A_U gives a closed embedding

$$
Gr(d, n) \hookrightarrow \mathbb{P}^{\binom{n}{d}-1},
$$

whose image is a projective subvariety of $\mathbb{P}^{\binom{n}{d}-1}$. In particular, $\mathrm{Gr}(d,n)$ is projective.

We will not discuss the general proof. Instead, we will look at the simplest nontrivial example.

If $n \leq 3$, all Grassmannians are either points or projective spaces. So the first interesting case is when $n = 4$ and $d = 2$.

Plücker relation(s)

Example Let $d = 2, n = 4$. The Plücker map is

$$
Gr(2,4) \to \mathbb{P}^5
$$

given in matrix form by

 $\left[\begin{pmatrix} a & b & c & d \\ e & f & g & h \end{pmatrix}\right] \mapsto [af - be : ag - ce : ah - de : bg - cf : bh - df : ch - dg].$

Proposition The Plücker map is an embedding

 $\operatorname{Gr}(2,4) \hookrightarrow \mathbb{P}^5$

with image

$$
\mathbb{V}(y_0y_5 - y_1y_4 + y_2y_3) \subset \mathbb{P}^5.
$$

Proof It is easy to check that the image of the Plücker map satisfies this quadratic relation, the **Plücker relation**. To complete the proof, we consider affine charts.

The Plücker map of $Gr(2, 4)$ has image contained in

$$
\mathbb{V}(y_0y_5 - y_1y_4 + y_2y_3) \subset \mathbb{P}^5.
$$

Let us consider the affine open set

$$
\mathrm{Gr}(2,4)_0 \subset \mathbb{V}(y_0y_5 - y_1y_4 + y_2y_3) \cap \{y_0 \neq 0\} \subset \{y_0 \neq 0\} = \mathbb{A}^5 \subset \mathbb{P}^5.
$$

In the matrix coordinates used before, this means $af - be \neq 0$. So for the corresponding 2-dimensional subspace $U \subset k^4$, the first two columns of the matrix A_U are linearly independent.

This means that we can pre-multiply the matrix A_U by a unique change-of-basis matrix P so that the first two columns become the standard basis vectors of a 2-dimensional vector space.

We get an equivalence of matrices

$$
\left(\begin{array}{ccc}a&b&c&d\\e&f&g&h\end{array}\right)\sim\left(\begin{array}{ccc}1&0&C&D\\0&1&G&H\end{array}\right).
$$

For $U \in \text{Gr}(2, 4)_0$, we have the representing matrix

$$
\left(\begin{array}{rrr}1 & 0 & C & D \\ 0 & 1 & G & H\end{array}\right)
$$

.

We can then read off the affine Plücker coordinates of this subspace U as

$$
U \mapsto (G, H, -C, -D, CH - DG).
$$

We deduce the following:

• The affine Plücker relation

$$
y_5 - y_1 y_4 + y_2 y_3 = 0
$$

indeed holds.

- There are no further equations involving the Plücker coordinates.
- In this open set, we can recover the subspace U uniquely from its Plücker image.

An affine open set in the Plücker embedding

Considering all such affine charts, we deduce that over the whole Grassmannian $Gr(2, 4)$, the Plücker map is an embedding, and its image equals

$$
\mathbb{V}(y_0y_5 - y_1y_4 + y_2y_3) \subset \mathbb{P}^5.
$$

 \Box

From the preceding argument, we also deduce

Corollary The affine open set $Gr(2, 4)_0$ is isomorphic to affine four-space \mathbb{A}^4 . **Proof** The projection $\mathbb{A}^5 \to \mathbb{A}^4$ to the first four coordinates, and the inclusion $\mathbb{A}^4 \to \mathbb{A}^5$ defined by

$$
(x_1, x_2, x_3, x_4) \rightarrow (x_1, x_2, -x_3, -x_4, x_2x_3 - x_1x_4),
$$

give inverse isomorphisms between $\text{Gr}(2, 4)_0 \subset \mathbb{A}^5$ and \mathbb{A}^4 . **Theorem** The Grassmannian $Gr(d, n)$ is an irreducible variety.

We need a Lemma.

Lemma Let $GL_n(k) \subset \mathbb{A}^{n^2}$ be the space of invertible linear matrices inside the affine space of all $n \times n$ matrices over k. Then $GL_n(k)$ is an irreducible affine variety.

Proof Let $\Delta \in k[\mathbb{A}^{n^2}]$ be the determinant polynomial on the space of matrices. Then

$$
GL_n(k)=D_{\Delta},
$$

the principal open subset defined by the non-vanishing of Δ . The first statement is then a general instance of the phenomenon that a basic open set in an affine variety is affine. See Lecture 12 later!

Also $GL_n(k) = D_\Delta \subset \mathbb{A}^{n^2}$ is dense, as affine space \mathbb{A}^{n^2} is irreducible. A dense subset of an irreducible variety must itself be irreducible. This concludes the \Box

Proof of Theorem We define a surjective polynomial map

 $\varphi: GL_n(k) \to Gr(d, n).$

A surjective image of an irreducible variety must be irreducible, so the existence of the map φ proves the irreducibility of $\mathrm{Gr}(d,n)$.

Inside the vector space k^n with fixed basis $\{e_1, \ldots, e_n\}$, let $W = \langle e_1, \ldots, e_d \rangle$ be a reference d-dimensional subspace.

Suppose that $V \subset k^n$ is an arbitrary d-dimensional linear subspace. Choose a basis v_1, \ldots, v_d for it, and complete to a basis v_1, \ldots, v_n of k^n .

Then $A \in GL_n(k)$ with columns v_i will map W to V. This defines the surjective polynomial map φ , thus concluding the proof.

You may have noticed that this proof was a little bit cheating: the morphism

$$
\varphi\colon\mathrm{GL}_n(k)\to\mathrm{Gr}(d,n)
$$

is not a morphism of affine varieties, nor a morphism of projective varieties. We will fill in the gap in Lecture 11, where we will discuss morphisms of quasiprojective varieties.

A generalization: fix integers $0 < d_1 < \ldots < d_s < n$. A flag of type (d_1, \ldots, d_s) is a nested sequence of subspaces

$$
V_1 \subset \cdots \subset V_s \subset k^n, \dim V_i = d_i.
$$

The **Flag variety** $Flag(d_1, \ldots, d_s, n)$ is

$$
\operatorname{Flag}(d_1,\ldots,d_s,n)=\{\text{flags }V_1\subset\cdots\subset V_s\subset k^n,\dim V_i=d_i\}.
$$

We have maps

$$
Flag(d_1, ..., d_s, n) \rightarrow Gr(d_i, n)
$$

defined by $(V_1 \subset \cdots \subset V_s \subset k^n) \mapsto (V_i \subset k^n)$.

Using a combination of Plücker maps, we then get

$$
\mathrm{Flag}(d_1,\ldots,d_s,n)\hookrightarrow \mathbb{P}^{\binom{n}{d_1}-1}\times\cdots\times\mathbb{P}^{\binom{n}{d_s}-1},
$$

which can be used to show that $Flag(d_1, \ldots, d_s, n)$ also has the structure of a projective variety. A similar argument to the one above shows that in fact $Flag(d_1, \ldots, d_s, n)$ is irreducible as well.

Example Suppose that $\{v_1, \ldots, v_n\}$ is an (ordered) basis of k^n . Then we get a (full) flag

$$
\langle v_1 \rangle \subset \langle v_1, v_2 \rangle \subset \ldots \subset \langle v_1, \ldots, v_{n-1} \rangle \subset k^n.
$$

This gives a point

$$
[v_1,\ldots,v_n]\in \mathrm{Flag}(1,\ldots,n-1,n)
$$

of the full flag variety of $kⁿ$. This allows us to handle things like choice of basis in a more invariant, and geometric, way.

The first non-trivial case is $Flag(1, 2, 3)$, parametrising full flags in a 3-dimensional vector space. This can be characterised as follows:

$$
\mathop{\rm Flag}(1,2,3)=\{(l,H)\colon l\subset H\}\subset \mathbb{P}(k^3)\times \mathbb{P}(((k^3)^*)\cong \mathbb{P}^2\times \mathbb{P}^2.
$$

Here $l \subset k^3$ and $H \subset k^3$ are lines, respectively hyperplanes, through the origin. Combining with the Serge embedding, we see that there is a chain of embeddings

 $\text{Flag}(1, 2, 3) \hookrightarrow \mathbb{P}^2 \times \mathbb{P}^2 \hookrightarrow \mathbb{P}^8.$