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The definition of the Grassmannian

We first define the Grassmannian as a set.

Definition The Grassmannian of d-planes in kn is

Gr(d, n) = {d-dimensional vector subspaces U ⊂ kn}.

Examples

• Gr(1, n) = P(kn) ∼= Pn−1.

• Gr(n− 1, n) = P((kn)∗) ∼= Pn−1.

• Projective duality more generally says

Gr(d, n) ∼= Gr(n− d, n).

As the initial examples suggest, Gr(d, n) may always have the structure of a

projective variety. We will show this, and work out some equations, at least in

a simple case.



Describing the Grassmannian by linear algebra

The vector space kn comes with a fixed basis {e1, . . . , en}.
Suppose that U ⊂ kn is a d-dimensional linear subspace. Choose a basis

u1, . . . , ud for it. We can arrange these as rows1 of a d× n matrix

AU ∈Mk(d, n)

which has maximal rank d (as u1, . . . , ud form a basis).

If we change the basis in U using a change-of-basis matrix P ∈ GL(d), we get

a new matrix

BU = PAU ∈Mk(d, n),

also of rank d, that corresponds to the same subspace U .

Proposition There is a one-to-one correspondence

Gr(d, n)↔ Max(d, n)/GL(d)

where Max(d, n) ⊂Mk(d, n) is the subset of matrices of maximal rank d.
1This is a correction compared to the lecture, where I had mistakenly spoken of columns.



Describing the Grassmannian by linear algebra

Proposition There is a one-to-one correspondence

Gr(d, n)↔ Max(d, n)/GL(d)

where Max(d, n) ⊂Mk(d, n) is the subset of matrices of maximal rank d.

Example When d = 1, this says

Gr(1, n)↔ Max(1, n)/GL(1).

Here Max(1, n) is row vectors except the zero vector, so

Max(1, n) = kn \ 0.

Also

GL(1) = k∗.

We recover

Pn−1 ↔ (kn \ 0)/k∗.



Coordinates on the Grassmannian

Suppose we want to define a map

Gr(d, n)→ PN

to some projective space. What should our coordinate functions be?

We need to define functions on Max(d, n) which are independent of the particu-

lar vector representative chosen, i.e. which are invariant under the action

of the change of basis group GL(d).

Answer: consider d × d minors (determinants of d × d submatrices)

of the matrix AU attached to the subspace U .

We need to choose d columns among the n columns in total, so there are
(
n
d

)
such minors.

The collection of minors is invariant under the group action: if we left-multiply

AU by a d × d matrix P , all minors change by detP , so the projective point

they describe does not change.

Also not all minors are zero by the maximal rank assumption.



The Plücker embedding

Theorem Associating to a subspace U the collection of d × d minors of its

representing matrix AU gives a closed embedding

Gr(d, n) ↪→ P(nd)−1,

whose image is a projective subvariety of P(nd)−1. In particular, Gr(d, n) is

projective.

We will not discuss the general proof. Instead, we will look at the simplest

nontrivial example.

If n ≤ 3, all Grassmannians are either points or projective spaces. So the first

interesting case is when n = 4 and d = 2.



Plücker relation(s)

Example Let d = 2, n = 4. The Plücker map is

Gr(2, 4)→ P5

given in matrix form by[(
a b c d

e f g h

)]
7→ [af − be : ag− ce : ah−de : bg− cf : bh−df : ch−dg].

Proposition The Plücker map is an embedding

Gr(2, 4) ↪→ P5

with image

V(y0y5 − y1y4 + y2y3) ⊂ P5.

Proof It is easy to check that the image of the Plücker map satisfies this

quadratic relation, the Plücker relation. To complete the proof, we consider

affine charts.



An affine open set in the Plücker embedding

The Plücker map of Gr(2, 4) has image contained in

V(y0y5 − y1y4 + y2y3) ⊂ P5.

Let us consider the affine open set

Gr(2, 4)0 ⊂ V(y0y5 − y1y4 + y2y3) ∩ {y0 6= 0} ⊂ {y0 6= 0} = A5 ⊂ P5.

In the matrix coordinates used before, this means af − be 6= 0. So for the

corresponding 2-dimensional subspace U ⊂ k4, the first two columns of the

matrix AU are linearly independent.

This means that we can pre-multiply the matrix AU by a unique change-of-basis

matrix P so that the first two columns become the standard basis vectors of a

2-dimensional vector space.

We get an equivalence of matrices(
a b c d

e f g h

)
∼

(
1 0 C D

0 1 G H

)
.



An affine open set in the Plücker embedding

For U ∈ Gr(2, 4)0, we have the representing matrix(
1 0 C D

0 1 G H

)
.

We can then read off the affine Plücker coordinates of this subspace U as

U 7→ (G,H,−C,−D,CH −DG).

We deduce the following:

• The affine Plücker relation

y5 − y1y4 + y2y3 = 0

indeed holds.

• There are no further equations involving the Plücker coordinates.

• In this open set, we can recover the subspace U uniquely from its Plücker

image.



An affine open set in the Plücker embedding

Considering all such affine charts, we deduce that over the whole Grassmannian

Gr(2, 4), the Plücker map is an embedding, and its image equals

V(y0y5 − y1y4 + y2y3) ⊂ P5.

�

From the preceding argument, we also deduce

Corollary The affine open set Gr(2, 4)0 is isomorphic to affine four-space A4.

Proof The projection A5 → A4 to the first four coordinates, and the inclusion

A4 → A5 defined by

(x1, x2, x3, x4)→ (x1, x2,−x3,−x4, x2x3 − x1x4),

give inverse isomorphisms between Gr(2, 4)0 ⊂ A5 and A4. �



Irreducibility

Theorem The Grassmannian Gr(d, n) is an irreducible variety.

We need a Lemma.

Lemma Let GLn(k) ⊂ An2 be the space of invertible linear matrices inside

the affine space of all n × n matrices over k. Then GLn(k) is an irreducible

affine variety.

Proof Let ∆ ∈ k[An2] be the determinant polynomial on the space of matrices.

Then

GLn(k) = D∆,

the principal open subset defined by the non-vanishing of ∆. The first statement

is then a general instance of the phenomenon that a basic open set in an affine

variety is affine. See Lecture 12 later!

Also GLn(k) = D∆ ⊂ An2 is dense, as affine space An2 is irreducible. A dense

subset of an irreducible variety must itself be irreducible. This concludes the

proof. �



Irreducibility: the proof

Proof of Theorem We define a surjective polynomial map

ϕ : GLn(k)→ Gr(d, n).

A surjective image of an irreducible variety must be irreducible, so the existence

of the map ϕ proves the irreducibility of Gr(d, n).

Inside the vector space kn with fixed basis {e1, . . . , en}, let W = 〈e1, . . . , ed〉
be a reference d-dimensional subspace.

Suppose that V ⊂ kn is an arbitrary d-dimensional linear subspace. Choose a

basis v1, . . . , vd for it, and complete to a basis v1, . . . , vn of kn.

Then A ∈ GLn(k) with columns vi will map W to V . This defines the surjective

polynomial map ϕ, thus concluding the proof. �



Irreducibility: a comment

You may have noticed that this proof was a little bit cheating: the morphism

ϕ : GLn(k)→ Gr(d, n)

is not a morphism of affine varieties, nor a morphism of projective varieties.

We will fill in the gap in Lecture 11, where we will discuss morphisms of quasi-

projective varieties.



Flag Varieties

A generalization: fix integers 0 < d1 < . . . < ds < n. A flag of type

(d1, . . . , ds) is a nested sequence of subspaces

V1 ⊂ · · · ⊂ Vs ⊂ kn, dimVi = di.

The Flag variety Flag(d1, . . . , ds, n) is

Flag(d1, . . . , ds, n) = {flags V1 ⊂ · · · ⊂ Vs ⊂ kn, dimVi = di}.
We have maps

Flag(d1, . . . , ds, n)→ Gr(di, n)

defined by (V1 ⊂ · · · ⊂ Vs ⊂ kn) 7→ (Vi ⊂ kn).

Using a combination of Plücker maps, we then get

Flag(d1, . . . , ds, n) ↪→ P( n
d1

)−1 × · · · × P( n
ds)−1,

which can be used to show that Flag(d1, . . . , ds, n) also has the structure of

a projective variety. A similar argument to the one above shows that in fact

Flag(d1, . . . , ds, n) is irreducible as well.



Flag Varieties: an example

Example Suppose that {v1, . . . , vn} is an (ordered) basis of kn. Then we get

a (full) flag

〈v1〉 ⊂ 〈v1, v2〉 ⊂ . . . ⊂ 〈v1, . . . , vn−1〉 ⊂ kn.

This gives a point

[v1, . . . , vn] ∈ Flag(1, . . . , n− 1, n)

of the full flag variety of kn. This allows us to handle things like choice of

basis in a more invariant, and geometric, way.



Flag Varieties: another example

The first non-trivial case is Flag(1, 2, 3), parametrising full flags in a 3-dimensional

vector space. This can be characterised as follows:

Flag(1, 2, 3) = {(l, H) : l ⊂ H} ⊂ P(k3)× P(((k3)∗) ∼= P2 × P2.

Here l ⊂ k3 and H ⊂ k3 are lines, respectively hyperplanes, through the origin.

Combining with the Serge embedding, we see that there is a chain of embeddings

Flag(1, 2, 3) ↪→ P2 × P2 ↪→ P8.


