C3.4 Algebraic Geometry Lecture 9. Dimension theory

Balázs Szendrői, University of Oxford, Michaelmas 2020

Let X be a variety (affine or projective). A **chain of length** m means a strict chain of inclusions

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_m \subset X,$$

where each $X_i \subset X$ is an **irreducible** subvariety. For example, one can start with $X_0 = \{p\}$ a point of X. If X is irreducible, then one can end with $X_m = X$.

Definition

- The local dimension $\dim_p X$ of X at a point $p \in X$ is the maximum over all lengths of chains starting with $X_0 = \{p\}$.
- The **dimension** of X is the maximum of the lengths of all chains,

$$\dim X = \max_{m} \left(\exists \operatorname{chain} X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_m \right) = \max_{p \in X} \dim_p X.$$

Say X has **pure dimension** if the $\dim_p X$ are equal for all $p \in X$.

Example 1 The chain $\mathbb{A}^0 = \{0\} = \mathbb{V}(x_1, \dots, x_n) \subset \mathbb{A}^1 = \mathbb{V}(x_2, \dots, x_n) \subset \cdots \subset \mathbb{A}^{n-1} = \mathbb{V}(x_n) \subset \mathbb{A}^n$ shows dim $\mathbb{A}^n \ge n$.

Example 2 Similarly, dim $\mathbb{P}^n \ge n$.

Fact (to be discussed later) dim $\mathbb{A}^n = \dim \mathbb{P}^n = n$, both varieties being of pure dimension.

Example 3 Consider $X = \mathbb{V}(xy, xz) \subset \mathbb{A}^3$.

As we saw earlier, X is a union of the (y, z)-plane and the x-axis.

We have $\dim_p X = 2$ at points p in the plane, and $\dim_p X = 1$ at other points.

Example 4 An (affine or projective) variety X of dimension dim X = 0 is a finite set of points.

Proof Let $p \in X$ and X_0 an irreducible component of X containing p. Suppose $X_0 \neq \{p\}$. Then we have the chain $\{p\} \subsetneq X_0$ in X, so we would have to have dim $X \ge \dim_p X \ge 1$.

So each of the finitely many irreducible components of X must be a point.

Let A be a ring (commutative with unit). A **chain of length** m means a strict chain of inclusions

$$\wp_0 \supsetneq \wp_1 \supsetneq \cdots \supsetneq \wp_{m-1} \supsetneq \wp_m$$

where each $\wp_i \triangleleft A$ is a prime ideal.

One can start with a maximal ideal $\wp_0 = \mathfrak{m} \subset A$. If A is an integral domain, one can end with $\wp_m = \{0\}$.

Fact For A Noetherian, the descending chain condition holds for prime ideals, i.e. there are no chains of infinite length.

Definition The **height** $ht(\wp)$ of a prime ideal $\wp \triangleleft A$ is the maximal length of a chain with $\wp_0 = \wp$:

$$ht(\wp) = \max_{m} (\exists \text{ chain } \wp \supseteq \wp_{1} \supseteq \cdots \supseteq \wp_{m-1} \supseteq \wp_{m}).$$

Definition The **Krull dimension** of A is the maximum height of all maximal ideals $\mathfrak{m} \triangleleft A$ (equivalently, prime ideals):

 $\dim A = \max \operatorname{ht}(\mathfrak{m} \colon \mathfrak{m} \triangleleft A \text{ maximal}).$

Examples

- 1. A field A = k has dim A = 0.
- 2. If A is a PID but not a field, then dim A = 1.
- 3. The chain $(x_1, \ldots, x_n) \supset (x_1, \ldots, x_{n-1}) \supset \cdots \supset (x_1) \supset \{0\}$ shows dim $k[x_1, \ldots, x_n] \ge n$.

The following results are proved in commutative algebra courses.

Theorem (Krull's principal ideal theorem, Hauptidealsatz) For any Noetherian ring A, if $f \in A$ is neither a zero-divisor nor a unit, then

$$\operatorname{ht}((f)) = 1.$$

Theorem (Krull's height theorem) For any Noetherian ring A, and $\langle f_1, \ldots, f_m \rangle \neq A$, $\operatorname{ht}(\langle f_1, \ldots, f_m \rangle) \leq m$.

So the height $ht(\wp)$ is at most the number of generators of \wp .

Definition Consider a field extension K/k. Then the transcendence degree $\operatorname{trdeg}_k K$ of K/k is the maximum number of elements of K which are algebraically independent over k (i.e. they satisfy no polynomial relations with coefficients in k).

A key result in field theory says that $\operatorname{trdeg}_k K = m$ if and only if there are m algebraically independent elements $\alpha_1, \ldots, \alpha_m \in K$ with $K/k(\alpha_1, \ldots, \alpha_m)$ a finite extension.

Theorem Let A be a finitely generated k-algebra which is an integral domain. Let Frac(A) be the field of fractions of A. Then

 $\dim A = \operatorname{trdeg}_k \operatorname{Frac}(A).$

Our last result from commutative algebra is the following.

Theorem (additivity for prime ideals) Let A be a finitely generated k-algebra which is an integral domain. Then for every prime ideal $\wp \triangleleft A$, we have

$$\operatorname{ht}(\wp) + \dim A/\wp = \dim A.$$

Compare this with the following, much easier result.

Proposition For any Noetherian ring A, let $f \in A$, neither a zero-divisor nor a unit. Then

 $\dim A/(f) \le \dim A - 1,$

but equality frequently fails.

Proof Lift a chain of prime ideals from A/(f) to A, and use that ht((f)) = 1 by the Hauptidealsatz.

A key deduction

Corollary We have dim $k[x_1, \ldots, x_n] = n$.

Proof 1 We know the maximal ideals are $\langle x_1 - a_1, \ldots, x_n - a_n \rangle$, so they have height at most n by Krull's height theorem. So dim $k[x_1, \ldots, x_n] \leq n$. On the other hand, we noted the easy direction dim $k[x_1, \ldots, x_n] \geq n$ above.

Proof 2 We have

$$\dim k[x_1,\ldots,x_n] = \operatorname{trdeg}_k k(x_1,\ldots,x_n).$$

But this latter quantity is clearly n, using the key result in field theory mentioned before.

Theorem If $X \subset \mathbb{A}^n$ is an affine variety, then the (geometric) dimension of X and the (Krull) dimension of its coordinate ring agree:

$$\dim X = \dim k[X].$$

Proof By Hilbert's Nullstellensatz, there is an inclusion-reversing bijection between irreducible subvarieties $X_j \subset X$ and prime ideals $\wp_j \triangleleft k[X]$, given by $\wp_j = \mathbb{I}(X_j)$ and $X_j = \mathbb{V}(\wp_j)$. This gives a bijection between maximal chains.

Similarly,

Theorem For a projective variety $X \subset \mathbb{P}^n$, dim X equals the maximal length of chains of homogeneous prime ideals of its projective coordinate ring S(X)which do not contain the irrelevant ideal (x_0, \ldots, x_n) . In particular, dim $X = \dim \hat{X} - 1$, where $\hat{X} \subset \mathbb{A}^{n+1}$ is the affine cone of X. **Proposition** If X, Y are isomorphic affine, respectively projective varieties, then they have the same dimension.

Proof This is clear from the geometric definition: isomorphisms map maximal chains of irreducible subvarieties to each other.

Caveat Note if $X \cong Y$ are **affine** varieties, then $k[X] \cong k[Y]$ and so we can also see immediately that Krull dimensions coincide.

However, this is **not** true in the projective case; an isomorphism of projective varieties does not induce an isomorphism between homogeneous coordinate rings!

Proposition If X, Y are affine, respectively projective varieties, then

 $\dim(X \times Y) = \dim X + \dim Y.$

Proof is sketched in the Lecture Notes.

Proposition If $X \subset \mathbb{A}^n$ is an irreducible affine variety, and $\overline{X} \subset \mathbb{P}^n$ its projective closure, then

 $\dim X = \dim \overline{X}.$

Proof One direction dim $X \leq \dim \overline{X}$ is clear: given a chain of irreducible subvarieties in X, we can take their projective closure to get a chain of irreducible subvarieties of \overline{X} . The proof of the full result is omitted.

Corollary If $X \subset \mathbb{P}^n$ is an irreducible projective variety, and $U \subset \mathbb{A}^n$ an affine open subset of X, then

 $\dim X = \dim U.$

Linear subspaces

A linear subspace of $\mathbb{P}^n = \mathbb{P}(k^{n+1})$ is a projectivisation $L = \mathbb{P}(U)$ of a vector subspace $U \subset k^{n+1}$.

If $\dim_k U = m + 1$ in the sense of linear algebra, then

$$U = \langle v_0, \ldots, v_m \rangle \subset V.$$

Changing basis in k^{n+1} so that these vectors belong to the basis, we can write

$$L = \mathbb{P}U = \{x_{m+1} = x_{m+2} = \ldots = x_n = 0\} \subset \mathbb{P}^n$$

So the homogeneous ideal defining L is

$$\mathbb{I}_L^h = \langle x_{m+1}, x_{m+2}, \dots, x_n \rangle \lhd k[x_0, \dots, x_n].$$

So its homogeneous coordinate ring is

$$S(L) \cong k[x_0,\ldots,x_m]$$

and so

$$\dim L = \dim k[L] - 1 = m$$

the projective (linear) dimension of L.

Theorem For an irreducible affine variety $X \subset \mathbb{A}^n$, we have dim X = n - 1 if and only if

$$X = \mathbb{V}(f) \subset \mathbb{A}^n$$

for an irreducible $f \in R = k[x_1, \ldots, x_n]$.

The analogous result also holds for $X \subset \mathbb{P}^n$ an irreducible projective variety and f homogeneous in $k[x_0, \ldots, x_n]$.

Proof (\Rightarrow) : dim $X = n - 1 \Rightarrow \mathbb{I}(X) \neq (0) \Rightarrow \exists f \neq 0 \in \mathbb{I}(X).$

Since $\mathbb{I}(X)$ is prime, it must contain an irreducible factor of the factorization of f. So we can assume that f is irreducible, hence prime, in the UFD R. Then $X \subset \mathbb{V}(f) \subsetneq \mathbb{A}^n$ is a chain of irreducibles, dim X = n - 1 and dim $\mathbb{A}^n = n$, thus we must have $X = \mathbb{V}(f)$.

(\Leftarrow): As f is irreducible, $\wp = \langle f \rangle$ is a prime ideal. By the Hauptidealsatz, $ht(\wp) = 1$. Now use the Theorem on additivity for prime ideals.

Such (affine or projective) varieties are called **hypersurfaces**.

Example 1 Let $f \in k[x_0, x_1, x_2]$ be a non-constant homogeneous polynomial of degree d. Let

$$C=\mathbb{V}(f)\subset\mathbb{P}^2$$

Then we have dim C = 1 by the Hauptidealsatz. Indeed, $C \subset \mathbb{P}^2$ is a **plane curve**, a hypersurface in \mathbb{P}^2 .

Example 2 Consider the Segre embedding $\sigma_{1,1} \colon \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$. Its image is given by

$$\sigma_{1,1}(\mathbb{P}^1 \times \mathbb{P}^1) \cong \mathbb{V}(x_0 x_3 - x_1 x_2) \subset \mathbb{P}^3.$$

This is a hypersurface of dimension $2 = 1 + 1 = \dim \mathbb{P}^1 + \dim \mathbb{P}^1$.

Example 3 Consider the Veronese embedding $\nu_3 \colon \mathbb{P}^1 \to \mathbb{P}^3$. The image is given by

$$X = \nu_3(\mathbb{P}^1) \cong \mathbb{V}(x_0 x_2 - x_1^2, x_1 x_3 - x_2^2, x_0 x_3 - x_1 x_2) \subset \mathbb{P}^3.$$

Consider also

$$X \subset Y = \mathbb{V}(x_0 x_3 - x_1 x_2) \subset \mathbb{P}^3.$$

Then we have

- dim $\mathbb{P}^1 = 1$.
- dim $\nu_3(\mathbb{P}^1) = 1$, as ν_3 is an isomorphism onto its image.

• dim $\mathbb{P}^3 = 3$.

- dim Y = 2, by the Hauptidealsatz. Y is an irreducible hypersurface.
- dim Y dim X = 1, even though $X \subset Y$ is given by two further equations.

Recall that inside the projective space $\mathbb{P}M_k(3) \cong \mathbb{P}^8$ of 3×3 matrices over k, we found in Lecture 7 a chain of subvarities

$$\Sigma_{2,2} \subset \Delta \subset \mathbb{P}^8,$$

where $\Delta = \{[A]: \det A = 0\} \subset \mathbb{P}^8$ is a projective cubic hypersurface, defined by the determinant polynomial, and $\Sigma_{2,2} \cong \mathbb{P}^2 \times \mathbb{P}^2$ is the Segre variety in \mathbb{P}^8 . In this chain, we have dim $\mathbb{P}^8 = 8$, so dim $\Delta = 7$ as it is a hypersurface. Also dim $\Sigma_{2,2} = \dim \mathbb{P}^2 \times \mathbb{P}^2 = 2 + 2 = 4$. So, marking dimensions, the chain becomes

$$\Sigma_{2,2}^4 \subset \Delta^7 \subset \mathbb{P}^8.$$

Recall

$$\operatorname{Gr}(2,4) \cong \mathbb{V}(y_0y_5 - y_1y_4 + y_2y_3) \hookrightarrow \mathbb{P}^5.$$

This being a hypersurface, we get $\dim \operatorname{Gr}(2,4) = 4$.

Note that this is compatible with the fact that we found an affine open set $U_0 \cong \mathbb{A}^4 \subset \operatorname{Gr}(2,4).$

Proposition In general, we have

$$\dim \operatorname{Gr}(d, n) = d(n - d).$$

Sketch proof The argument given in Lecture 8 generalises to show that for arbitrary (d, n), there is an affine open set

$$U_0 \cong \operatorname{Mat}_k(d, n-d) \cong \mathbb{A}^{d(n-d)} \subset \operatorname{Gr}(d, n).$$

As Gr(d, n) is irreducible, its dimension agrees with any of its affine open sets, so we deduce the statement.