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Chains 1n varieties and dimension

Let X be a variety (affine or projective). A chain of length m means a strict
chain of inclusions

D+4XCXCXyC---CX,, CX,

where each X; C X is an irreducible subvariety.
For example, one can start with Xy = {p} a point of X.
If X is irreducible, then one can end with X,, = X.

Definition

e The local dimension dim, X of X at a point p € X is the maximum
over all lengths of chains starting with Xy = {p}.

e The dimension of X is the maximum of the lengths of all chains,

dim X = max (dchain X C X7 C Xo C--- C X,;,) = max dim,, X.
m pe

Say X has pure dimension if the dim, X are equal for all p € X.



Some elementary examples

Example 1 The chain A = {0} = V(xy,...,2,) C Al =V(29,...,2,) C
- C A" =V(x,) C A" shows dim A" > n.

Example 2 Similarly, dim P" > n.

Fact (to be discussed later) dim A" = dimP" = n, both varieties being of
pure dimension.

Example 3 Consider X = V(zy, x2) C A,
As we saw earlier, X is a union of the (y, z)-plane and the z-axis.
We have dim, X = 2 at points p in the plane, and dim, X = 1 at other points.

Example 4 An (affine or projective) variety X of dimension dim X = 0 is a
finite set of points.

Proof Let p € X and X an irreducible component of X containing p.
Suppose Xy # {p}. Then we have the chain {p} C X in X, so we would have
to have dim X > dim, X > 1.

So each of the finitely many irreducible components of X must be a point.



Chains in commutative algebra

Let A be a ring (commutative with unit). A chain of length m means a
strict chain of inclusions

P02 P12 2 Pm-1 2 Pm

where each @; <1 A is a prime ideal.
One can start with a maximal ideal po = m C A. If A is an integral domain,
one can end with g, = {0}.

Fact For A Noetherian, the descending chain condition holds for prime ideals,
i.e. there are no chains of infinite length.

Definition The height ht(p) of a prime ideal p <1 A is the maximal length
of a chain with @y = ¢:

ht(p) = max (3 chain © 2 01 2 -+ 2 P12 Pm).



Dimension in commutative algebra

Definition The Krull dimension of A is the maximum height of all max-
imal ideals m <1 A (equivalently, prime ideals):

dim A = maxht(m: m < A maximal).
Examples
1. A field A = k has dim A = 0.
2. If A is a PID but not a field, then dim A = 1.

3. The chain (z1,...,2,) D (x1,...,25-1) D -+ D (x1) D {0} shows
dim k[z1, ..., 2, > n.



Some key results from commutative algebra

The following results are proved in commutative algebra courses.

Theorem (Krull’s principal ideal theorem, Hauptidealsatz) For
any Noetherian ring A, if f € A is neither a zero-divisor nor a unit, then

ht((f)) = 1.

Theorem (Krull’s height theorem) For any Noetherian ring A, and

(i fm) # A,
Wt ((f1,. .., fn)) < M.

So the height ht(gp) is at most the number of generators of p.



Dimension and transcendence degree

Definition Consider a field extension K/k. Then the transcendence de-
gree trdeg, K of K/k is the maximum number of elements of K which are
algebraically independent over k (i.e. they satisfy no polynomial relations with
coefficients in k).

A key result in field theory says that trdeg, /' = m if and only if there are m
algebraically independent elements oy, ..., a, € K with K/k(aq,...,qn) a
finite extension.

Theorem Let A be a finitely generated k-algebra which is an integral domain.
Let Frac(A) be the field of fractions of A. Then

dim A = trdeg; Frac(A).



Additivity for prime ideals

Our last result from commutative algebra is the following.

Theorem (additivity for prime ideals) Let A be a finitely generated
k-algebra which is an integral domain. Then for every prime ideal p <1 A, we

have
ht(p) + dim A/p = dim A.

Compare this with the following, much easier result.

Proposition For any Noetherian ring A, let f € A, neither a zero-divisor nor
a unit. Then

dimA/(f) < dimA — 1,
but equality frequently fails.

Proof Lift a chain of prime ideals from A/(f) to A, and use that ht((f)) =1
by the Hauptidealsatz. [



A key deduction

Corollary We have dim k[zy, ..., z,] = n.

Proof 1 We know the maximal ideals are (x1 — a1,...,2, — a,), so they
have height at most n by Krull’s height theorem.

So dim k[x1, ..., x,] < n.

On the other hand, we noted the easy direction dim k|x1, ..., x,] > n above.

(]
Proof 2 We have

dim k[xy, ..., x,] = trdeg, k(x1, ..., x,).

But this latter quantity is clearly n, using the key result in field theory men-
tioned before. ]



Algebraic and geometric dimension coincide

Theorem If X C A" is an affine variety, then the (geometric) dimension
of X and the (Krull) dimension of its coordinate ring agree:

dim X = dim k[ X].

Proof By Hilbert’s Nullstellensatz, there is an inclusion-reversing bijection

between irreducible subvarieties X; C X and prime ideals p; < k[X], given by

©; = I(X;) and X; = V(p;). This gives a bijection between maximal chains.
]

Similarly,

Theorem For a projective variety X C P", dim X equals the maximal length
of chains of homogeneous prime ideals of its projective coordinate ring S(X)

which do not contain the irrelevant ideal (x, ..., x,).
In particular, dim X = dim X — 1, where X C A""! is the affine cone of X.



Basic properties of dimension

Proposition If X,Y are isomorphic affine, respectively projective varieties,
then they have the same dimension.

Proof This is clear from the geometric definition: isomorphisms map maximal
chains of irreducible subvarieties to each other.

Caveat Note if X =Y are affine varieties, then k[ X]| = k[Y] and so we can
also see immediately that Krull dimensions coincide.

However, this is not true in the projective case; an isomorphism of projective
varieties does not induce an isomorphism between homogeneous coordinate
rings!

Proposition If X,Y are affine, respectively projective varieties, then
dim(X x Y) =dim X + dim Y.

Proof is sketched in the Lecture Notes.



Basic properties of dimension

Proposition If X C A” is an irreducible affine variety, and X C P" its
projective closure, then

dim X = dim X.
Proof One direction dim X < dim X is clear: given a chain of irreducible sub-

varieties in X, we can take their projective closure to get a chain of irreducible
subvarieties of X. The proof of the full result is omitted. [

Corollary If X C P" is an irreducible projective variety, and U C A" an
affine open subset of X', then

dim X = dim U.



Linear subspaces

A linear subspace of P" = P(k"*1) is a projectivisation L = P(U) of a
vector subspace U C k",
If dim; U = m + 1 in the sense of linear algebra, then

U= (vy,...,0m) CV.
Changing basis in k"' so that these vectors belong to the basis, we can write
L=PU ={zp1=2mio=...=x,=0} CP".
So the homogeneous ideal defining L is
I = (Zps1s Timsas - - - Tn) < k[T, ..., ).
So its homogeneous coordinate ring is
S(L) = klzg, ..., xp)

and so
dim L =dimk[L] —1=m

the projective (linear) dimension of L.



Hypersurfaces

Theorem For an irreducible affine variety X C A", we have dim X =n — 1
if and only if

X =V(f) Cc A"
for an irreducible f € R = k[xy,...,z,).
The analogous result also holds for X C P" an irreducible projective variety
and f homogeneous in k[x, ..., ;).
Proof (=) dmX =n—-1=1(X)# (0)=3f #0 € [(X).
Since I(X) is prime, it must contain an irreducible factor of the factorization
of f. So we can assume that f is irreducible, hence prime, in the UFD R.

Then X C V(f) € A" is a chain of irreducibles, dim X =n —1 and dim A" =
n, thus we must have X = V(f).

(«<): As f is irreducible, o = (f) is a prime ideal. By the Hauptidealsatz,
ht(p) = 1. Now use the Theorem on additivity for prime ideals. O

Such (affine or projective) varieties are called hypersurfaces.



Examples

Example 1 Let f € k[zg, z1, 23] be a non-constant homogeneous polynomial
of degree d. Let

C =V(f) cP.
Then we have dim C' = 1 by the Hauptidealsatz.

Indeed, C' C P? is a plane curve, a hypersurface in P?.

Example 2 Consider the Segre embedding o 1: P! x P! < P3. Tts image is
given by
0'1,1(IP>1 X Pl) = V(CE()ZC;; — 51311’2) C P,

This is a hypersurface of dimension 2 = 1 + 1 = dim P! 4 dim P!



An example from the Veronese embedding

Example 3 Consider the Veronese embedding v3: P! — P3.
The image is given by

X = 13(PY) & V(zoz9 — 23, 2125 — 25, 2073 — 1172) C P,

Consider also
X CY =V(zgzs — 2129) C P°.

Then we have
o dimP! = 1.
e dim 15(P!) = 1, as v3 is an isomorphism onto its image.
o dim P’ = 3.
e dimY = 2, by the Hauptidealsatz. Y is an irreducible hypersurface.

e dimY — dimX = 1, even though X C Y is given by two further
equations.



Projective varieties from matrices revisited

Recall that inside the projective space PMy(3) = P® of 3 x 3 matrices over k,
we found in Lecture 7 a chain of subvarities

22,2 C A C ]P)8,

where A = {[A]: det A = 0} C P® is a projective cubic hypersurface, defined
by the determinant polynomial, and Y55 = P? x P? is the Segre variety in P°.

In this chain, we have dimP® = 8, so dim A = 7 as it is a hypersurface. Also
dim 9 = dim P? x P> = 24+ 2 = 4. So, marking dimensions, the chain
becomes

Y3, C AT C PP



(Grassmannians

Recall
Gr(2,4) = V(yoys — 11y + yays) = P°.
This being a hypersurface, we get dim Gr(2,4) = 4.

Note that this is compatible with the fact that we found an affine open set
Up = At C Gr(2,4).

Proposition In general, we have

dim Gr(d,n) = d(n — d).

Sketch proof The argument given in Lecture 8 generalises to show that for
arbitrary (d,n), there is an affine open set

Uy = Maty(d,n — d) = AM=9 c Gr(d, n).

As Gr(d, n) is irreducible, its dimension agrees with any of its affine open sets,
so we deduce the statement. [



