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Chains in varieties and dimension

Let X be a variety (affine or projective). A chain of length m means a strict

chain of inclusions

∅ 6= X0 ( X1 ( X2 ( · · · ( Xm ⊂ X,

where each Xi ⊂ X is an irreducible subvariety.

For example, one can start with X0 = {p} a point of X .

If X is irreducible, then one can end with Xm = X .

Definition

• The local dimension dimpX of X at a point p ∈ X is the maximum

over all lengths of chains starting with X0 = {p}.

• The dimension of X is the maximum of the lengths of all chains,

dimX = max
m

(∃ chain X0 ( X1 ( X2 ( · · · ( Xm) = max
p∈X

dimpX.

Say X has pure dimension if the dimpX are equal for all p ∈ X .



Some elementary examples

Example 1 The chain A0 = {0} = V(x1, . . . , xn) ⊂ A1 = V(x2, . . . , xn) ⊂
· · · ⊂ An−1 = V(xn) ⊂ An shows dimAn ≥ n.

Example 2 Similarly, dimPn ≥ n.

Fact (to be discussed later) dimAn = dimPn = n, both varieties being of

pure dimension.

Example 3 Consider X = V(xy, xz) ⊂ A3.

As we saw earlier, X is a union of the (y, z)-plane and the x-axis.

We have dimpX = 2 at points p in the plane, and dimpX = 1 at other points.

Example 4 An (affine or projective) variety X of dimension dimX = 0 is a

finite set of points.

Proof Let p ∈ X and X0 an irreducible component of X containing p.

Suppose X0 6= {p}. Then we have the chain {p} ( X0 in X , so we would have

to have dimX ≥ dimpX ≥ 1.

So each of the finitely many irreducible components of X must be a point.



Chains in commutative algebra

Let A be a ring (commutative with unit). A chain of length m means a

strict chain of inclusions

℘0 ) ℘1 ) · · · ) ℘m−1 ) ℘m

where each ℘i C A is a prime ideal.

One can start with a maximal ideal ℘0 = m ⊂ A. If A is an integral domain,

one can end with ℘m = {0}.
Fact For A Noetherian, the descending chain condition holds for prime ideals,

i.e. there are no chains of infinite length.

Definition The height ht(℘) of a prime ideal ℘CA is the maximal length

of a chain with ℘0 = ℘:

ht(℘) = max
m

(∃ chain ℘ ) ℘1 ) · · · ) ℘m−1 ) ℘m).



Dimension in commutative algebra

Definition The Krull dimension of A is the maximum height of all max-

imal ideals mC A (equivalently, prime ideals):

dimA = max ht(m : mC A maximal).

Examples

1. A field A = k has dimA = 0.

2. If A is a PID but not a field, then dimA = 1.

3. The chain (x1, . . . , xn) ⊃ (x1, . . . , xn−1) ⊃ · · · ⊃ (x1) ⊃ {0} shows

dim k[x1, . . . , xn] ≥ n.



Some key results from commutative algebra

The following results are proved in commutative algebra courses.

Theorem (Krull’s principal ideal theorem, Hauptidealsatz) For

any Noetherian ring A, if f ∈ A is neither a zero-divisor nor a unit, then

ht((f )) = 1.

Theorem (Krull’s height theorem) For any Noetherian ring A, and

〈f1, . . . , fm〉 6= A,

ht(〈f1, . . . , fm〉) ≤ m.

So the height ht(℘) is at most the number of generators of ℘.



Dimension and transcendence degree

Definition Consider a field extension K/k. Then the transcendence de-

gree trdegkK of K/k is the maximum number of elements of K which are

algebraically independent over k (i.e. they satisfy no polynomial relations with

coefficients in k).

A key result in field theory says that trdegkK = m if and only if there are m

algebraically independent elements α1, . . . , αm ∈ K with K/k(α1, . . . , αm) a

finite extension.

Theorem Let A be a finitely generated k-algebra which is an integral domain.

Let Frac(A) be the field of fractions of A. Then

dimA = trdegk Frac(A).



Additivity for prime ideals

Our last result from commutative algebra is the following.

Theorem (additivity for prime ideals) Let A be a finitely generated

k-algebra which is an integral domain. Then for every prime ideal ℘ C A, we

have

ht(℘) + dimA/℘ = dimA.

Compare this with the following, much easier result.

Proposition For any Noetherian ring A, let f ∈ A, neither a zero-divisor nor

a unit. Then

dimA/(f ) ≤ dimA− 1,

but equality frequently fails.

Proof Lift a chain of prime ideals from A/(f ) to A, and use that ht((f )) = 1

by the Hauptidealsatz. �



A key deduction

Corollary We have dim k[x1, . . . , xn] = n.

Proof 1 We know the maximal ideals are 〈x1 − a1, . . . , xn − an〉, so they

have height at most n by Krull’s height theorem.

So dim k[x1, . . . , xn] ≤ n.

On the other hand, we noted the easy direction dim k[x1, . . . , xn] ≥ n above.

�

Proof 2 We have

dim k[x1, . . . , xn] = trdegk k(x1, . . . , xn).

But this latter quantity is clearly n, using the key result in field theory men-

tioned before. �



Algebraic and geometric dimension coincide

Theorem If X ⊂ An is an affine variety, then the (geometric) dimension

of X and the (Krull) dimension of its coordinate ring agree:

dimX = dim k[X ].

Proof By Hilbert’s Nullstellensatz, there is an inclusion-reversing bijection

between irreducible subvarieties Xj ⊂ X and prime ideals ℘j C k[X ], given by

℘j = I(Xj) and Xj = V(℘j). This gives a bijection between maximal chains.

�

Similarly,

Theorem For a projective variety X ⊂ Pn, dimX equals the maximal length

of chains of homogeneous prime ideals of its projective coordinate ring S(X)

which do not contain the irrelevant ideal (x0, . . . , xn).

In particular, dimX = dim X̂ − 1, where X̂ ⊂ An+1 is the affine cone of X .



Basic properties of dimension

Proposition If X, Y are isomorphic affine, respectively projective varieties,

then they have the same dimension.

Proof This is clear from the geometric definition: isomorphisms map maximal

chains of irreducible subvarieties to each other.

Caveat Note if X ∼= Y are affine varieties, then k[X ] ∼= k[Y ] and so we can

also see immediately that Krull dimensions coincide.

However, this is not true in the projective case; an isomorphism of projective

varieties does not induce an isomorphism between homogeneous coordinate

rings!

Proposition If X, Y are affine, respectively projective varieties, then

dim(X × Y ) = dimX + dimY.

Proof is sketched in the Lecture Notes.



Basic properties of dimension

Proposition If X ⊂ An is an irreducible affine variety, and X ⊂ Pn its

projective closure, then

dimX = dimX.

Proof One direction dimX ≤ dimX is clear: given a chain of irreducible sub-

varieties in X , we can take their projective closure to get a chain of irreducible

subvarieties of X . The proof of the full result is omitted. �

Corollary If X ⊂ Pn is an irreducible projective variety, and U ⊂ An an

affine open subset of X , then

dimX = dimU.



Linear subspaces

A linear subspace of Pn = P(kn+1) is a projectivisation L = P(U) of a

vector subspace U ⊂ kn+1.

If dimk U = m + 1 in the sense of linear algebra, then

U = 〈v0, . . . , vm〉 ⊂ V.

Changing basis in kn+1 so that these vectors belong to the basis, we can write

L = PU = {xm+1 = xm+2 = . . . = xn = 0} ⊂ Pn.
So the homogeneous ideal defining L is

IhL = 〈xm+1, xm+2, . . . , xn〉C k[x0, . . . , xn].

So its homogeneous coordinate ring is

S(L) ∼= k[x0, . . . , xm]

and so

dimL = dim k[L]− 1 = m

the projective (linear) dimension of L.



Hypersurfaces

Theorem For an irreducible affine variety X ⊂ An, we have dimX = n− 1

if and only if

X = V(f ) ⊂ An

for an irreducible f ∈ R = k[x1, . . . , xn].

The analogous result also holds for X ⊂ Pn an irreducible projective variety

and f homogeneous in k[x0, . . . , xn].

Proof (⇒): dimX = n− 1⇒ I(X) 6= (0)⇒ ∃f 6= 0 ∈ I(X).

Since I(X) is prime, it must contain an irreducible factor of the factorization

of f . So we can assume that f is irreducible, hence prime, in the UFD R.

Then X ⊂ V(f ) ( An is a chain of irreducibles, dimX = n− 1 and dimAn =

n, thus we must have X = V(f ).

(⇐): As f is irreducible, ℘ = 〈f〉 is a prime ideal. By the Hauptidealsatz,

ht(℘) = 1. Now use the Theorem on additivity for prime ideals. �

Such (affine or projective) varieties are called hypersurfaces.



Examples

Example 1 Let f ∈ k[x0, x1, x2] be a non-constant homogeneous polynomial

of degree d. Let

C = V(f ) ⊂ P2.

Then we have dimC = 1 by the Hauptidealsatz.

Indeed, C ⊂ P2 is a plane curve, a hypersurface in P2.

Example 2 Consider the Segre embedding σ1,1 : P1× P1 ↪→ P3. Its image is

given by

σ1,1(P1 × P1) ∼= V(x0x3 − x1x2) ⊂ P3.

This is a hypersurface of dimension 2 = 1 + 1 = dimP1 + dimP1.



An example from the Veronese embedding

Example 3 Consider the Veronese embedding ν3 : P1 → P3.

The image is given by

X = ν3(P1) ∼= V(x0x2 − x21, x1x3 − x22, x0x3 − x1x2) ⊂ P3.

Consider also

X ⊂ Y = V(x0x3 − x1x2) ⊂ P3.

Then we have

• dimP1 = 1.

• dim ν3(P1) = 1, as ν3 is an isomorphism onto its image.

• dimP3 = 3.

• dimY = 2, by the Hauptidealsatz. Y is an irreducible hypersurface.

• dimY − dimX = 1, even though X ⊂ Y is given by two further

equations.



Projective varieties from matrices revisited

Recall that inside the projective space PMk(3) ∼= P8 of 3 × 3 matrices over k,

we found in Lecture 7 a chain of subvarities

Σ2,2 ⊂ ∆ ⊂ P8,

where ∆ = {[A] : detA = 0} ⊂ P8 is a projective cubic hypersurface, defined

by the determinant polynomial, and Σ2,2
∼= P2 × P2 is the Segre variety in P8.

In this chain, we have dimP8 = 8, so dim ∆ = 7 as it is a hypersurface. Also

dim Σ2,2 = dimP2 × P2 = 2 + 2 = 4. So, marking dimensions, the chain

becomes

Σ4
2,2 ⊂ ∆7 ⊂ P8.



Grassmannians

Recall

Gr(2, 4) ∼= V(y0y5 − y1y4 + y2y3) ↪→ P5.

This being a hypersurface, we get dim Gr(2, 4) = 4.

Note that this is compatible with the fact that we found an affine open set

U0
∼= A4 ⊂ Gr(2, 4).

Proposition In general, we have

dim Gr(d, n) = d(n− d).

Sketch proof The argument given in Lecture 8 generalises to show that for

arbitrary (d, n), there is an affine open set

U0
∼= Matk(d, n− d) ∼= Ad(n−d) ⊂ Gr(d, n).

As Gr(d, n) is irreducible, its dimension agrees with any of its affine open sets,

so we deduce the statement. �


