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Definition of degree

Recall that a linear subspace of Pn = P(kn+1) is a projectivisation L = P(U)

of a vector subspace U ⊂ kn+1.

Consider a projective variety X ⊂ Pn of dimension d. Denote m = n− d, the

complementary dimension.

Definition We define the degree of X ⊂ Pn to be

deg(X) = #(X ∩ L) : L ⊂ Pn a general linear subspace with dimL = m.

This needs an explanation. Consider Gr(m + 1, n + 1), the Grassmannian of

(m + 1)-dimensional subspaces of kn+1.

Fact There is an open subset U ⊂ Gr(m+1, n+1) such that for L ∈ U , there

is a finite number of intersection points (X ∩L), and the number #(X ∩L) is

maximal. We define this maximal value to be the degree degX .

Note: As we know, Gr(m + 1, n + 1) is irreducible, so every open set is auto-

matically dense in it.



Linear subspaces

Example 1 Let X = P(V ) a linear subvariety itself, of dimension d, with

V ⊂ kn+1 a vector subspace of dimension d + 1.

Then the dimension of intersection formula in projective geometry says that for

any other projective linear subspace L = PU ,

dim(X ∩ L) = dimX + dimL− dim〈X,L〉.

So if dimL = n− dimX , the complementary dimension, we get that

dim(X ∩ L) = 0

as long as the linear span 〈X,L〉 = Pn.

The latter will be the case as long as among the m+1 vectors giving a basis of U

and the d+ 1 vectors giving a basis of V , we can find a basis of kn+1. This will

happen “most of the time” (in an open set of the corresponding Grassmannian).

The number of intersection points #(X ∩ L) = 1 in this case, so degX = 1.



Hypersurfaces

Example 2 Let X = V(F ) ⊂ Pn a hypersurface defined by a homogeneous

polynomial of degree d without multiple factors. Then dimX = n − 1, the

complementary dimension is thus m = 1.

Let L ⊂ Pn be a line. We know L ∼= P1 ⊂ Pn. For example, as before, we can

choose a basis of Pn so that

L = {x2 = . . . = xn = 0} ⊂ Pn.

Then

X ∩ L = {[x0 : . . . : xn] : F (x0, x1) = 0, x2 = . . . = xn = 0}.
Here F (x0, x1) is a homogeneous polynomial of degree d in two variables.

The Fact referred to in the definition of degree translates here to the fact that

if we choose a general L, then this polynomial will have d distinct roots.

Corollary For X = V(F ) ⊂ Pn as above, degX = d.



Extreme cases

At one extreme, let p1, . . . , pd ∈ Pn be a finite set of points and

X = {p1, . . . , pd} ⊂ Pn.

Note that this has the structure of a projective variety, with dimX = 0, as

discussed in the last lecture.

The complementary dimension is m = n.

So we have

degX = #(X ∩ Pn) = d.

At the other extreme, for X = Pn ⊂ Pn, the complementary dimension is

m = 0, so L = {p} a point. So

degPn = #(Pn ∩ L) = 1.

This is of course also covered by the case of general linear subspaces.



Weak Bézout theorem

We state the following result without proof.

Theorem (Weak Bézout’s Theorem) Let X, Y ⊂ Pn be projective

varieties of pure dimension with

dimX ∩ Y = dimX + dimY − n.

Then

degX ∩ Y ≤ degX · deg Y.

Note: the dimension assumption says that X ∩ Y is “of the expected di-

mension”, given by the dimension of intersection formula for linear subspaces

spanning Pn.



Weak Bézout for plane curves

Example: Weak Bézout for plane curves

Let C1, C2 ⊂ P2 be plane curves, given by homogeneous polynomials Fi ∈
k[x0, x1, x2] of degrees di. Then as discussed before, dimCi = 1 and degCi =

di.

The dimension assumption above translates to the fact that

dimC1 ∩ C2 = dimC1 + dimC2 − 2 = 0,

so C1 ∩C2 is a finite set of points. In other words, it means that C1, C2 should

have no common components.

Corollary (Weak Bézout for curves) With these assumptions, we have

#(C1 ∩ C2) ≤ d1 · d2.

Proof Use the general Weak Bézout theorem, together with

deg(C1 ∩ C2) = #(C1 ∩ C2)

for the finite set (C1 ∩ C2). �



Grassmannians

Recall once again

Gr(2, 4) ∼= V(y0y5 − y1y4 + y2y3) ↪→ P5.

This being a hypersurface, we get deg Gr(2, 4) = 2.

Theorem In general, let

Gr(d, n) ↪→ P(nd)−1

be the Plücker embedding. Then in this embedding, we have

deg Gr(d, n) = (d(n− d))!
1! · 2! · . . . · (d− 1)!

(n− d)! · (n− d + 1) · . . . · (n− 1)!
.

The proof, as you can guess from the formula, is nontrivial. Note that even the

fact that the right hand side is an integer needs a moment’s reflection.



The Hilbert function of a projective variety

Let X ⊂ Pn be a projective variety. Its homogeneous ideal

Ih(X)CR = k[x0, . . . , xn]

is graded:

Ih(X) =
⊕

Ih(X)m.

We also have the graded homogeneous coordinate ring

S(X) = R/Ih(X) ∼=
⊕

S(X)m,

with

S(X)m = k[x0, . . . , xn]m/Ih(X)m.

Definition The Hilbert function of the graded ring S(X) is the function

hX : N→ N

defined by

hX(m) = dimk S(X)m.



The Hilbert function of a projective variety: first example

Easy Lemma We have the formula

hX(m) =

(
m + n

m

)
− dimk Ih(X)m.

Example 1 Let X = Pn. Then Ih(X) = (0), so

hPn(m) =

(
m + n

m

)

=
(m + n) · · · (m + 1)

n!

=
1

n!
mn + lower order terms in m



The Hilbert function of a plane curve

Example 2 Let C = V(F ) ⊂ P2, for F irreducible homogeneous of degree d.

Then Ih(X) = 〈F 〉, so for m ≥ d,

Ih(X)m ∼= k[x0, x1, x2]m−d.

We get, for m ≥ d,

hC(m) =

(
m + 2

m

)
−
(
m− d + 2

m− d

)
=

(m + 2)(m + 1)

2
− (m− d + 2)(m− d + 1)

2

=
1

2

(
m2 + 3m + 2− (m2 − 2md + 3m)− (d− 2)(d− 1)

)
= dm− (d− 1)(d− 2)

2
+ 1.



The Hilbert function of a plane curve

Introduce the quantity

g(C) =
(d− 1)(d− 2)

2
.

Corollary The Hilbert function of a plane curve C = V(F ) ⊂ P2 of degree d

is given by

hC(m) = d ·m− g(C) + 1

for m ≥ d.

Note The quantity g(C) is the genus of C, an invariant of fundamental

importance in the study of (plane) algebraic curves. There are many other

definitions.

Examples

• For d ≤ 2, we have g(C) = 0. Indeed, for d = 1 we have C = L = P1. For

d = 2, we have a quadric which (if nonsingular) is isomorphic to P1.

• For d = 3, we have g(C) = 1. This is the case of cubic elliptic curves.



The Hilbert polynomial

We state the following fundamental results also without proof.

Theorem For any projective variety X ⊂ Pn, there exists a polynomial

pX ∈ Q[x], such that for sufficiently large m,

hX(m) = pX(m).

pX is called the Hilbert polynomial of X ⊂ Pn. The leading term of pX is

degX

(dimX)!
·mdimX .

In other words, the Hilbert function is “eventually polynomial”, of degree

dimX .



The Hilbert polynomial: examples

Example 1, revisited We computed

hPn(m) =
1

n!
mn + lower order terms in m

which agrees with the statement of the Theorem: dimPn = n and degPn = 1.

Example 2, revisited For C = V(F ) ⊂ P2 a plane curve of degree d, we

computed

hC(m) = d ·m− g(C) + 1

for m ≥ d. This also agrees with the Theorem, as dimC = 1 and degC = d.



An important caveat

Note that both the degree degX and the Hilbert polynomial pX of a projective

variety X ⊂ Pn were defined in terms of the embedding.

They are not invariants of X up to isomorphism!

An honest, though clumsy, notation would be deg(X ⊂ Pn) and pX⊂Pn.

Example Recall the Veronese embedding ν2 : P1 → P2. Its image is a quadric

plane curve

C = {x0x2 − x21 = 0} ⊂ P2.

The Veronese map and its inverse on C give an isomorphism of projective

varieties C ∼= P1.

Yet we have degP1 = 1 and degC = 2, and the Hilbert polynomials are also

different.

Contrast this with the quantity dimX which, as we discussed before, is an

invariant of X up to isomorphism. Indeed, dimC = dimP1 = 1.


