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Definition of degree

Recall that a linear subspace of P" = P(k"™!) is a projectivisation L = P(U)
of a vector subspace U C k"'

Consider a projective variety X C P" of dimension d. Denote m = n — d, the
complementary dimension.

Definition We define the degree of X C P" to be
deg(X) =#(X NL): L CP" a general linear subspace with dim L = m.

This needs an explanation. Consider Gr(m + 1,n + 1), the Grassmannian of
(m + 1)-dimensional subspaces of k" "1,

Fact There is an open subset U C Gr(m+1,n+1) such that for L € U, there
is a finite number of intersection points (X N L), and the number #(X N L) is
maximal. We define this maximal value to be the degree deg X.

Note: As we know, Gr(m + 1,n + 1) is irreducible, so every open set is auto-
matically dense in it.



Linear subspaces

Example 1 Let X = P(V) a linear subvariety itself, of dimension d, with
V C k™ a vector subspace of dimension d + 1.

Then the dimension of intersection formula in projective geometry says that for
any other projective linear subspace L = PU,

dim(X N L) = dim X + dim L — dim(X, L).

So if dim L = n — dim X, the complementary dimension, we get that
dim(X NL)=0
as long as the linear span (X, L) = P".

The latter will be the case as long as among the m—+1 vectors giving a basis of U
and the d 4 1 vectors giving a basis of V', we can find a basis of k"™. This will
happen “most of the time” (in an open set of the corresponding Grassmannian).

The number of intersection points #(X N L) = 1 in this case, so deg X = 1.



Hypersurfaces

Example 2 Let X = V(F) C P" a hypersurface defined by a homogeneous
polynomial of degree d without multiple factors. Then dim X = n — 1, the
complementary dimension is thus m = 1.

Let L C P" be a line. We know L = P! C P". For example, as before, we can
choose a basis of IP" so that

L={zy=...=2,=0} CP"
Then

XNL=A[zy: ...:x,): Flxg,21) =0,29=... =z, =0},

Here F'(xg, x1) is a homogeneous polynomial of degree d in two variables.
The Fact referred to in the definition of degree translates here to the fact that
if we choose a general L, then this polynomial will have d distinct roots.

Corollary For X = V(F) C P" as above, deg X = d.



Extreme cases

At one extreme, let pq,...,ps € P" be a finite set of points and

X:{pl,...,pd}C]P’”.

Note that this has the structure of a projective variety, with dim X = 0, as
discussed in the last lecture.

The complementary dimension is m = n.
So we have

deg X = #(X NP") = d.

At the other extreme, for X = P" C P", the complementary dimension is
m =0, so L = {p} a point. So

degP" = #(P"NL) =1,

This is of course also covered by the case of general linear subspaces.



Weak Bézout theorem

We state the following result without proof.

Theorem (Weak Bézout’s Theorem) Let XY C P" be projective
varieties of pure dimension with

dmXNY =dmX +dmY —n.

Then
deg X NY < deg X -degV.

Note: the dimension assumption says that X N'Y is “of the expected di-
mension”, given by the dimension of intersection formula for linear subspaces
spanning P".



Weak Bézout for plane curves

Example: Weak Bézout for plane curves
Let C1,Cy C P? be plane curves, given by homogeneous polynomials F; €
k|xo, 1, T2 of degrees d;. Then as discussed before, dim C; = 1 and deg C; =
d;.
The dimension assumption above translates to the fact that

dimCiNCy =dimCi 4+ dimCy — 2 =0,

so C7 N Cy is a finite set of points. In other words, it means that C}, Cy should
have no common components.

Corollary (Weak Bézout for curves) With these assumptions, we have
#(C1NCy) < dy - ds.
Proof Use the general Weak Bézout theorem, together with
deg(Cy1 N Cy) = #(C1 N Cy)
for the finite set (C7 N Cy). ]



(Grassmannians

Recall once again
Gr(2,4) 2= V(yoys — y1ya + yous) — P°.
This being a hypersurface, we get deg Gr(2,4) = 2.
Theorem In general, let
Gr(d,n) — (i)~

be the Pliicker embedding. Then in this embedding, we have
-2t (d—=1)!
(n—d)!-(n—d+1)-...-(n—1

deg Gr(d,n) = (d(n — d))!

The proof, as you can guess from the formula, is nontrivial. Note that even the
fact that the right hand side is an integer needs a moment’s reflection.



The Hilbert function of a projective variety

Let X C P" be a projective variety. Its homogeneous ideal

I"(X) < R = kl[zg,...,x,

"(X)=EPrx

We also have the graded homogeneous coordinate ring

S(X)=R/T"X)= P S(X

is graded:

with
S(X)m = E[xo, - . s 20 /T X)) .
Definition The Hilbert function of the graded ring S(X) is the function
hX N —- N

defined by
h)((m) = dlmk S(X)m



The Hilbert function of a projective variety: first example

Easy Lemma We have the formula

hx(m) = (m - ”) — dimy I"(X),,.

m

Example 1 Let X = P". Then I"(X) = (0), so
m+n
h}pn(m) = ( )

m

(m+n)---(m+1)
n!

= —'m" + lower order terms in m
n!



The Hilbert function of a plane curve

Example 2 Let C' = V(F) C P?, for F irreducible homogeneous of degree d.
Then I"(X) = (F), so for m > d,

]Ih(X)m = k[x(): Iy, xQ]m—d-
We get, for m > d,
m + 2 m—d+ 2
et = (") = (" 05)

(m+2)m+1) (m—d+2)(m—d+1)

9 2
— %(m2+3m+2—(m2—2md+3m>—<d_2)(d_1))
— dm—(d_l)(d_Q)Jrl.
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The Hilbert function of a plane curve

Introduce the quantity

d—1)(d—2
9(C) = ( )2( )
Corollary The Hilbert function of a plane curve C' = V(F) C P? of degree d
is given by
he(m)=d-m—g(C)+1
for m > d.

Note The quantity g(C') is the genus of C, an invariant of fundamental
importance in the study of (plane) algebraic curves. There are many other
definitions.

Examples

e For d < 2, we have g(C') = 0. Indeed, for d = 1 we have C' = L = P!, For
d = 2, we have a quadric which (if nonsingular) is isomorphic to P!.

e For d = 3, we have g(C') = 1. This is the case of cubic elliptic curves,



The Hilbert polynomial

We state the following fundamental results also without proof.
Theorem For any projective variety X C P", there exists a polynomial
px € Qlz], such that for sufficiently large m,
hx(m) = px(m).
px is called the Hilbert polynomial of X C P". The leading term of py is
d :
.eg X . mdlmX.
(dim X)!

In other words, the Hilbert function is “eventually polynomial”, of degree
dim X.



The Hilbert polynomial: examples

Example 1, revisited We computed

1
hpn(m) = —'m" + lower order terms in m
n!

which agrees with the statement of the Theorem: dimP" = n and degP" = 1.

Example 2, revisited For C' = V(F) C P? a plane curve of degree d, we
computed
ho(m)=d-m—g(C)+1

for m > d. This also agrees with the Theorem, as dim C' = 1 and deg C' = d.



An important caveat

Note that both the degree deg X and the Hilbert polynomial py of a projective
variety X C P" were defined in terms of the embedding.

They are not invariants of X up to isomorphism!

An honest, though clumsy, notation would be deg(X C P") and pxcpn.

Example Recall the Veronese embedding v5: P! — P2, Its image is a quadric
plane curve

C = {wyzy — 22 =0} C P
The Veronese map and its inverse on C' give an isomorphism of projective
varieties C' = P!
Yet we have degP! = 1 and deg C = 2, and the Hilbert polynomials are also
different.

Contrast this with the quantity dim X which, as we discussed before, is an
invariant of X up to isomorphism. Indeed, dim C' = dim P! = 1.



