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Regular functions at points and on open sets

Let X C A" be an affine variety. Then its coordinate ring
B(X] = ks, ., 2] /I(X)

can be thought of as the ring of regular or polynomial functions on X.
Every element f € k| X] can be interpreted as a function

f: X —k
by evaluating a representing polynomial in k[xy, ..., x,].

We would like to extend this definition to study functions which are regular
near a point, or on some open set in X.

Let p € X. A function f : U — k defined on a neighbourhood of p is called
regular at p, if on some open set p e W C U,

flw = % for some g, h € k[X]| with h(w) # 0 for all w € W.

For an open subset U C X, write Ox(U) for the k-algebra of regular
functions on U, functions f : U — k that are regular at all points p € U.



Examples

If f € Ek[X] then f is regular at all points of X: use f = { Thus
f e Ox(X).
We will prove later that in fact this inclusion
k[ X] — Ox(X)
is an isomorphism; note that this is not at all obvious!

JIf X = Al then 1/2" € Ox(U) for any open set U not containing the
origin.
. More generally, for any X and f € k[X],
/1" € Ox(Dy),
where
Dy =X\ V(f)
is the basic open set of X defined by the non-vanishing of f.



Germs of regular functions

Let p € X. We want a notion of “ring of regular functions near p on X”.

We want to regard two functions as the same, if they agree “sufficiently close
to p”.

Here is how to formalize this idea.

Definition A function germ at p is an equivalence class of pairs (U, f),
with p € U C X open, and f : U — k a regular function, where we identify

(U, f) ~(V,g)
if flw =glwonanopenpe W CcUNV.

Denote by Ox , the set of germs of regular functions at p. This is a k-algebra
in an obvious way.



Function germs: an example

Function germs can behave in unexpected ways, especially on reducible varieties.

Example Let
X =V(xy) C A%

Then X is a reducible variety: it is the union of the x-axis and the y-axis.
Let
U=X\V(y)

the open subset of X consisting of the x-axis without the origin.

Consider f: U — k given by f = £ This is a regular function on U:
feOxU).
But along the z-axis away from the origin,
(U, f) ~ (U,0)
asy=0:U —k,so (U, f)] =0.



Multiplicative sets in rings

To relate the ring of germs Ox , to other rings of functions algebraically, we need

to recall a notion from Commutative Algebra. Let A be a ring (commutative
with 1).

Definition A subset S C A is a multiplicative setif1 € Sand S-S5 C S.
Examples

1. S = A\ {0} for any integral domain A.

2.5 = A\ p for any prime ideal p <1 A.

3. 5 = A\ m for any maximal ideal m <1 A.
4. S ={1,f,f% ...} forany f € A



Localising rings

Let S C A be a multiplicative subset.
Definition The localisation of A at (or with respect to) S is the ring
STTA=(AxS9)/ ~

where we abbreviate the pairs (r, s) by =, and the equivalence relation is:

/

L5 = t(rs' —1r's) =0 for some t € S.

Remark If A is an integral domain, then ¢ in the definition of the equivalence
relation is unnecessary.
Indeed, for integral domains the theory of localisation substantially simplifies.

Notation For f € Aand S = {1, f, f% ...}, denote
Ay = S7H(A).

For a prime ideal p << A and S = A \ g, denote
A, =S71(A).



Examples of localisation

Examples
1.IfA=Zand S=7Z\0, then ST'A = Q.
2. More generally, if A is an integral domain and S = A \ {0}, then
Frac(A) = S™'A
is the (definition of the) field of fractions of A.
3. If A is an integral domain, f € A\ {0} and S = {1, f, f?,...}, then we

have

Ap=Alf ™Y = {a/f": a € 4).

It f is a zero-divisor, Ay can be more complicated to describe.



A tfurther example

Let us see an example where A is not a domain.

Example Let A = klx,y|/(xy), and consider the multiplicative subset S =
{1,z,2%, ...} in A,
In the the locahsatlon S~ A, the element y = ¥ is zero, since y is annihilated
by z € S.
Thus

klz], = STTA = klx, 271 C Frac(k[z]) = k(z).



Some basic algebraic properties

Theorem (Algebraic Properties of Localisation)

(1) If A is an integral domain, then for any multiplicative set S in A, there are
injections
A S7HA) < Frac(A).
(2) For any prime ideal p << A and § = A\ p, the localisation A, has a unique
maximal ideal

pA,={irepsdp}/~.

(3) For A an integral domain,
A= ﬂ An = ﬂ A, C Frac(A).
max m<JA prime p<1A

(4) For any ideal I < A, and for any prime ideal o <1 A containing I, the
localisation A, has an induced prime ideal I A, and we have an isomorpism

(A/D), = A JTA,,



The ring of germs of functions is a localisation

Proposition Let X C A" be an affine variety. At a point p € X, the ring
of germs of functions at p is the localisation

Oxp = k[ X]n,
of the coordinate ring k[X| at its maximal ideal

my, = I(p) = {f € k[X]: f(p) = 0}

corresponding to p.

Proof Consider the map
OX’p — ]C[X]m

p

defined by

(U, f) =2

h?
where f|y = # for g, h € k[X], h(p) # 0.



The ring of germs of functions is a localisation

The map is well-defined: h(p) # 0= h ¢ m, = I € k[X],,.

Moreover, if (U, f) ~ (U’, f'), so ¥ = % on a basic open p € D, C UNU,
where s € k[X], then gh' — ¢’h =0 on D,

Since s(p) # 0, we have s ¢ m,. Thus s- (gh' — g’h) = 0 everywhere on X, so
s-(gh' —g'h) =0 in k[X].

Thus ¢ = % in k[X]pm,

We build the inverse map: for h ¢ m,, let U = Dy, then send { — (U, 7).
If § = z—; in k[X]w,, then s - (gh’ — g’'h) = 0 for some s € k[X]\ m,.
Then s(p) # 0so p € Dy, and gh' — g¢’h =0 on D;.

g/

Thus ¢ = ¥ as functions D, — k, as required.

By construction, the two maps are inverse to each other, so they both define
isomorphisms. [



An example

Let us return to A = k[z, y]/(xy), corresponding to X C A? being the union
of coordinate axes.
Consider the point p = (1,0). Its maximal ideal is

m, = (z — 1,y) < klz,y|/(zy) = k[X].

Naively, we would like to invert all functions that do not vanish at p, so allow
denominators from the set

S={feA:f¢(x—Ly}=A\m,

However, while the global functions 0 and y are different in k[X], as we saw
before, they become equal near p, and also in the localisation S™1A = k[X Jm, -
Indeed, in this example we get

k[az]mp = k|x] [% . h(p) # 0] C Frac(k[z]) = k(z).
This is the same as what we would have obtained for
p=(1,0)CcY ={y=0} C A%



An example

X = fxy=o|




An example, continued

Continue with to A = k|x,y|/(xy). Consider the point ¢ = (0,0) € X, the
intersection point of the two components. Its maximal ideal is

m, = (z,y) < klz,y]/(zy) = k[X].

Now we have y # 0 near this point, so in the local ring k[ Xy, .
Indeed there are surjective restriction maps, obtained by setting y = 0, respec-
tively x = 0:

k[X]mq — k[x]@:)
and

k[X]mq — k[y](y>7
the local rings at the origin in the two copies of the affine line.
Using these two surjective maps, it is an easy exercise to show that

k[ XTm, C ko] x klyly,

is the subring of elements of the product ring consisting of pairs of functions
with the same value at the origin.



An example, continued
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Localisation: final general properties on irreducible varieties

For X C A", an irreducible variety corresponding to a coordinate ring k[ .X]|
which is a domain, we obtain from Algebraic Property (1) above,

kI X] C Oxp =kl X]n, = k[X][% . h(p) # 0] C Frac(k[X]) = k(X).
We also have, from Algebraic Property (3) above,
kIX] =[] Ox, C k(X).
peX

In other words, on an irreducible affine variety, a rational function is regular if
and only if it defines a regular germ at each point.



Localisation on reducible varieties

For X C A" reducible, write

an irreducible decomposition.

Consider a point
pe X\ U X;
Wkl
lying on a unique irreducible component.
Then essentially the same argument that was used in the example before proves
that the ring of germs at p is

Oxp = k(X 2 K[ X,

In other words, for such points the ring of germs “sees” only the (unique)
irreducible component p lies on.



Localisation on reducible varieties




Intersection numbers via localization

This is “off-topic” but too nice not to mention.

Let f1, fo € K[z, y] be two polynomials without common factors. Let
Ci:{fi:O}CAQ

be the two affine plane curves defined by the f;.

Let p € C; N Cy be an intersection point. Let m, < k[z,y| be the maximal
ideal of this point on the affine plane.

Definition The intersection multiplicity of C; and Cs at p is the (finite)
quantity

dimy k[, Ylm,/ (f1, f2)-

This is the (local) quantity that goes into the full version of Bezout’s theorem.



