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Regular functions at points and on open sets

Let X ⊂ An be an affine variety. Then its coordinate ring

k[X ] = k[x1, . . . , xn]/I(X)

can be thought of as the ring of regular or polynomial functions on X .

Every element f ∈ k[X ] can be interpreted as a function

f : X → k

by evaluating a representing polynomial in k[x1, . . . , xn].

We would like to extend this definition to study functions which are regular

near a point, or on some open set in X .

Let p ∈ X . A function f : U → k defined on a neighbourhood of p is called

regular at p, if on some open set p ∈ W ⊂ U ,

f |W =
g

h
for some g, h ∈ k[X ] with h(w) 6= 0 for all w ∈ W.

For an open subset U ⊂ X , write OX(U) for the k-algebra of regular

functions on U , functions f : U → k that are regular at all points p ∈ U .



Examples

1. If f ∈ k[X ] then f is regular at all points of X : use f = f
1 . Thus

f ∈ OX(X).

We will prove later that in fact this inclusion

k[X ] ↪→ OX(X)

is an isomorphism; note that this is not at all obvious!

2. If X = A1, then 1/xn ∈ OX(U) for any open set U not containing the

origin.

3. More generally, for any X and f ∈ k[X ],

1/fn ∈ OX(Df),

where

Df = X \ V(f )

is the basic open set of X defined by the non-vanishing of f .



Germs of regular functions

Let p ∈ X . We want a notion of “ring of regular functions near p on X”.

We want to regard two functions as the same, if they agree “sufficiently close

to p”.

Here is how to formalize this idea.

Definition A function germ at p is an equivalence class of pairs (U, f ),

with p ∈ U ⊂ X open, and f : U → k a regular function, where we identify

(U, f ) ∼ (V, g)

if f |W = g|W on an open p ∈ W ⊂ U ∩ V .

Denote by OX,p the set of germs of regular functions at p. This is a k-algebra

in an obvious way.



Function germs: an example

Function germs can behave in unexpected ways, especially on reducible varieties.

Example Let

X = V(xy) ⊂ A2.

Then X is a reducible variety: it is the union of the x-axis and the y-axis.

Let

U = X \ V(y)

the open subset of X consisting of the x-axis without the origin.

Consider f : U → k given by f = y
x. This is a regular function on U :

f ∈ OX(U).

But along the x-axis away from the origin,

(U, f ) ∼ (U, 0)

as y = 0 : U → k, so [(U, f )] = 0.



Multiplicative sets in rings

To relate the ring of germsOX,p to other rings of functions algebraically, we need

to recall a notion from Commutative Algebra. Let A be a ring (commutative

with 1).

Definition A subset S ⊂ A is a multiplicative set if 1 ∈ S and S ·S ⊂ S.

Examples

1. S = A \ {0} for any integral domain A.

2. S = A \ ℘ for any prime ideal ℘C A.

3. S = A \m for any maximal ideal mC A.

4. S = {1, f, f 2, . . .} for any f ∈ A.



Localising rings

Let S ⊂ A be a multiplicative subset.

Definition The localisation of A at (or with respect to) S is the ring

S−1A = (A× S)/ ∼
where we abbreviate the pairs (r, s) by r

s, and the equivalence relation is:

r
s ∼

r′

s′ ⇐⇒ t(rs′ − r′s) = 0 for some t ∈ S.

Remark If A is an integral domain, then t in the definition of the equivalence

relation is unnecessary.

Indeed, for integral domains the theory of localisation substantially simplifies.

Notation For f ∈ A and S = {1, f, f 2, . . .}, denote

Af = S−1(A).

For a prime ideal ℘C A and S = A \ ℘, denote

A℘ = S−1(A).



Examples of localisation

Examples

1. If A = Z and S = Z \ 0, then S−1A ∼= Q.

2. More generally, if A is an integral domain and S = A \ {0}, then

Frac(A) = S−1A

is the (definition of the) field of fractions of A.

3. If A is an integral domain, f ∈ A \ {0} and S = {1, f, f 2, . . .}, then we

have

Af = A[f−1] = {a/f r : a ∈ A}.
If f is a zero-divisor, Af can be more complicated to describe.



A further example

Let us see an example where A is not a domain.

Example Let A = k[x, y]/(xy), and consider the multiplicative subset S =

{1, x, x2, . . .} in A.

In the the localisation S−1A, the element y = y
1 is zero, since y is annihilated

by x ∈ S.

Thus

k[x]x = S−1A ∼= k[x, x−1] ⊂ Frac(k[x]) = k(x).



Some basic algebraic properties

Theorem (Algebraic Properties of Localisation)

(1) If A is an integral domain, then for any multiplicative set S in A, there are

injections

A ↪→ S−1(A) ↪→ Frac(A).

(2) For any prime ideal ℘CA and S = A\℘, the localisation A℘ has a unique

maximal ideal

℘A℘ =
{
r
s : r ∈ ℘, s /∈ ℘

}
/ ∼ .

(3) For A an integral domain,

A =
⋂

max mCA

Am =
⋂

prime ℘CA

A℘ ⊂ Frac(A).

(4) For any ideal I C A, and for any prime ideal ℘ C A containing I , the

localisation A℘ has an induced prime ideal IA℘, and we have an isomorpism

(A/I)℘ ∼= A℘/IA℘.



The ring of germs of functions is a localisation

Proposition Let X ⊂ An be an affine variety. At a point p ∈ X , the ring

of germs of functions at p is the localisation

OX,p
∼= k[X ]mp

of the coordinate ring k[X ] at its maximal ideal

mp = I(p) = {f ∈ k[X ] : f (p) = 0}

corresponding to p.

Proof Consider the map

OX,p → k[X ]mp

defined by

(U, f ) 7→ g

h
,

where f |U = g
h for g, h ∈ k[X ], h(p) 6= 0.



The ring of germs of functions is a localisation

The map is well-defined: h(p) 6= 0⇒ h /∈ mp ⇒ g
h ∈ k[X ]mp.

Moreover, if (U, f ) ∼ (U ′, f ′), so g
h = g′

h′ on a basic open p ∈ Ds ⊂ U ∩ U ′,

where s ∈ k[X ], then gh′ − g′h = 0 on Ds.

Since s(p) 6= 0, we have s /∈ mp. Thus s · (gh′− g′h) = 0 everywhere on X , so

s · (gh′ − g′h) = 0 in k[X ].

Thus g
h = g′

h′ in k[X ]mp.

We build the inverse map: for h /∈ mp, let U = Dh, then send g
h 7→ (U, gh).

If g
h = g′

h′ in k[X ]mp, then s · (gh′ − g′h) = 0 for some s ∈ k[X ] \mp.

Then s(p) 6= 0 so p ∈ Ds, and gh′ − g′h = 0 on Ds.

Thus g
h = g′

h′ as functions Ds → k, as required.

By construction, the two maps are inverse to each other, so they both define

isomorphisms. �



An example

Let us return to A = k[x, y]/(xy), corresponding to X ⊂ A2 being the union

of coordinate axes.

Consider the point p = (1, 0). Its maximal ideal is

mp = 〈x− 1, y〉C k[x, y]/(xy) = k[X ].

Naively, we would like to invert all functions that do not vanish at p, so allow

denominators from the set

S = {f ∈ A : f /∈ 〈x− 1, y〉} = A \mp.

However, while the global functions 0 and y are different in k[X ], as we saw

before, they become equal near p, and also in the localisation S−1A = k[X ]mp.

Indeed, in this example we get

k[x]mp = k[x][1h : h(p) 6= 0] ⊂ Frac(k[x]) = k(x).

This is the same as what we would have obtained for

p = (1, 0) ⊂ Y = {y = 0} ⊂ A2.



An example



An example, continued

Continue with to A = k[x, y]/(xy). Consider the point q = (0, 0) ∈ X , the

intersection point of the two components. Its maximal ideal is

mq = 〈x, y〉C k[x, y]/(xy) = k[X ].

Now we have y 6= 0 near this point, so in the local ring k[X ]mq .

Indeed there are surjective restriction maps, obtained by setting y = 0, respec-

tively x = 0:

k[X ]mq → k[x]〈x〉

and

k[X ]mq → k[y]〈y〉,

the local rings at the origin in the two copies of the affine line.

Using these two surjective maps, it is an easy exercise to show that

k[X ]mq ⊂ k[x]〈x〉 × k[y]〈y〉

is the subring of elements of the product ring consisting of pairs of functions

with the same value at the origin.



An example, continued



Localisation: final general properties on irreducible varieties

For X ⊂ An, an irreducible variety corresponding to a coordinate ring k[X ]

which is a domain, we obtain from Algebraic Property (1) above,

k[X ] ⊂ OX,p
∼= k[X ]mp = k[X ][1h : h(p) 6= 0] ⊂ Frac(k[X ]) = k(X).

We also have, from Algebraic Property (3) above,

k[X ] =
⋂
p∈X

OX,p ⊂ k(X).

In other words, on an irreducible affine variety, a rational function is regular if

and only if it defines a regular germ at each point.



Localisation on reducible varieties

For X ⊂ An reducible, write

X =

N⋃
i=1

Xi

an irreducible decomposition.

Consider a point

p ∈ Xi \
⋃
j 6=i

Xj

lying on a unique irreducible component.

Then essentially the same argument that was used in the example before proves

that the ring of germs at p is

OX,p
∼= k[X ]mp

∼= k[Xi]mp.

In other words, for such points the ring of germs “sees” only the (unique)

irreducible component p lies on.



Localisation on reducible varieties



Intersection numbers via localization

This is “off-topic” but too nice not to mention.

Let f1, f2 ∈ k[x, y] be two polynomials without common factors. Let

Ci = {fi = 0} ⊂ A2

be the two affine plane curves defined by the fi.

Let p ∈ C1 ∩ C2 be an intersection point. Let mp C k[x, y] be the maximal

ideal of this point on the affine plane.

Definition The intersection multiplicity of C1 and C2 at p is the (finite)

quantity

dimk k[x, y]mp/〈f1, f2〉.

This is the (local) quantity that goes into the full version of Bezout’s theorem.


