C3.4 Algebraic Geometry

Lecture 11. Some rings of functions and localization

Balázs Szendrői, University of Oxford, Michaelmas 2020

Regular functions at points and on open sets

Let $X \subset \mathbb{A}^n$ be an affine variety. Then its coordinate ring

$$k[X] = k[x_1, \dots, x_n]/\mathbb{I}(X)$$

can be thought of as the ring of regular or polynomial functions on X.

Every element $f \in k[X]$ can be interpreted as a function

$$f: X \to k$$

by evaluating a representing polynomial in $k[x_1, \ldots, x_n]$.

We would like to extend this definition to study functions which are regular near a point, or on some open set in X.

Let $p \in X$. A function $f: U \to k$ defined on a neighbourhood of p is called **regular at** p, if on some open set $p \in W \subset U$,

$$f|_{W} = \frac{g}{h}$$
 for some $g, h \in k[X]$ with $h(w) \neq 0$ for all $w \in W$.

For an open subset $U \subset X$, write $\mathcal{O}_X(U)$ for the k-algebra of regular functions on U, functions $f: U \to k$ that are regular at all points $p \in U$.

Examples

1. If $f \in k[X]$ then f is regular at all points of X: use $f = \frac{f}{1}$. Thus $f \in \mathcal{O}_X(X)$.

We will prove later that in fact this inclusion

$$k[X] \hookrightarrow \mathcal{O}_X(X)$$

is an isomorphism; note that this is not at all obvious!

- 2. If $X = \mathbb{A}^1$, then $1/x^n \in \mathcal{O}_X(U)$ for any open set U not containing the origin.
- 3. More generally, for any X and $f \in k[X]$,

$$1/f^n \in \mathcal{O}_X(D_f),$$

where

$$D_f = X \setminus \mathbb{V}(f)$$

is the basic open set of X defined by the non-vanishing of f.

Germs of regular functions

Let $p \in X$. We want a notion of "ring of regular functions near p on X". We want to regard two functions as the same, if they agree "sufficiently close to p".

Here is how to formalize this idea.

Definition A function germ at p is an equivalence class of pairs (U, f), with $p \in U \subset X$ open, and $f: U \to k$ a regular function, where we identify

$$(U, f) \sim (V, g)$$

if $f|_W = g|_W$ on an open $p \in W \subset U \cap V$.

Denote by $\mathcal{O}_{X,p}$ the set of germs of regular functions at p. This is a k-algebra in an obvious way.

Function germs: an example

Function germs can behave in unexpected ways, especially on reducible varieties.

Example Let

$$X = \mathbb{V}(xy) \subset \mathbb{A}^2$$
.

Then X is a reducible variety: it is the union of the x-axis and the y-axis. Let

$$U = X \setminus \mathbb{V}(y)$$

the open subset of X consisting of the x-axis without the origin.

Consider $f: U \to k$ given by $f = \frac{y}{x}$. This is a regular function on U:

$$f \in \mathcal{O}_X(U)$$
.

But along the x-axis away from the origin,

$$(U,f) \sim (U,0)$$

as $y = 0 : U \to k$, so [(U, f)] = 0.

Multiplicative sets in rings

To relate the ring of germs $\mathcal{O}_{X,p}$ to other rings of functions algebraically, we need to recall a notion from Commutative Algebra. Let A be a ring (commutative with 1).

Definition A subset $S \subset A$ is a multiplicative set if $1 \in S$ and $S \cdot S \subset S$.

Examples

- 1. $S = A \setminus \{0\}$ for any integral domain A.
- 2. $S = A \setminus \wp$ for any prime ideal $\wp \triangleleft A$.
- 3. $S = A \setminus \mathfrak{m}$ for any maximal ideal $\mathfrak{m} \triangleleft A$.
- 4. $S = \{1, f, f^2, \ldots\}$ for any $f \in A$.

Localising rings

Let $S \subset A$ be a multiplicative subset.

Definition The **localisation** of A at (or with respect to) S is the ring

$$S^{-1}A = (A \times S)/\sim$$

where we abbreviate the pairs (r,s) by $\frac{r}{s}$, and the equivalence relation is:

$$\frac{r}{s} \sim \frac{r'}{s'} \iff t(rs' - r's) = 0 \text{ for some } t \in S.$$

Remark If A is an integral domain, then t in the definition of the equivalence relation is unnecessary.

Indeed, for integral domains the theory of localisation substantially simplifies.

Notation For $f \in A$ and $S = \{1, f, f^2, \ldots\}$, denote

$$A_f = S^{-1}(A).$$

For a prime ideal $\wp \triangleleft A$ and $S = A \setminus \wp$, denote

$$A_{\wp} = S^{-1}(A).$$

Examples of localisation

Examples

- 1. If $A = \mathbb{Z}$ and $S = \mathbb{Z} \setminus 0$, then $S^{-1}A \cong \mathbb{Q}$.
- 2. More generally, if A is an integral domain and $S = A \setminus \{0\}$, then

$$\operatorname{Frac}(A) = S^{-1}A$$

is the (definition of the) field of fractions of A.

3. If A is an integral domain, $f \in A \setminus \{0\}$ and $S = \{1, f, f^2, \ldots\}$, then we have

$$A_f = A[f^{-1}] = \{a/f^r : a \in A\}.$$

If f is a zero-divisor, A_f can be more complicated to describe.

A further example

Let us see an example where A is not a domain.

Example Let A = k[x, y]/(xy), and consider the multiplicative subset $S = \{1, x, x^2, \ldots\}$ in A.

In the the localisation $S^{-1}A$, the element $y = \frac{y}{1}$ is zero, since y is annihilated by $x \in S$.

Thus

$$k[x]_x = S^{-1}A \cong k[x, x^{-1}] \subset \text{Frac}(k[x]) = k(x).$$

Some basic algebraic properties

Theorem (Algebraic Properties of Localisation)

(1) If A is an integral domain, then for any multiplicative set S in A, there are injections

$$A \hookrightarrow S^{-1}(A) \hookrightarrow \operatorname{Frac}(A).$$

(2) For any prime ideal $\wp \triangleleft A$ and $S = A \setminus \wp$, the localisation A_{\wp} has a unique maximal ideal

$$\wp A_{\wp} = \left\{ \frac{r}{s} : r \in \wp, s \notin \wp \right\} / \sim .$$

(3) For A an integral domain,

$$A = \bigcap_{\max \mathfrak{m} \lhd A} A_{\mathfrak{m}} = \bigcap_{\text{prime } \wp \lhd A} A_{\wp} \subset \operatorname{Frac}(A).$$

(4) For any ideal $I \triangleleft A$, and for any prime ideal $\wp \triangleleft A$ containing I, the localisation A_{\wp} has an induced prime ideal IA_{\wp} , and we have an isomorpism

$$(A/I)_{\wp} \cong A_{\wp}/IA_{\wp}.$$

The ring of germs of functions is a localisation

Proposition Let $X \subset \mathbb{A}^n$ be an affine variety. At a point $p \in X$, the ring of germs of functions at p is the localisation

$$\mathcal{O}_{X,p} \cong k[X]_{\mathfrak{m}_p}$$

of the coordinate ring k[X] at its maximal ideal

$$\mathfrak{m}_p = \mathbb{I}(p) = \{ f \in k[X] : f(p) = 0 \}$$

corresponding to p.

Proof Consider the map

$$\mathcal{O}_{X,p} \to k[X]_{\mathfrak{m}_p}$$

defined by

$$(U,f)\mapsto \frac{g}{h},$$

where $f|_U = \frac{g}{h}$ for $g, h \in k[X], h(p) \neq 0$.

The ring of germs of functions is a localisation

The map is well-defined: $h(p) \neq 0 \Rightarrow h \notin \mathfrak{m}_p \Rightarrow \frac{g}{h} \in k[X]_{\mathfrak{m}_p}$.

Moreover, if $(U, f) \sim (U', f')$, so $\frac{g}{h} = \frac{g'}{h'}$ on a basic open $p \in D_s \subset U \cap U'$, where $s \in k[X]$, then gh' - g'h = 0 on D_s .

Since $s(p) \neq 0$, we have $s \notin \mathfrak{m}_p$. Thus $s \cdot (gh' - g'h) = 0$ everywhere on X, so $s \cdot (gh' - g'h) = 0$ in k[X].

Thus $\frac{g}{h} = \frac{g'}{h'}$ in $k[X]_{\mathfrak{m}_p}$.

We build the inverse map: for $h \notin \mathfrak{m}_p$, let $U = D_h$, then send $\frac{g}{h} \mapsto (U, \frac{g}{h})$.

If $\frac{g}{h} = \frac{g'}{h'}$ in $k[X]_{\mathfrak{m}_p}$, then $s \cdot (gh' - g'h) = 0$ for some $s \in k[X] \setminus \mathfrak{m}_p$.

Then $s(p) \neq 0$ so $p \in D_s$, and gh' - g'h = 0 on D_s .

Thus $\frac{g}{h} = \frac{g'}{h'}$ as functions $D_s \to k$, as required.

By construction, the two maps are inverse to each other, so they both define isomorphisms. \Box

An example

Let us return to A = k[x, y]/(xy), corresponding to $X \subset \mathbb{A}^2$ being the union of coordinate axes.

Consider the point p = (1, 0). Its maximal ideal is

$$\mathfrak{m}_p = \langle x - 1, y \rangle \lhd k[x, y]/(xy) = k[X].$$

Naively, we would like to invert all functions that do not vanish at p, so allow denominators from the set

$$S = \{ f \in A : f \notin \langle x - 1, y \rangle \} = A \setminus \mathfrak{m}_p.$$

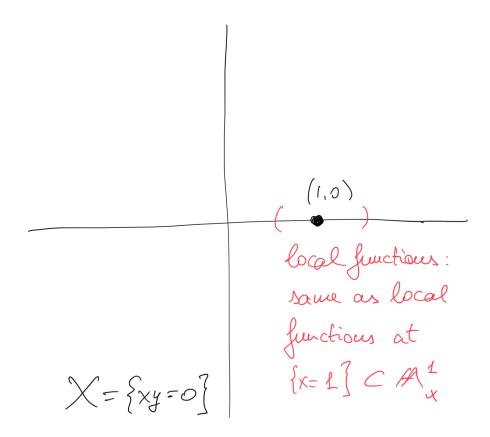
However, while the global functions 0 and y are different in k[X], as we saw before, they become equal near p, and also in the localisation $S^{-1}A = k[X]_{\mathfrak{m}_p}$. Indeed, in this example we get

$$k[x]_{\mathfrak{m}_p} = k[x][\frac{1}{h} : h(p) \neq 0] \subset \operatorname{Frac}(k[x]) = k(x).$$

This is the same as what we would have obtained for

$$p = (1,0) \subset Y = \{y = 0\} \subset \mathbb{A}^2.$$

An example



An example, continued

Continue with to A = k[x, y]/(xy). Consider the point $q = (0, 0) \in X$, the intersection point of the two components. Its maximal ideal is

$$\mathfrak{m}_q = \langle x, y \rangle \lhd k[x, y]/(xy) = k[X].$$

Now we have $y \neq 0$ near this point, so in the local ring $k[X]_{\mathfrak{m}_q}$. Indeed there are surjective restriction maps, obtained by setting y = 0, respectively x = 0:

$$k[X]_{\mathfrak{m}_q} \to k[x]_{\langle x \rangle}$$

and

$$k[X]_{\mathfrak{m}_q} \to k[y]_{\langle y \rangle},$$

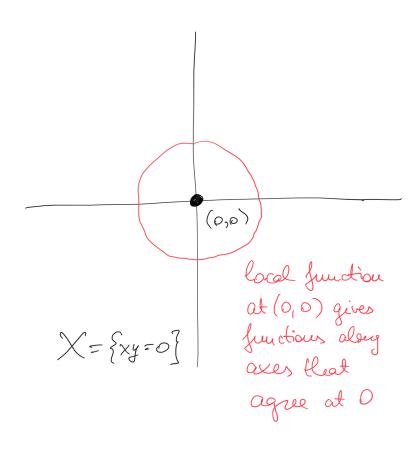
the local rings at the origin in the two copies of the affine line.

Using these two surjective maps, it is an easy exercise to show that

$$k[X]_{\mathfrak{m}_q} \subset k[x]_{\langle x \rangle} \times k[y]_{\langle y \rangle}$$

is the subring of elements of the product ring consisting of pairs of functions with the same value at the origin.

An example, continued



Localisation: final general properties on irreducible varieties

For $X \subset \mathbb{A}^n$, an **irreducible** variety corresponding to a coordinate ring k[X] which is a domain, we obtain from Algebraic Property (1) above,

$$k[X] \subset \mathcal{O}_{X,p} \cong k[X]_{\mathfrak{m}_p} = k[X][\frac{1}{h}: h(p) \neq 0] \subset \operatorname{Frac}(k[X]) = k(X).$$

We also have, from Algebraic Property (3) above,

$$k[X] = \bigcap_{p \in X} \mathcal{O}_{X,p} \subset k(X).$$

In other words, on an irreducible affine variety, a rational function is regular if and only if it defines a regular germ at each point.

Localisation on reducible varieties

For $X \subset \mathbb{A}^n$ reducible, write

$$X = \bigcup_{i=1}^{N} X_i$$

an irreducible decomposition.

Consider a point

$$p \in X_i \setminus \bigcup_{j \neq i} X_j$$

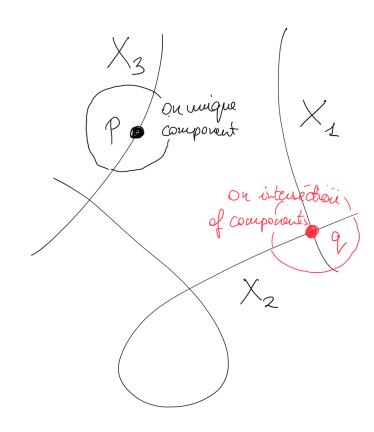
lying on a unique irreducible component.

Then essentially the same argument that was used in the example before proves that the ring of germs at p is

$$\mathcal{O}_{X,p} \cong k[X]_{\mathfrak{m}_p} \cong k[X_i]_{\mathfrak{m}_p}.$$

In other words, for such points the ring of germs "sees" only the (unique) irreducible component p lies on.

Localisation on reducible varieties



Intersection numbers via localization

This is "off-topic" but too nice not to mention.

Let $f_1, f_2 \in k[x, y]$ be two polynomials without common factors. Let

$$C_i = \{f_i = 0\} \subset \mathbb{A}^2$$

be the two affine plane curves defined by the f_i .

Let $p \in C_1 \cap C_2$ be an intersection point. Let $\mathfrak{m}_p \triangleleft k[x,y]$ be the maximal ideal of this point on the affine plane.

Definition The intersection multiplicity of C_1 and C_2 at p is the (finite) quantity

$$\dim_k k[x,y]_{\mathfrak{m}_p}/\langle f_1,f_2\rangle.$$

This is the (local) quantity that goes into the full version of Bezout's theorem.