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Regular functions in the affine case

Start with an affine variety X C A". For U C X open, recall

Ox(U) = {regular functions f : U — k}
= {f:U —k: fisregular at each p € U}.

Here f regular at p means: on some open p € W C U, the following functions
W — k are equal:

f:% some g, h € k[X]| and h(w) # 0 for all w € W.

Examples

1. Let U = D, = A*\ V(z) C A? then f: D, — k defined by f(z,y) =4

is a regular function on U = D,
f c Ox(Dﬁ

2. More generally, for any g, h € k[X], with h # 0, we have 7 € Ox (D).



Regular functions on quasi-projective varieties

This definition generalises readily to quasi-projective varieties, remembering the
slogan “quasi-projective varieties are locally affine”.

Let X C P" be a quasi-projective variety.
Definition For any open subset U C X, let
Ox(U)={F :U — k: F is regular at each p € U}

be the ring of regular functions on U.

Here F' regular at p means: on some affine open p € W C U, Fly is
regular at p as previously defined.



Rings of germs of functions on quasi-projective varieties

Let X C IP" be a quasi-projective variety, and p € X. The following definition
is now immediate; note that all terms we use here are now defined for general
quasi-projective varieties.

Definition A function germ at p is an equivalence class of pairs (U, f),
with p € U C X open, and f : U — k a regular function, where we identify

(U, f) ~(V.g)
if flw =glwonanopenpeW CcUNV.

Denote by Ox , the set of germs of regular functions at p. This is a k-algebra
in an obvious way.



Rings of germs of functions on quasi-projective varieties

In practice, it is easiest to approach Oy, on an affine open neighbourhood
peV CX.
Lecture 12, Theorem shows that affines cover a quasi-projective variety.

Proposition Let p € V C X be an affine neighbourhood of p in the quasi-
projective variety X. Then

Oxyp = k|V]n,,
where m, <1 k[V] is the maximal ideal of p € V' in the coordinate ring of the
affine variety V.
Proof Use Lecture 11, Proposition. []

One way to view this is to say that that the localization on the right hand side
is independent of the affine neighbourhood of p chosen.



Gluing regular functions

Consider open sets Uy, Us in a quasi-projective variety X, and regular functions

f1 € O)((U1> and fg c OX(UQ).

Claim A necessary and sufficient condition to be able to find a regular function
f € Ox(Uy UU,) restricting to f; on U is that

fl’UlﬂUg — f?’UlﬁUg'

Proof Necessity is obvious. To see sufficiency, define f = f; on U;. Then
f U UUy — k is well-defined. Regularity follows because regularity is a local
condition and we already know it is satisfied by fi, fo on Uy, Us. [

This result is almost a “tautology”. But it would play an important role in a
different development of the subject; it says that the collection of rings Ox (U)
attached to open sets U C X forms a sheaf. We will not use this language,
but see the Lecture Notes for some more details (non-examinable).



Regular functions are not necessarily global quotients

For f € Ox(U), it may not be possible to find a fraction f = 7 that works on
all of U.

Example Consider the affine variety
X =V(zw — yz) C A,

Let U = D,UD, C X, a quasi-projective variety.
Consider

f=2=7 ¢ k(X)=Frac k[X].
y w
This is a regular function

f c O)(<U),

glued from regular functions on D,, D,, that agree on the intersection.

It can be proved that there is no a global expression f = % defined on all of U
that defines f.

For algebra aficionados: this is a reflection of the fact that k[X] is not a UFD.



Regular functions on affine varieties

We noted before that for X C A" an affine variety, elements of its coordinate
ring define regular functions: there is an inclusion

kI X] — Ox(X)
defined by mapping f {

We now have the means to prove the converse: the locally everywhere regular
functions on an affine variety are exactly elements of its coordinate ring.

Theorem Let X C A" be an affine variety. Then
Ox(X) = k[ X].

This is important, as it gives a “local” way to characterise the coordinate ring of
an affine (quasi-projective) variety as the ring of everywhere regular functions.



Regular functions on affine varieties: an application

Before we give the proof, let us see an application.

Proposition The quasi-projective variety X = A%\ {0} is not affine.
The proof consists of two parts.

Claim 1 We have

Claim 2 This isomorphism implies that X is not affine.

Colloquial summary

o If X were affine, its coordinate ring would have to be its ring of regular
functions.

e But then X would have to be A%, which it isn't.



Proof of Claim 1

Claim 1 We have

Ox(X) = klz, yl.
Proof We have A*\ {0} = D,UD,, so f € Ox(X) defines regular functions
fi = flp, € kD], fo = flp, € k|D,| which agree on the intersection:
filp.np, = flp.np, = folpunp, € K[D: N D).

We know

and similarly Ox(D,) = k|z, y|, (Lemma from Lecture 12).
We get the following intersection in k(z,y):

OX(X) - [Da:] [ }

klz,yl. N klz, ],
kle, o=yl N k[, g,y
klz, y).
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Proof of Claim 2

Claim 2 The isomorphism Ox(X) = k[z, y| implies that X is not affine.

Proof of Claim 2 Suppose that X is isomorphic to an affine variety
X=Y CA"
Then this isomorphism would give us isomorphisms
EY] = Oy(Y) = Ox(X) = Kz, y|.

So Y = A? as affine varieties can be recognised from their coordinate rings.
Assume that we have an isomorphism ¢ : k[A%] = 0,2(A?) — Ox(X). The
preimage of the prime ideal I = (z,y) C Ox(X) yields a prime ideal J =
0 H(I) < k[AZ].

But V(I) =0 C X, s0 V(J) = o*(V(I)) =0 C A%

So J = klz,y] by the affine Nullstellensatz.

But ¢ is an isomorphism, so I = ¢(J) = k|x, y|, contradiction. ]



Regular functions on affine varieties: the proot

Theorem Let X C A" be an affine variety. Then
Ox(X) = k[ X].

Proof We will prove this result under the additional assumption that X is
irreducible. The general case is treated in the Lecture Notes.
We need to show that any element of Ox(X) comes from the coordinate ring.

Solet f € Ox(X).
For all p € X, there exists an open neighbourhood p € U, C X such that

g
f—h—ZasmapsUp%k,

where g,, h, € k[X], and h, # 0 at all points of Uj,.

Note that at this point, we have an infinite collection of (g,, h,) representing f,
one for each point of X.



Regular functions on affine varieties: the proot

Consider the ideal of denominators
J=(h,:pe X) CklX]

We have
V(J) =0,

since h,(p) # 0.

By the Nullstellensatz then, J = (1) the whole coordinate ring. So there exists
a finite decomposition

1= ahy, € k[X] (1)

for some finite collection of p; € X, and «; € k| X].

Abbreviate h; = hy,, gi = g,., Di = thz_. Note that implies that the D; are
an open cover of X: at each point of X, at least one of the h; must be nonzero.



Regular functions on affine varieties: the proot

We have now built a finite open cover {D;} of X, such that on each of these
open sets, f is represented by g;/h;, a ratio of elements of k[X].

On the overlap D; N D;, we have g;/h; = g;/h;, so on this intersection,
gz'hj — higj =0 e OX(DZ M D])
However, since X is irreducible, this vanishing must be true over the whole of
X, so for all 7,7
gihj — higj =0 e ]C[X]
We then deduce, on Dj,
N hig; N a
_——1 Oé@ = Oéilj: jl Q;3;.

i T SLUE 0 ST S

Once again, D] C X is dense, so we deduce over the Whole Of X that

N
f=) aigi€k[X]. O
i=1



Regular functions on projective varieties

Affine varieties admit many global regular functions: elements of their coordi-
nate rings.

Let us conclude this lecture by discussing the opposite case: projective varieties.

Theorem Let X C P" be an irreducible projective variety. Then the only
global regular functions on X are the constants:

Ox(X) = k.

The proof, while not difficult, is somewhat lengthy, so we omit it. We discuss
one example, and then sketch the proof of one more general case.

Corollary The variety X = A%\ {0} is not projective.



Regular functions on the projective line

Example Consider X = P! = U, U U, with projective coordinates (zq : x1).
The open sets U; = {z; # 0} = Al intersect in V = U; N U; = A'\ {0}.

Then Uy, Uy are affine varieties, with
Ox(Up) = k(U] = klz], Ox(Uh) = kU] = klyl.

The affine coordinates x = x1/xg, y = xo/x are related by y = 1/, so we
can write

Ox(U()) = k[x], O)((U1> = /f[CL’_l].
We also have
Ox(V) 2 k[V] = k[z], = klz,z71].

We thus deduce
Ox(X) = klz] Nklz™] C klz, 271

This intersection is clearly

Op (PY) = k.



Regular functions on projective space

Theorem The only global regular functions on P" are the constants:

Opn(P") 2 k.

Sketch Proof Write P = U!' ,U; for the standard open cover with U; = A",
We have

) )

Opn(Uy) = K[U)] = k [@ L x—] .

A non-constant f would have to restrict as a non-constant polynomial to each
of the U;. That means that its expression as a rational function in the homo-
geneous coordinates x; will have a denominator. But this denominator has to
vanish somewhere on P, and f cannot be regular there.

[l



