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Regular functions in the affine case

Start with an affine variety X ⊂ An. For U ⊂ X open, recall

OX(U) = {regular functions f : U → k}
= {f : U → k : f is regular at each p ∈ U}.

Here f regular at p means: on some open p ∈ W ⊂ U , the following functions

W → k are equal:

f =
g

h
some g, h ∈ k[X ] and h(w) 6= 0 for all w ∈ W.

Examples

1. Let U = Dx = A2 \ V(x) ⊂ A2, then f : Dx → k defined by f (x, y) = y
x

is a regular function on U = Dx:

f ∈ OX(Dx).

2. More generally, for any g, h ∈ k[X ], with h 6= 0, we have g
h ∈ OX(Dh).



Regular functions on quasi-projective varieties

This definition generalises readily to quasi-projective varieties, remembering the

slogan “quasi-projective varieties are locally affine”.

Let X ⊂ Pn be a quasi-projective variety.

Definition For any open subset U ⊂ X , let

OX(U) = {F : U → k : F is regular at each p ∈ U}

be the ring of regular functions on U .

Here F regular at p means: on some affine open p ∈ W ⊂ U , F |W is

regular at p as previously defined.



Rings of germs of functions on quasi-projective varieties

Let X ⊂ Pn be a quasi-projective variety, and p ∈ X . The following definition

is now immediate; note that all terms we use here are now defined for general

quasi-projective varieties.

Definition A function germ at p is an equivalence class of pairs (U, f ),

with p ∈ U ⊂ X open, and f : U → k a regular function, where we identify

(U, f ) ∼ (V, g)

if f |W = g|W on an open p ∈ W ⊂ U ∩ V .

Denote by OX,p the set of germs of regular functions at p. This is a k-algebra

in an obvious way.



Rings of germs of functions on quasi-projective varieties

In practice, it is easiest to approach OX,p on an affine open neighbourhood

p ∈ V ⊂ X .

Lecture 12, Theorem shows that affines cover a quasi-projective variety.

Proposition Let p ∈ V ⊂ X be an affine neighbourhood of p in the quasi-

projective variety X . Then

OX,p ∼= k[V ]mp,

where mp C k[V ] is the maximal ideal of p ∈ V in the coordinate ring of the

affine variety V .

Proof Use Lecture 11, Proposition. �

One way to view this is to say that that the localization on the right hand side

is independent of the affine neighbourhood of p chosen.



Gluing regular functions

Consider open sets U1, U2 in a quasi-projective variety X , and regular functions

f1 ∈ OX(U1) and f2 ∈ OX(U2).

Claim A necessary and sufficient condition to be able to find a regular function

f ∈ OX(U1 ∪ U2) restricting to fi on Ui is that

f1|U1∩U2 = f2|U1∩U2.

Proof Necessity is obvious. To see sufficiency, define f = fi on Ui. Then

f : U1∪U2 → k is well-defined. Regularity follows because regularity is a local

condition and we already know it is satisfied by f1, f2 on U1, U2. �

This result is almost a “tautology”. But it would play an important role in a

different development of the subject; it says that the collection of rings OX(U)

attached to open sets U ⊂ X forms a sheaf. We will not use this language,

but see the Lecture Notes for some more details (non-examinable).



Regular functions are not necessarily global quotients

For f ∈ OX(U), it may not be possible to find a fraction f = g
h that works on

all of U .

Example Consider the affine variety

X = V(xw − yz) ⊂ A4.

Let U = Dy ∪Dw ⊂ X , a quasi-projective variety.

Consider

f =
x

y
=
z

w
∈ k(X) = Frac k[X ].

This is a regular function

f ∈ OX(U),

glued from regular functions on Dy, Dw that agree on the intersection.

It can be proved that there is no a global expression f = g
h defined on all of U

that defines f .

For algebra aficionados: this is a reflection of the fact that k[X ] is not a UFD.



Regular functions on affine varieties

We noted before that for X ⊂ An an affine variety, elements of its coordinate

ring define regular functions: there is an inclusion

k[X ] ↪→ OX(X)

defined by mapping f 7→ f
1 .

We now have the means to prove the converse: the locally everywhere regular

functions on an affine variety are exactly elements of its coordinate ring.

Theorem Let X ⊂ An be an affine variety. Then

OX(X) ∼= k[X ].

This is important, as it gives a “local” way to characterise the coordinate ring of

an affine (quasi-projective) variety as the ring of everywhere regular functions.



Regular functions on affine varieties: an application

Before we give the proof, let us see an application.

Proposition The quasi-projective variety X = A2 \ {0} is not affine.

The proof consists of two parts.

Claim 1 We have

OX(X) ∼= k[x, y].

Claim 2 This isomorphism implies that X is not affine.

Colloquial summary

• If X were affine, its coordinate ring would have to be its ring of regular

functions.

• But then X would have to be A2, which it isn’t.



Proof of Claim 1

Claim 1 We have

OX(X) ∼= k[x, y].

Proof We have A2 \{0} = Dx∪Dy, so f ∈ OX(X) defines regular functions

f1 = f |Dx ∈ k[Dx], f2 = f |Dy ∈ k[Dy] which agree on the intersection:

f1|Dx∩Dy = f |Dx∩Dy = f2|Dx∩Dy ∈ k[Dx ∩Dy].

We know

OX(Dx) = k[x, y]x ⊂ k(x, y)

and similarly OX(Dy) = k[x, y]y (Lemma from Lecture 12).

We get the following intersection in k(x, y):

OX(X) = k[Dx] ∩ k[Dy]

= k[x, y]x ∩ k[x, y]y
= k[x, x−1, y] ∩ k[x, y, y−1]

= k[x, y].



Proof of Claim 2

Claim 2 The isomorphism OX(X) ∼= k[x, y] implies that X is not affine.

Proof of Claim 2 Suppose that X is isomorphic to an affine variety

X ∼= Y ⊂ An.

Then this isomorphism would give us isomorphisms

k[Y ] ∼= OY (Y ) ∼= OX(X) ∼= k[x, y].

So Y ∼= A2 as affine varieties can be recognised from their coordinate rings.

Assume that we have an isomorphism ϕ : k[A2] = OA2(A2) → OX(X). The

preimage of the prime ideal I = 〈x, y〉 ⊂ OX(X) yields a prime ideal J =

ϕ−1(I)C k[A2].

But V(I) = ∅ ⊂ X , so V(J) = ϕ∗(V(I)) = ∅ ⊂ A2.

So J = k[x, y] by the affine Nullstellensatz.

But ϕ is an isomorphism, so I = ϕ(J) = k[x, y], contradiction. �



Regular functions on affine varieties: the proof

Theorem Let X ⊂ An be an affine variety. Then

OX(X) ∼= k[X ].

Proof We will prove this result under the additional assumption that X is

irreducible. The general case is treated in the Lecture Notes.

We need to show that any element of OX(X) comes from the coordinate ring.

So let f ∈ OX(X).

For all p ∈ X , there exists an open neighbourhood p ∈ Up ⊂ X such that

f =
gp
hp

as maps Up → k,

where gp, hp ∈ k[X ], and hp 6= 0 at all points of Up.

Note that at this point, we have an infinite collection of (gp, hp) representing f ,

one for each point of X .



Regular functions on affine varieties: the proof

Consider the ideal of denominators

J = 〈hp : p ∈ X〉 ⊂ k[X ].

We have

V(J) = ∅,
since hp(p) 6= 0.

By the Nullstellensatz then, J = 〈1〉 the whole coordinate ring. So there exists

a finite decomposition

1 =

N∑
i=1

αihpi ∈ k[X ] (1)

for some finite collection of pi ∈ X , and αi ∈ k[X ].

Abbreviate hi = hpi, gi = gpi, Di = Dhpi
. Note that (1) implies that the Di are

an open cover of X : at each point of X , at least one of the hi must be nonzero.



Regular functions on affine varieties: the proof

We have now built a finite open cover {Di} of X , such that on each of these

open sets, f is represented by gi/hi, a ratio of elements of k[X ].

On the overlap Di ∩Dj, we have gi/hi = gj/hj, so on this intersection,

gihj − higj = 0 ∈ OX(Di ∩Dj).

However, since X is irreducible, this vanishing must be true over the whole of

X , so for all i, j

gihj − higj = 0 ∈ k[X ].

We then deduce, on Dj,

f =
gj
hj

= 1 · gj
hj

=

N∑
i=1

αihi ·
gj
hj

=

N∑
i=1

αi
higj
hj

=

N∑
i=1

αi
hjgi
hj

=

N∑
i=1

αigi.

Once again, Dj ⊂ X is dense, so we deduce over the whole of X that

f =

N∑
i=1

αigi ∈ k[X ]. �



Regular functions on projective varieties

Affine varieties admit many global regular functions: elements of their coordi-

nate rings.

Let us conclude this lecture by discussing the opposite case: projective varieties.

Theorem Let X ⊂ Pn be an irreducible projective variety. Then the only

global regular functions on X are the constants:

OX(X) ∼= k.

The proof, while not difficult, is somewhat lengthy, so we omit it. We discuss

one example, and then sketch the proof of one more general case.

Corollary The variety X = A2 \ {0} is not projective.



Regular functions on the projective line

Example Consider X = P1 = U0∪U1, with projective coordinates (x0 : x1).

The open sets Ui = {xi 6= 0} ∼= A1 intersect in V = Ui ∩ Uj ∼= A1 \ {0}.
Then U0, U1 are affine varieties, with

OX(U0) ∼= k[U0] = k[x], OX(U1) ∼= k[U1] = k[y].

The affine coordinates x = x1/x0, y = x0/x1 are related by y = 1/x, so we

can write

OX(U0) = k[x], OX(U1) = k[x−1].

We also have

OX(V ) ∼= k[V ] = k[x]x = k[x, x−1].

We thus deduce

OX(X) = k[x] ∩ k[x−1] ⊂ k[x, x−1].

This intersection is clearly

OP1(P1) = k.



Regular functions on projective space

Theorem The only global regular functions on Pn are the constants:

OPn(Pn) ∼= k.

Sketch Proof Write Pn = ∪ni=0Ui for the standard open cover with Ui ∼= An.

We have

OPn(Ui) ∼= k[Ui] ∼= k

[
x0
xi
, . . . ,

xn
xi

]
.

A non-constant f would have to restrict as a non-constant polynomial to each

of the Ui. That means that its expression as a rational function in the homo-

geneous coordinates xi will have a denominator. But this denominator has to

vanish somewhere on Pn, and f cannot be regular there.

�


