C3.4 Algebraic Geometry

Lecture 13. Regular functions on quasi-projective varieties

Balázs Szendrői, University of Oxford, Michaelmas 2020

Start with an affine variety $X \subset \mathbb{A}^n$. For $U \subset X$ open, recall

$$\mathcal{O}_X(U) = \{ \text{regular functions } f : U \to k \} \\ = \{ f : U \to k : f \text{ is regular at each } p \in U \}.$$

Here f regular at p means: on some open $p \in W \subset U$, the following functions $W \to k$ are equal:

$$f = \frac{g}{h}$$
 some $g, h \in k[X]$ and $h(w) \neq 0$ for all $w \in W$.

Examples

1. Let $U = D_x = \mathbb{A}^2 \setminus \mathbb{V}(x) \subset \mathbb{A}^2$, then $f : D_x \to k$ defined by $f(x, y) = \frac{y}{x}$ is a regular function on $U = D_x$:

$$f \in \mathcal{O}_X(D_x).$$

2. More generally, for any $g, h \in k[X]$, with $h \neq 0$, we have $\frac{g}{h} \in \mathcal{O}_X(D_h)$.

This definition generalises readily to quasi-projective varieties, remembering the slogan "quasi-projective varieties are locally affine".

Let $X \subset \mathbb{P}^n$ be a quasi-projective variety.

Definition For any open subset $U \subset X$, let

 $\mathcal{O}_X(U) = \{F : U \to k : F \text{ is regular at each } p \in U\}$

be the ring of regular functions on U.

Here F regular at p means: on some affine open $p \in W \subset U$, $F|_W$ is regular at p as previously defined.

Let $X \subset \mathbb{P}^n$ be a quasi-projective variety, and $p \in X$. The following definition is now immediate; note that all terms we use here are now defined for general quasi-projective varieties.

Definition A function germ at p is an equivalence class of pairs (U, f), with $p \in U \subset X$ open, and $f : U \to k$ a regular function, where we identify

 $(U,f)\sim (V,g)$

if $f|_W = g|_W$ on an open $p \in W \subset U \cap V$.

Denote by $\mathcal{O}_{X,p}$ the set of germs of regular functions at p. This is a k-algebra in an obvious way.

Rings of germs of functions on quasi-projective varieties

In practice, it is easiest to approach $\mathcal{O}_{X,p}$ on an **affine** open neighbourhood $p \in V \subset X$.

Lecture 12, Theorem shows that affines cover a quasi-projective variety.

Proposition Let $p \in V \subset X$ be an **affine** neighbourhood of p in the quasiprojective variety X. Then

$$\mathcal{O}_{X,p} \cong k[V]_{\mathfrak{m}_p},$$

where $\mathfrak{m}_p \triangleleft k[V]$ is the maximal ideal of $p \in V$ in the coordinate ring of the affine variety V.

Proof Use Lecture 11, Proposition.

One way to view this is to say that that the localization on the right hand side is **independent** of the affine neighbourhood of p chosen.

Consider open sets U_1, U_2 in a quasi-projective variety X, and regular functions $f_1 \in \mathcal{O}_X(U_1)$ and $f_2 \in \mathcal{O}_X(U_2)$.

Claim A necessary and sufficient condition to be able to find a regular function $f \in \mathcal{O}_X(U_1 \cup U_2)$ restricting to f_i on U_i is that

$$f_1|_{U_1 \cap U_2} = f_2|_{U_1 \cap U_2}.$$

Proof Necessity is obvious. To see sufficiency, define $f = f_i$ on U_i . Then $f: U_1 \cup U_2 \to k$ is well-defined. Regularity follows because regularity is a local condition and we already know it is satisfied by f_1, f_2 on U_1, U_2 .

This result is almost a "tautology". But it would play an important role in a different development of the subject; it says that the collection of rings $\mathcal{O}_X(U)$ attached to open sets $U \subset X$ forms a **sheaf**. We will not use this language, but see the Lecture Notes for some more details (non-examinable).

For $f \in \mathcal{O}_X(U)$, it may not be possible to find a fraction $f = \frac{g}{h}$ that works on all of U.

Example Consider the affine variety

$$X = \mathbb{V}(xw - yz) \subset \mathbb{A}^4.$$

Let $U = D_y \cup D_w \subset X$, a quasi-projective variety. Consider

$$f = \frac{x}{y} = \frac{z}{w} \in k(X) = \operatorname{Frac} k[X].$$

This is a **regular** function

$$f \in \mathcal{O}_X(U),$$

glued from regular functions on D_y, D_w that agree on the intersection.

It can be proved that there is no a global expression $f = \frac{g}{h}$ defined on all of U that defines f.

For algebra afficionados: this is a reflection of the fact that k[X] is not a UFD.

We noted before that for $X \subset \mathbb{A}^n$ an affine variety, elements of its coordinate ring define regular functions: there is an inclusion

$$k[X] \hookrightarrow \mathcal{O}_X(X)$$

defined by mapping $f \mapsto \frac{f}{1}$.

We now have the means to prove the converse: the locally everywhere regular functions on an affine variety are exactly elements of its coordinate ring.

Theorem Let $X \subset \mathbb{A}^n$ be an affine variety. Then

 $O_X(X) \cong k[X].$

This is important, as it gives a "local" way to characterise the coordinate ring of an affine (quasi-projective) variety as the ring of everywhere regular functions. Before we give the proof, let us see an application.

Proposition The quasi-projective variety $X = \mathbb{A}^2 \setminus \{0\}$ is **not** affine. The proof consists of two parts.

Claim 1 We have

$$\mathcal{O}_X(X) \cong k[x,y].$$

Claim 2 This isomorphism implies that X is not affine.

Colloquial summary

- If X were affine, its coordinate ring would have to be its ring of regular functions.
- But then X would have to be \mathbb{A}^2 , which it isn't.

Proof of Claim 1

Claim 1 We have

$$\mathcal{O}_X(X) \cong k[x,y].$$

Proof We have $\mathbb{A}^2 \setminus \{0\} = D_x \cup D_y$, so $f \in \mathcal{O}_X(X)$ defines regular functions $f_1 = f|_{D_x} \in k[D_x], f_2 = f|_{D_y} \in k[D_y]$ which agree on the intersection: $f_1|_{D_x \cap D_y} = f|_{D_x \cap D_y} = f_2|_{D_x \cap D_y} \in k[D_x \cap D_y].$ We know

$$\mathcal{O}_X(D_x) = k[x,y]_x \subset k(x,y)$$

and similarly $\mathcal{O}_X(D_y) = k[x, y]_y$ (Lemma from Lecture 12). We get the following intersection in k(x, y):

$$\mathcal{O}_X(X) = k[D_x] \cap k[D_y] = k[x, y]_x \cap k[x, y]_y = k[x, x^{-1}, y] \cap k[x, y, y^{-1}] = k[x, y].$$

Claim 2 The isomorphism $\mathcal{O}_X(X) \cong k[x, y]$ implies that X is not affine. **Proof of Claim 2** Suppose that X is isomorphic to an affine variety

$$X \cong Y \subset \mathbb{A}^n.$$

Then this isomorphism would give us isomorphisms

$$k[Y] \cong \mathcal{O}_Y(Y) \cong \mathcal{O}_X(X) \cong k[x, y].$$

So $Y \cong \mathbb{A}^2$ as affine varieties can be recognised from their coordinate rings. Assume that we have an isomorphism $\varphi : k[\mathbb{A}^2] = \mathcal{O}_{\mathbb{A}^2}(\mathbb{A}^2) \to \mathcal{O}_X(X)$. The preimage of the prime ideal $I = \langle x, y \rangle \subset \mathcal{O}_X(X)$ yields a prime ideal $J = \varphi^{-1}(I) \triangleleft k[\mathbb{A}^2]$. But $\mathbb{V}(I) = \emptyset \subset X$, so $\mathbb{V}(J) = \varphi^*(\mathbb{V}(I)) = \emptyset \subset \mathbb{A}^2$. So J = k[x, y] by the affine Nullstellensatz. But φ is an isomorphism, so $I = \varphi(J) = k[x, y]$, contradiction. **Theorem** Let $X \subset \mathbb{A}^n$ be an affine variety. Then

$$O_X(X) \cong k[X].$$

Proof We will prove this result under the additional assumption that X is irreducible. The general case is treated in the Lecture Notes.

We need to show that any element of $O_X(X)$ comes from the coordinate ring. So let $f \in O_X(X)$.

For all $p \in X$, there exists an open neighbourhood $p \in U_p \subset X$ such that

$$f = \frac{g_p}{h_p}$$
 as maps $U_p \to k$,

where $g_p, h_p \in k[X]$, and $h_p \neq 0$ at all points of U_p .

Note that at this point, we have an infinite collection of (g_p, h_p) representing f, one for each point of X.

Regular functions on affine varieties: the proof

Consider the ideal of denominators

$$J = \langle h_p : p \in X \rangle \subset k[X].$$

We have

$$\mathbb{V}(J) = \emptyset,$$

since $h_p(p) \neq 0$.

By the Nullstellensatz then, $J = \langle 1 \rangle$ the whole coordinate ring. So there exists a finite decomposition

$$1 = \sum_{i=1}^{N} \alpha_i h_{p_i} \in k[X] \tag{1}$$

for some **finite** collection of $p_i \in X$, and $\alpha_i \in k[X]$.

Abbreviate $h_i = h_{p_i}$, $g_i = g_{p_i}$, $D_i = D_{h_{p_i}}$. Note that (1) implies that the D_i are an open cover of X: at each point of X, at least one of the h_i must be nonzero.

We have now built a finite open cover $\{D_i\}$ of X, such that on each of these open sets, f is represented by g_i/h_i , a ratio of elements of k[X].

On the overlap $D_i \cap D_j$, we have $g_i/h_i = g_j/h_j$, so on this intersection,

$$g_i h_j - h_i g_j = 0 \in \mathcal{O}_X(D_i \cap D_j).$$

However, since X is irreducible, this vanishing must be true over the whole of X, so for all i, j

$$g_i h_j - h_i g_j = 0 \in k[X].$$

We then deduce, on D_j ,

$$f = \frac{g_j}{h_j} = 1 \cdot \frac{g_j}{h_j} = \sum_{i=1}^N \alpha_i h_i \cdot \frac{g_j}{h_j} = \sum_{i=1}^N \alpha_i \frac{h_i g_j}{h_j} = \sum_{i=1}^N \alpha_i \frac{h_j g_i}{h_j} = \sum_{i=1}^N \alpha_i g_i.$$

Once again, $D_j \subset X$ is dense, so we deduce over the whole of X that

$$f = \sum_{i=1}^{N} \alpha_i g_i \in k[X]. \quad \Box$$

Affine varieties admit many global regular functions: elements of their coordinate rings.

Let us conclude this lecture by discussing the opposite case: projective varieties.

Theorem Let $X \subset \mathbb{P}^n$ be an irreducible **projective** variety. Then the only global regular functions on X are the constants:

$$\mathcal{O}_X(X) \cong k.$$

The proof, while not difficult, is somewhat lengthy, so we omit it. We discuss one example, and then sketch the proof of one more general case.

Corollary The variety $X = \mathbb{A}^2 \setminus \{0\}$ is not projective.

Example Consider $X = \mathbb{P}^1 = U_0 \cup U_1$, with projective coordinates $(x_0 : x_1)$. The open sets $U_i = \{x_i \neq 0\} \cong \mathbb{A}^1$ intersect in $V = U_i \cap U_j \cong \mathbb{A}^1 \setminus \{0\}$. Then U_0, U_1 are affine varieties, with

$$\mathcal{O}_X(U_0) \cong k[U_0] = k[x], \quad \mathcal{O}_X(U_1) \cong k[U_1] = k[y].$$

The affine coordinates $x = x_1/x_0$, $y = x_0/x_1$ are related by y = 1/x, so we can write

$$\mathcal{O}_X(U_0) = k[x], \quad \mathcal{O}_X(U_1) = k[x^{-1}].$$

We also have

$$\mathcal{O}_X(V) \cong k[V] = k[x]_x = k[x, x^{-1}].$$

We thus deduce

$$\mathcal{O}_X(X) = k[x] \cap k[x^{-1}] \subset k[x, x^{-1}].$$

This intersection is clearly

$$\mathcal{O}_{\mathbb{P}^1}(\mathbb{P}^1) = k.$$

Theorem The only global regular functions on \mathbb{P}^n are the constants:

$$\mathcal{O}_{\mathbb{P}^n}(\mathbb{P}^n)\cong k.$$

Sketch Proof Write $\mathbb{P}^n = \bigcup_{i=0}^n U_i$ for the standard open cover with $U_i \cong \mathbb{A}^n$. We have

$$\mathcal{O}_{\mathbb{P}^n}(U_i) \cong k[U_i] \cong k\left[\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right]$$

A non-constant f would have to restrict as a non-constant polynomial to each of the U_i . That means that its expression as a rational function in the homogeneous coordinates x_i will have a denominator. But this denominator has to vanish somewhere on \mathbb{P}^n , and f cannot be regular there.