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The function field of an irreducible variety

All varieties in this lecture will be irreducible.

Let X ⊂ An be an irreducible affine variety.

Recall that this means that the coordinate ring

k[X ] = k[x1, . . . , xn]/I(X)

is an integral domain.

Definition The function field of X is

k(X) = Frac(k[X ]) = {gh : g, h ∈ k[X ], h 6= 0},

the field of fractions of the integral domain k[X ].



Examples

Examples

• For X = A1, we have

k[A1] ∼= k[x],

and so

k(A1) ∼= k(x),

the field of rational functions in the variable x.

• For X = A1 \ 0, we have

k[X ] ∼= k[x]x = k[x, x−1],

and so

k(X) ∼= k(x) ∼= k[A1].

• For X = An, we have k[An] ∼= k[x1, . . . , xn]. So

k(An) ∼= k(x1, . . . , xn).



A basic lemma

Let X be an irreducible affine variety.

Lemma For h ∈ k[X ], let

Dh = X \ V(h) ⊂ X

be the corresponding basic open subset. Then

k(Dh) ∼= k(X).

Proof By a Lemma in Lecture 12, we have

k[Dh] ∼= k[X ]h = k[X ][h−1].

Thus

k(Dh) = Frac(k[X ]h) ∼= Frac(k[X ]) ∼= k(X).

�



Important corollaries

Corollary 1 If U ⊂ X is any affine open subset in an irreducible affine

variety, then

k(U) ∼= k(X).

Proof Basic open sets form a basis of the topology of X .

Let Dh ⊂ U be a basic open of X for h ∈ k[X ]. Consider

g = h|U ∈ OX(U) ∼= OU(U) ∼= k[U ],

the latter isomorphism following from U being affine.

So Dh = Dg is also a basic open of U .

Now we obtain

k(U) ∼= k(Dg) = k(Dh) ∼= k(X).

�



Important corollaries

Corollary 2 If U1, U2 ⊂ X are affine open subsets in an irreducible quasi-

projective variety X ⊂ Pn, then

k(U1) ∼= k(U2).

Proof As affine opens form a basis of the topology of X , the intersection

U1 ∩ U2 contains an affine subvariety V . Then by Corollary 1,

k(U1) ∼= k(V ) ∼= k(U2).

�



The function field of an irreducible quasi-projective variety

Let X ⊂ Pn be an irreducible quasi-projective variety.

Definition The function field of X is

k(X) = k(U) = Frac(k[U ]),

where U ⊂ X is an affine open subset.

Note that by Corollary 2, the answer is independent of the affine open chosen.

We also deduce

Corollary 3 If U ⊂ X is any open subset of an irreducible quasi-projective

variety X ⊂ Pn, then

k(U) ∼= k(X).

Example Let

U = A2 \ V(x) ⊂ X = A2 \ {(0, 0)} ⊂ A2.

Then U ⊂ A2 are both affine, X is not. Their function fields agree:

k(U) ∼= k(X) ∼= k(A2) ∼= k(x, y).



The structure of function fields

Theorem

(1) Let X be an irreducible quasi-projective variety. Then k(X) is a finitely

generated field extension of k.

(2) Conversely, given any finitely generated field extension K/k, there exists

an irreducible quasi-projective variety X with k(X) ∼= K.

Proof of (1) We may assume that X ⊂ An is irreducible and affine. Then

k[X ] = k[x1, . . . , xn]/I(X).

So

k(X) = Frac(k[X ])

is generated as a field over k by the images of x1, . . . , xn. In particular, k(X)

is finitely generated over k.



The structure of function fields

Proof of (2) Conversely, let K be a field generated over k by some elements

α1, . . . , αn. Define a ring homomorphism

ϕ : R = k[x1, . . . , xn]→ K

by mapping xi to αi.

Let J = kerϕ. Then by the Isomorphism Theorem R/J ↪→ K, so J is a prime

ideal as K is an integral domain.

Let

X = V(J) ⊂ An

be the corresponding irreducible affine variety. Then

k(X) = FracR/J ↪→ K

contains the generators αi in the image. So k(X) ∼= K. �



The function field of a hypersurface

Example Let Vf ⊂ An be an irreducible hypersurface defined by an irre-

ducible polynomial f ∈ k[x1, . . . , xn].

Let us assume that f involves the variable xn and is of degree d in that variable:

f (x1, . . . , xn) = c0x
d
n + c1(x0, . . . , xn−1)x

d−1
n + . . .

We have

k[Vf ] = k[x1, . . . , xn]/〈f〉.
From Lecture 9, we also know

dimVf = n− 1 = trdegk k(Vf).

There is a map of rings

k[x1, . . . , xn−1]→ k[Vf ]

which is injective, as there is no algebraic relation between x1, . . . , xn. So we

get an injection

k(x1, . . . , xn−1) ↪→ k(Vf).



The function field of a hypersurface

We have an injection
k(x1, . . . , xn−1) ↪→ k(Vf).

We get a realisation of the function field of Vf as

k(Vf) = k(x1, . . . , xn−1)[xn]/〈c0xdn + c1(x0, . . . , xn−1)x
d−1
n + . . .〉,

a finite extension of degree d of the purely transcendental field

k(An−1) = k(x1, . . . , xn−1).

The same argument also computes the function field of an irreducible projective

hypersurface; recall the function field only depends on a dense open subset, so

it is enough to consider any affine chart.

For example, the function field of a plane curve of degree d is a degree d

extension of k(x).



Rational maps

Let X be an irreducible quasi-projective variety.

Definition A rational map f : X 99K Y to another quasi-projective

variety Y is an equivalence class of pairs (f, U), where f : U → Y is a regular

map defined on a non-empty open subset of X , and we identify pairs of maps

which agree on a non-empty open subset.

Example We have a rational map

Pn 99K Pn−1

given by

(x0 : · · · : xn) 7→ (x0 : · · · : xn−1).
This is defined on U = Pn \ {[0 : · · · : 0 : 1]}.



Rational functions

Definition A rational function on an irreducible quasi-projective variety

X is a rational map f : X 99K A1.

Lemma There is a natural bijection

k(X)↔ {rational functions f : X 99K A1}.

Remark Compare this with what we had before: for an irreducible quasi-

projective variety X , there is a bijection

OX(X)↔ {morphisms f : X → A1}.

In particular, if X is affine, we have a bijection

k[X ]↔ {morphisms f : X → A1}.



Rational functions

Lemma There is a natural bijection

k(X)↔ {rational functions f : X 99K A1}.

Proof Both sides are invariant under passing to an open subset, so we may

assume that X is affine. In this case,

k(X) = Frac(k[X ]).

A natural map is given for f, g ∈ k[X ] by

f
g 7→

[(
Dg,

f
g

)]
.

We need to check that we get every rational function X 99K A1 this way. By

the above Remark, any such corresponds to an element h ∈ OX(U) for some

open U ⊂ X . Taking a basic open Dg ⊂ U , we have an element h|Dg ∈
OX(Dg) = k[X ]g. So we can write h = f/gN for f ∈ k[X ]. �



Rational maps to affine space

Corollary On an irreducible quasi-projective variety X , the data of a rational

map f : X 99K An is equivalent to n elements fi ∈ k(X):

f (x) = (f1(x), . . . , fn(x)),

valid in some open set x ∈ U ⊂ X .

Proof A rational map f : X 99K An determines, and is determined by, n

rational functions fi : X 99K A1, the coordinates of f . By the Lemma, each of

these can be thought of as an element fi ∈ k(X).

Each fi ∈ k(X) is a regular function on some open set Ui ⊂ X .

The formula

f (x) = (f1(x), . . . , fn(x))

is valid on the intersection

U =
⋂
i

Ui ⊂ X

of these open sets Ui.



Composition of rational maps

Rational maps are not functions in the classical sense (they are only “partially

defined”).

In general, composition of rational maps may not be possible, even in the

simplest cases.

Example Let f : A1 → A1 be defined by a 7→ 0. This is a regular, hence

rational map.

Let g : A1 → A1 be a 7→ a−1. This is a rational map.

The image of f is {0} ⊂ A1. The domain of g is A1 \ {0}.
So the composite g ◦ f is not defined.



Dominant rational maps

Definition A rational map

f = [(U, F )] : X 99K Y

is dominant, if the image F (U) ⊂ Y is dense.

The point of the definition is that dominant rational maps can always be com-

posed.

Consider f = [(F,U)] : X 99K Y and g = [(G, V )] : Y 99K Z dominant

rational.

Let

W = U ∩ F−1(V ) ⊂ X,

an open subset of X .

Then F is defined on W , and maps to V .

Now we can compose with G to get a representative [W,G ◦ F ] for g ◦ f .



Birational equivalence

Definition A birational equivalence f : X 99K Y is a dominant rational

map between irreducible quasiprojective varieties, which has a dominant ratio-

nal inverse: a rational map g : Y 99K X with f ◦ g = idY and g ◦ f = idX
(equalities of rational maps).

We say X ' Y are birational.

Example 1 An ' Pn are birational, via the rational map An 99K Pn defined

by the inclusion An ∼= U0 ⊂ Pn. (This is in fact a morphism.)

It has the rational inverse Pn 99K An defined by

[x0 : · · · : xn]→
(
x1
x0
, · · · , xnx0

)
defined on U0.

Example 2 Similarly, for an irreducible affine variety X ⊂ An, let X̄ ⊂ Pn be

the projective closure. Then the inclusionX → X̄ gives a birational equivalence

X ' X̄ .



A famous birational self-equivalence

Consider the Cremona transformation

f : P2 99K P2

given by [x : y : z] 7→ [yz : xz : xy].

f is defined on the open set U ⊂ P2, where at least two coordinates are non-

zero.

This rational map is equivalent to [x : y : z] 7→ [1x : 1
y : 1

z ], defined on the open

V ⊂ P2 where all coordinates are non-zero.

This form shows that

f ◦ f = idP2,

so the map f is its own inverse, and in particular is a birational self-equivalence.

Note that f does not have the form [x] 7→ [Ax] for A ∈ GL(3, k), which are

the regular self-morphisms (automorphisms) of P2.



Dominant rational maps and field homomorphisms

Theorem Consider quasi-projective varieties X, Y . There is a one-to-one

correspondence between dominant rational maps f : X 99K Y and field homo-

morphisms ϕ : k(Y )→ k(X).

Proof, forward construction We may restrict to open affines, so we may

as well assume X, Y are affine. First assume that we have a dominant rational

map f : X 99K Y .

Consider the k-algebra homomorphism

f ∗ : k[Y ]→ k(X)

defined by

(y : Y → A1) 7→ (f ∗y = y ◦ f : X 99K A1).

We claim that as f is dominant, f ∗ is injective.

If so, we can define f ∗ : k(Y )→ k(X) by

g

h
7→ f ∗g

f ∗h
.



Dominant rational maps and field homomorphisms

Proof of claim The k-algebra homomorphism

f ∗ : k[Y ]→ k(X)

is defined by

(y : Y → A1) 7→ (f ∗y = y ◦ f : X 99K A1).

Suppose that y ∈ k[Y ] is in the kernel of Y . Write f = [(U, F )].

Then F ∗y = 0 implies that for all u ∈ U ,

y(F (u)) = 0.

Thus for all u ∈ U ,

F (u) ⊂ V(y)

and so

F (U) ⊂ V(y) ⊂ Y.

As f was assumed dominant, y = 0.



Dominant rational maps and field homomorphisms

Proof, reverse construction Suppose we have a field homomorphism

ϕ : k(Y )→ k(X).

As fields have no proper ideals, ϕ is injective.

Let y1, . . . , yn be generators of k[Y ]. Then

ϕ(yj) =
gj
hj
∈ k(X).

Let U = ∩Dhj = Dh1·...·hn, an affine subvariety of the affine variety X .

We have ϕ(yj) ∈ OX(U) = k[U ].

Since k[Y ] is generated by the yj, we get an inclusion

ϕ : k[Y ] ↪→ k[U ].

This corresponds to a dominant morphism ϕ∗ : U → Y of affine varieties.

The pair [(U,ϕ∗)] represents a dominant rational map ϕ∗ : X 99K Y . �



Birational varieties

Corollary Two quasi-projective varieties X, Y are birational if and only if

their function fields are isomorphic.

Example As we saw before, we have a birational equivalence A2 ' P2. We

also have A1 ' P1 and it is not hard to argue from this that A1×A1 ' P1×P1.

We deduce a birational equivalence

P2 ' A2 ∼= A1 × A1 ' P1 × P1.

This is the first example of two projective varieties P2 and P1 × P1 that are

birational to each other. In fact these two varieties are not isomorphic!

Sketch proof Suppose there is an isomorphism ϕ : P1× P1 → P2. Consider

C0 = {0} × P1 and C1 = {1} × P1 inside P1 × P1. These are two curves

(one-dimensional varieties) in P1 × P1, with C0 ∩ C1 = ∅.
Let Di = ϕ(Ci). Since ϕ is an isomorphism, D1, D2 are two curves in P2 with

empty intersection. This contradicts Bezout’s theorem.



The explicit birational maps

To conclude, we spell out explicit birational maps between P1 × P1 and P2.

In one direction, we can use

((x0 : x1), (y0 : y1)) 7→ (x0y0 : x1y0 : x0y1).

In the other direction, we can use

(z0 : z1 : z2) 7→ ((z0 : z1), (z0 : z2)).

Note that these are both defined on open subsets of the projective varieties.

To understand where these formulae came from, divide in each case by the first

coordinate and see what happens!


