C3.4 Algebraic Geometry

Lecture 15. Tangent spaces. Non-singular and singular varieties

Balázs Szendrői, University of Oxford, Michaelmas 2020

Consider $f \in k[x_1, \ldots, x_n]$, and $p = (p_1, \ldots, p_n) \in \mathbb{A}^n$. The linear polynomial $d_p f \in k[x_1, \ldots, x_n]$ is defined by

$$d_p f = df|_{x=p} \cdot (x-p) = \sum \frac{\partial f}{\partial x_j}(p) \cdot (x_j - p_j).$$

Consider an affine variety $X \subset \mathbb{A}^n$ with $\mathbb{I}(X) = \langle f_1, \ldots, f_N \rangle$.

Definition The **tangent space** to X at the point p is the space

$$T_pX = \mathbb{V}(d_pf_1, \dots, d_pf_N) = \cap \ker df_i \subset \mathbb{A}^n.$$

This is an intersection of hyperplanes, so a linear subspace of some dimension. **Trivial example** For $X = \mathbb{A}^n$,

$$T_p X = \mathbb{A}^n$$

at every point $p \in \mathbb{A}^n$.

Example Consider a hypersurface $X = \mathbb{V}(f)$ defined by a polynomial f. We have

$$T_p X = \mathbb{V}(d_p f) = \ker(\nabla f_p) \subset \mathbb{A}^n.$$

- If the gradient $\nabla f_p \neq 0$, then this is a codimension-one linear subspace of \mathbb{A}^n , naturally thought of as the tangent space at p to $X = \mathbb{V}(f)$.
- If the gradient $\nabla f_p = 0$, then

$$T_p X = \mathbb{A}^n.$$

Algebraic geometry does not say there are no tangent vectors at such a point $p \in X$.

It says all vectors are tangent vectors at such a point $p \in X$.

Tangent spaces of a hypersurface

Tangent spaces of a hypersurface

Smooth and singular points of an affine variety

Key fact For any point $p \in X$,

 $\dim_k T_p X \ge \dim_p X.$

Definiton A point $p \in X$ is a **smooth point** if

 $\dim_k T_p X = \dim_p X.$

A point $p \in X$ is a **singular point** if

 $\dim_k T_p X > \dim_p X.$

Let

 $Sing(X) = \{ p \in X : p \text{ is a singular point of } X \} \subset X.$ The variety X is **nonsingular** if

$$\operatorname{Sing}(X) = \emptyset$$

Example For an irreducible hypersurface $X = \mathbb{V}(f) \subset \mathbb{A}^n$, we have

$$\dim_p X = n - 1$$

at every point $p \in X$.

• If the gradient $\nabla f_p \neq 0$, then

$$\dim_k T_p X = n - 1 = \dim_p X,$$

so such a point is smooth.

• If the gradient $\nabla f_p = 0$, then

$$\dim_k T_p X = n > \dim_p X$$

so such a point is singular.

Remark For $k = \mathbb{R}$, near a smooth point $p, X = \mathbb{V}(f)$ is a **codimension-one submanifold** of \mathbb{R}^n .

Let X be an irreducible affine variety of dimension d with

$$\mathbb{I}(X) = \langle f_1, \ldots, f_N \rangle.$$

Theorem The set $Sing(X) \subset X \subset \mathbb{A}^n$ is a closed subvariety, given by the vanishing in X of all $(n - d) \times (n - d)$ minors of the Jacobian matrix

$$\operatorname{Jac} = \left(\frac{\partial f_i}{\partial x_j}\right).$$

Proof By definition, T_pX is the zero set of

$$\varphi_p: \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} \frac{\partial F_1}{\partial x_1} \Big|_p & \cdots & \frac{\partial F_1}{\partial x_n} \Big|_p \\ \vdots & & \\ \frac{\partial F_N}{\partial x_1} \Big|_p & \cdots & \frac{\partial F_N}{\partial x_n} \Big|_p \end{pmatrix} \cdot \begin{pmatrix} x_1 - p_1 \\ \vdots \\ x_n - p_n \end{pmatrix}.$$

We have that $T_p X$ is the zero set of

$$\varphi_p: \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} \frac{\partial F_1}{\partial x_1} \Big|_p & \cdots & \frac{\partial F_1}{\partial x_n} \Big|_p \\ \vdots & & \\ \frac{\partial F_N}{\partial x_1} \Big|_p & \cdots & \frac{\partial F_N}{\partial x_n} \Big|_p \end{pmatrix} \cdot \begin{pmatrix} x_1 - p_1 \\ \vdots \\ x_n - p_n \end{pmatrix}.$$

Hence

$$p \in \operatorname{Sing} X \Leftrightarrow \dim \varphi_p^{-1}(0) > d \Leftrightarrow \dim \ker \operatorname{Jac}_p > d.$$

Claim The last condition is equivalent to the vanishing of all $(n-d) \times (n-d)$ minors of Jac_p .

For otherwise, we could find n - d linearly independent columns in Jac_p , the columns involved in that minor.

Hence the rank of Jac_p would have dimension at least n-d.

So the kernel of Jac_p would have dimension at most d.

Let $X \subset \mathbb{A}^n$ be an affine variety, and let $p \in X$. Recall the ring of germs of functions $\mathcal{O}_{X,p}$ and its maximal ideal

$$\mathfrak{m}_p = \left\{ \frac{f}{g} \in \mathcal{O}_{X,p} : f(p) = 0 \right\} \subset \mathcal{O}_{X,p}.$$

Theorem There is a canonical isomorphism

$$T_p X \cong \left(\mathfrak{m}_p/\mathfrak{m}_p^2\right)^*$$

The vector space $\mathfrak{m}_p/\mathfrak{m}_p^2$ is called the **cotangent space**.

Remark What this result shows is that the tangent space can equivalently be defined in a purely local way, only using information about the ring of local germs of functions.

Theorem There is a canonical isomorphism

$$T_p X \cong \left(\mathfrak{m}_p/\mathfrak{m}_p^2\right)^*.$$

Proof By a translation that does not change anything, we can assume

$$p = 0 \in X \subset \mathbb{A}^n.$$

First, we will look at the case $X = \mathbb{A}^n$ itself. For $F \in k[x_1, \ldots, x_n]$, we can consider the linear functional

$$d_0 F = \left(\frac{\partial F}{\partial x_i}\right)\Big|_{x_i=0} \colon \mathbb{A}^n \equiv T_0 \mathbb{A}^n \to k;$$

this is basically taking inner product of a vector with $\nabla_0 F$. So we get an element

$$d_0 F \in (T_0 \mathbb{A}^n)^*,$$

giving us a linear map

$$d_0: k[x_1,\ldots,x_n] \to (T_0\mathbb{A}^n)^*.$$

Have a linear map

$$d_0: k[x_1,\ldots,x_n] \to (T_0\mathbb{A}^n)^*.$$

Restricting to the maximal ideal \mathfrak{m} at the origin on the left, we get a linear map

$$d_0|_{\mathfrak{m}}: \mathfrak{m} \to (T_0 \mathbb{A}^n)^*.$$

Claim 1 The linear map $d_0|_{\mathfrak{m}}$ is surjective, and its kernel is \mathfrak{m}^2 .

Claim 1 is easy to check - see Lecture Notes for details.

By the Isomorphism Theorem, we then obtain

 $(T_0\mathbb{A}^n)^*\cong \mathfrak{m}/\mathfrak{m}^2,$

which is the dual of the isomorphism claimed by the Theorem in this case.

Let us consider the general case $X \subset \mathbb{A}^n$. Let us continue to denote by \mathfrak{m} the maximal ideal of the origin in \mathbb{A}^n .

The inclusion $j: T_0 X \hookrightarrow T_0 \mathbb{A}^n$ is injective, so the dual map is surjective, hence we get a surjection

$$j^*: \mathfrak{m}/\mathfrak{m}^2 \cong (T_0 \mathbb{A}^n)^* \to (T_0 X)^*.$$

and thus a surjection

$$j^* \circ d_0 \colon \mathfrak{m} \to (T_0 X)^*.$$

Claim 2 We have

$$\ker(j^* \circ d_0) = \mathfrak{m}^2 + \mathbb{I}(X).$$

For standard details of the proof of Claim 2, see Lecture Notes for details. We deduce, once again by the isomorphism theorem,

 $\mathfrak{m}/(\mathfrak{m}^2 + \mathbb{I}(X)) \cong (T_0 X)^*.$

Write $\overline{\mathfrak{m}} \triangleleft k[X]$ for the image of \mathfrak{m} in the quotient $k[X] = R/\mathbb{I}(X)$; this is the maximal ideal of p = 0 in the coordinate ring k[X]. The last isomorphism then implies

$$\overline{\mathfrak{m}}/\overline{\mathfrak{m}}^2 \cong (T_0 X)^*.$$

Finally, we need to relate this quotient to the corresponding quotient in the localised ring.

Claim 3 The standard inclusion $k[X] \hookrightarrow \mathcal{O}_{X,P}$ gives an isomorphism

$$\overline{\mathfrak{m}}/\overline{\mathfrak{m}}^2 \cong \mathfrak{m}_p/\mathfrak{m}_p^2,$$

where recall $\mathfrak{m}_p \triangleleft \mathcal{O}_{X,P}$ is the maximal ideal of non-vanishing germs of regular functions at p.

For standard details of the proof of Claim 3, see Lecture Notes for details.

The proof of the Theorem is complete.

Remark The argument presented above also proves

$$T_p X \cong (\mathcal{I}_p / \mathcal{I}_p^2)^*,$$

where

$$\mathcal{I}_p = \langle x_1 - p_1, \dots, x_n - p_n \rangle \subset k[X]$$

is the maximal ideal of an arbitrary point $p \in X$ inside the coordinate ring.

Corollary The tangent space T_pX only depends on an open neighbourhood of $p \in X$.

Proof By the Theorem, tangent space only depends on the local ring $\mathcal{O}_{X,p}$ and its unique maximal ideal \mathfrak{m}_p .

Definition For X a quasi-projective variety, we define the tangent space at $p \in X$ by

$$T_p X = \left(\mathfrak{m}_p / \mathfrak{m}_p^2\right)^*$$

A point $p \in X$ is **smooth** if

$$\dim_k T_p X = \dim_p X.$$

Proposition The set of non-smooth (singular) points $p \in X$ forms a Zariski closed subvariety of X.

Proof This is true in the (affine) neighbourhood of any point.

The quasi-projective variety X is **nonsingular**, if

$$\operatorname{Sing}(X) = \emptyset$$

Example For an irreducible projective hypersurface $X = \mathbb{V}(f) \subset \mathbb{P}^n$, singular points $p \in X$ are located where

$$\nabla f_p = 0.$$

A further example

Recall from Lecture 7 the chain of subvarities

$$\Sigma_{2,2} \subset \Delta \subset \mathbb{P}^8,$$

inside the projective space $\mathbb{P}M_k(3) \cong \mathbb{P}^8$ of 3×3 matrices over k.

Here $\Delta = \{[A]: \det A = 0\} \subset \mathbb{P}^8$ is the projective cubic hypersurface defined by the determinant polynomial.

This contains $\Sigma_{2,2} \cong \mathbb{P}^2 \times \mathbb{P}^2$, the Segre variety in \mathbb{P}^8 .

Fact The hypersurface Δ is singular, with singular locus

 $\operatorname{Sing}(\Delta) = \Sigma_{2,2}.$