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Tangent spaces of an affine variety

Consider f ∈ k[x1, . . . , xn], and p = (p1, . . . , pn) ∈ An.

The linear polynomial dpf ∈ k[x1, . . . , xn] is defined by

dpf = df |x=p · (x− p) =
∑

∂f
∂xj

(p) · (xj − pj).

Consider an affine variety X ⊂ An with I(X) = 〈f1, . . . , fN〉.

Definition The tangent space to X at the point p is the space

TpX = V(dpf1, . . . , dpfN) = ∩ ker dfi ⊂ An.

This is an intersection of hyperplanes, so a linear subspace of some dimension.

Trivial example For X = An,

TpX = An

at every point p ∈ An.



Tangent spaces of a hypersurface

Example Consider a hypersurface X = V(f ) defined by a polynomial f . We

have

TpX = V(dpf ) = ker(∇fp) ⊂ An.

• If the gradient ∇fp 6= 0, then this is a codimension-one linear subspace

of An, naturally thought of as the tangent space at p to X = V(f ).

• If the gradient ∇fp = 0, then

TpX = An.

Algebraic geometry does not say there are no tangent vectors at

such a point p ∈ X .

It says all vectors are tangent vectors at such a point p ∈ X .



Tangent spaces of a hypersurface



Tangent spaces of a hypersurface



Smooth and singular points of an affine variety

Key fact For any point p ∈ X ,

dimk TpX ≥ dimpX.

Definiton A point p ∈ X is a smooth point if

dimk TpX = dimpX.

A point p ∈ X is a singular point if

dimk TpX > dimpX.

Let

Sing(X) = {p ∈ X : p is a singular point of X} ⊂ X.

The variety X is nonsingular if

Sing(X) = ∅



Smooth and singular points of an affine hypersurface

Example For an irreducible hypersurface X = V(f ) ⊂ An, we have

dimpX = n− 1

at every point p ∈ X .

• If the gradient ∇fp 6= 0, then

dimk TpX = n− 1 = dimpX,

so such a point is smooth.

• If the gradient ∇fp = 0, then

dimk TpX = n > dimpX

so such a point is singular.

Remark For k = R, near a smooth point p, X = V(f ) is a codimension-

one submanifold of Rn.



The singular set is Zariski closed

Let X be an irreducible affine variety of dimension d with

I(X) = 〈f1, . . . , fN〉.

Theorem The set Sing(X) ⊂ X ⊂ An is a closed subvariety, given by the

vanishing in X of all (n− d)× (n− d) minors of the Jacobian matrix

Jac =

(
∂fi
∂xj

)
.

Proof By definition, TpX is the zero set of

ϕp :

( x1
...
xn

)
7→


∂F1
∂x1

∣∣∣
p
··· ∂F1

∂xn

∣∣∣
p

...
∂FN
∂x1

∣∣∣
p
··· ∂FN

∂xn

∣∣∣
p

 · ( x1−p1
...

xn−pn

)
.



The singular set is Zariski closed

We have that TpX is the zero set of

ϕp :

( x1
...
xn

)
7→


∂F1
∂x1

∣∣∣
p
··· ∂F1

∂xn

∣∣∣
p

...
∂FN
∂x1

∣∣∣
p
··· ∂FN

∂xn

∣∣∣
p

 · ( x1−p1
...

xn−pn

)
.

Hence

p ∈ SingX ⇔ dimϕ−1p (0) > d⇔ dim ker Jacp > d.

Claim The last condition is equivalent to the vanishing of all (n−d)×(n−d)

minors of Jacp.

For otherwise, we could find n − d linearly independent columns in Jacp, the

columns involved in that minor.

Hence the rank of Jacp would have dimension at least n− d.

So the kernel of Jacp would have dimension at most d.

�



The tangent space is an intrinsic notion

Let X ⊂ An be an affine variety, and let p ∈ X .

Recall the ring of germs of functions OX,p and its maximal ideal

mp =

{
f

g
∈ OX,p : f (p) = 0

}
⊂ OX,p.

Theorem There is a canonical isomorphism

TpX ∼=
(
mp/m

2
p

)∗
.

The vector space mp/m
2
p is called the cotangent space.

Remark What this result shows is that the tangent space can equivalently

be defined in a purely local way, only using information about the ring of local

germs of functions.



The tangent space is an intrinsic notion

Theorem There is a canonical isomorphism

TpX ∼=
(
mp/m

2
p

)∗
.

Proof By a translation that does not change anything, we can assume

p = 0 ∈ X ⊂ An.

First, we will look at the case X = An itself. For F ∈ k[x1, . . . , xn], we can

consider the linear functional

d0F =

(
∂F

∂xi

) ∣∣∣
xi=0

: An ≡ T0An → k;

this is basically taking inner product of a vector with ∇0F . So we get an

element

d0F ∈ (T0An)∗,

giving us a linear map

d0 : k[x1, . . . , xn]→ (T0An)∗.



The tangent space is an intrinsic notion

Have a linear map

d0 : k[x1, . . . , xn]→ (T0An)∗.

Restricting to the maximal ideal m at the origin on the left, we get a linear map

d0|m : m→ (T0An)∗.

Claim 1 The linear map d0|m is surjective, and its kernel is m2.

Claim 1 is easy to check - see Lecture Notes for details.

By the Isomorphism Theorem, we then obtain

(T0An)∗ ∼= m/m2,

which is the dual of the isomorphism claimed by the Theorem in this case.



The tangent space is an intrinsic notion

Let us consider the general case X ⊂ An. Let us continue to denote by m the

maximal ideal of the origin in An.

The inclusion j : T0X ↪→ T0An is injective, so the dual map is surjective, hence

we get a surjection

j∗ : m/m2 ∼= (T0An)∗ → (T0X)∗.

and thus a surjection

j∗ ◦ d0 : m→ (T0X)∗.

Claim 2 We have

ker(j∗ ◦ d0) = m2 + I(X).

For standard details of the proof of Claim 2, see Lecture Notes for details.

We deduce, once again by the isomorphism theorem,

m/(m2 + I(X)) ∼= (T0X)∗.



The tangent space is an intrinsic notion

Write mC k[X ] for the image of m in the quotient k[X ] = R/I(X); this is the

maximal ideal of p = 0 in the coordinate ring k[X ].

The last isomorphism then implies

m/m2 ∼= (T0X)∗.

Finally, we need to relate this quotient to the corresponding quotient in the

localised ring.

Claim 3 The standard inclusion k[X ] ↪→ OX,P gives an isomorphism

m/m2 ∼= mp/m
2
p,

where recall mpCOX,P is the maximal ideal of non-vanishing germs of regular

functions at p.

For standard details of the proof of Claim 3, see Lecture Notes for details.

The proof of the Theorem is complete. �



The tangent space is an intrinsic notion

Remark The argument presented above also proves

TpX ∼= (Ip/I2p)∗,

where

Ip = 〈x1 − p1, . . . , xn − pn〉 ⊂ k[X ]

is the maximal ideal of an arbitary point p ∈ X inside the coordinate ring.

Corollary The tangent space TpX only depends on an open neighbourhood

of p ∈ X .

Proof By the Theorem, tangent space only depends on the local ring OX,p

and its unique maximal ideal mp. �



Tangent spaces and nonsingularity for quasi-projective varieties

Definition For X a quasi-projective variety, we define the tangent space at

p ∈ X by

TpX =
(
mp/m

2
p

)∗
.

A point p ∈ X is smooth if

dimk TpX = dimpX.

Proposition The set of non-smooth (singular) points p ∈ X forms a Zariski

closed subvariety of X .

Proof This is true in the (affine) neighbourhood of any point. �

The quasi-projective variety X is nonsingular, if

Sing(X) = ∅

Example For an irreducible projective hypersurface X = V(f ) ⊂ Pn, singu-

lar points p ∈ X are located where

∇fp = 0.



A further example

Recall from Lecture 7 the chain of subvarities

Σ2,2 ⊂ ∆ ⊂ P8,

inside the projective space PMk(3) ∼= P8 of 3× 3 matrices over k.

Here ∆ = {[A] : detA = 0} ⊂ P8 is the projective cubic hypersurface defined

by the determinant polynomial.

This contains Σ2,2
∼= P2 × P2, the Segre variety in P8.

Fact The hypersurface ∆ is singular, with singular locus

Sing(∆) = Σ2,2.


