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Tangent spaces of an affine variety

Consider f € klzy,..., x|, and p = (p1,...,pn) € A"
The linear polynomial d,f € klx1,...,x,] is defined by

dpf — df’x:p : (37 _p) = %(p) ' (xj _pj)'

Consider an affine variety X C A" with I[(X) = (f1,..., fn).

Definition The tangent space to X at the point p is the space

T,X =V(d,fi,...,d,fny) = Nkerdf; C A".
This is an intersection of hyperplanes, so a linear subspace of some dimension.
Trivial example For X = A",
T,X = A"

at every point p € A",



Tangent spaces of a hypersurface

Example Consider a hypersurface X = V(f) defined by a polynomial f. We
have

T,X = V(d,f) = ker(Vf,) C A",

o If the gradient Vf, # 0, then this is a codimension-one linear subspace
of A" naturally thought of as the tangent space at p to X = V(f).

o [f the gradient V f, = 0, then
T,X =A"

Algebraic geometry does not say there are no tangent vectors at
such a point p € X.

It says all vectors are tangent vectors at such a point p € X.



Tangent spaces of a hypersurface




Tangent spaces of a hypersurface




Smooth and singular points of an affine variety

Key fact For any point p € X,
dimy, T, X > dim, X.

Definiton A point p € X is a smooth point if
dimy, T, X = dim, X.
A point p € X is a singular point if
dimy, T, X > dim, X.

Let
Sing(X) = {p € X : pis a singular point of X} C X.

The variety X is nonsingular if

Sing(X) =0



Smooth and singular points of an affine hypersurface

Example For an irreducible hypersurface X = V(f) C A", we have
dim, X =n —1

at every point p € X.

o [f the gradient V f,, # 0, then

dimy T,X =n — 1 = dim, X,
so such a point is smooth.
o [f the gradient V f, = 0, then
dimy, T, X = n > dim, X

so such a point is singular.

Remark For k = R, near a smooth point p, X = V(f) is a codimension-
one submanifold of R".



The singular set is Zariski closed

Let X be an irreducible affine variety of dimension d with

LX) = (f1,-- 5 fo).

Theorem The set Sing(X) C X C A" is a closed subvariety, given by the
vanishing in X of all (n — d) x (n — d) minors of the Jacobian matrix

([ 9fi
Jac = (6’@7) .

Proof By definition, 7),.X is the zero set of
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The singular set is Zariski closed

We have that T, X is the zero set of

or | om
x1 01 |p 9rn{p r1—p1
Pp - : = : . : .
oz |, " Dwn |,

Hence

p € Sing X < dim 90;1(0) > d < dimker Jac, > d.
Claim The last condition is equivalent to the vanishing of all (n—d) x (n—d)
minors of Jac,.
For otherwise, we could find n — d linearly independent columns in Jac,, the
columns involved in that minor.

Hence the rank of Jac, would have dimension at least n — d.
So the kernel of Jac, would have dimension at most d.



The tangent space is an intrinsic notion

Let X C A" be an affine variety, and let p € X.

Recall the ring of germs of functions Ox ), and its maximal ideal

m, = {5 € Ox,: flp) = O} C Oxp.

Theorem There is a canonical isomorphism
~ 2\ *
T,X = (m,/m)".
The vector space m,/ m]% is called the cotangent space.

Remark What this result shows is that the tangent space can equivalently
be defined in a purely local way, only using information about the ring of local
germs of functions.



The tangent space is an intrinsic notion

Theorem There is a canonical isomorphism
~ 2\ *
T,X = (m,/m>)".
Proof DBy a translation that does not change anything, we can assume
p=0€ X C A",

First, we will look at the case X = A" itself. For F' € k[zy,...,x,], we can
consider the linear functional

oF
wr = (5 )

this is basically taking inner product of a vector with VoF. So we get an

A" =THA" — k;

ZL‘Z':O

element
doF' € (T()An)*,
giving us a linear map

doi k‘[arl, ce ,Cl?n] — (T()An)*



The tangent space is an intrinsic notion

Have a linear map

do: klzq, ... 2, = (THA")".
Restricting to the maximal ideal m at the origin on the left, we get a linear map
do|m : m — (THA")".
Claim 1 The linear map dyly is surjective, and its kernel is m?.

Claim 1 is easy to check - see Lecture Notes for details.

By the Isomorphism Theorem, we then obtain
(THA™)* = m/m?,

which is the dual of the isomorphism claimed by the Theorem in this case.



The tangent space is an intrinsic notion

Let us consider the general case X C A". Let us continue to denote by m the
maximal ideal of the origin in A".

The inclusion j : Ty X — ToA" is injective, so the dual map is surjective, hence
we get a surjection

7 rm/m? 2 (THA™) — (TpX)*
and thus a surjection
j* O d()i m — (T()X)*
Claim 2 We have
ker(j* o dy) = m? + I(X).
For standard details of the proof of Claim 2, see Lecture Notes for details.

We deduce, once again by the isomorphism theorem,

m/(m? + 1(X)) = (TpX)*.



The tangent space is an intrinsic notion

Write m <1 k[X] for the image of m in the quotient k[X]| = R/I(X); this is the
maximal ideal of p = 0 in the coordinate ring k[ X].
The last isomorphism then implies

m/m” = (TyX)".
Finally, we need to relate this quotient to the corresponding quotient in the
localised ring.

Claim 3 The standard inclusion k[X| < Ox p gives an isomorphism
m/m” = m,/ mf,,

where recall m, <t Ox p is the maximal ideal of non-vanishing germs of regular
functions at p.

For standard details of the proof of Claim 3, see Lecture Notes for details.

The proof of the Theorem is complete. ]



The tangent space is an intrinsic notion

Remark The argument presented above also proves
TPX = (IP/IE)*v
where
Ty = (x1 = P1,- - Ty — Pu) C k[X]

is the maximal ideal of an arbitary point p € X inside the coordinate ring.

Corollary The tangent space 7, X only depends on an open neighbourhood
of pe X.

Proof By the Theorem, tangent space only depends on the local ring Ox,,
and its unique maximal ideal m,. [



Tangent spaces and nonsingularity for quasi-projective varieties

Definition For X a quasi-projective variety, we define the tangent space at
p € X by
T,X = (m,/m2)" .
A point p € X is smooth if
dimy T, X = dim, X.
Proposition The set of non-smooth (singular) points p € X forms a Zariski

closed subvariety of X.
Proof This is true in the (affine) neighbourhood of any point. ]

The quasi-projective variety X is nonsingular, if
Sing(X) = ()

Example For an irreducible projective hypersurface X = V(f) C P, singu-
lar points p € X are located where

v, =0.



A tfurther example

Recall from Lecture 7 the chain of subvarities
22,2 C A C IP)S,

inside the projective space PMy(3) = P® of 3 x 3 matrices over k.

Here A = {[A]: det A = 0} C P® is the projective cubic hypersurface defined
by the determinant polynomial.

This contains Y59 = P? x P2, the Segre variety in P°.

Fact The hypersurface A is singular, with singular locus

Smg(A) = 22’2.



