C3.4 Algebraic Geometry Lecture 16. Blowups and desingularization

Balázs Szendrői, University of Oxford, Michaelmas 2020

The blow-up of \mathbb{A}^n at the origin is the set

$$B_0\mathbb{A}^n = \{(x,\ell) : \mathbb{A}^n \times \mathbb{P}^{n-1} : x \in \ell\}.$$

Use coordinates (x_1, \ldots, x_n) on \mathbb{A}^n and $[y_1 : \cdots : y_n]$ on \mathbb{P}^{n-1} . $x \in \ell$ if and only if (x_1, \ldots, x_n) and (y_1, \cdots, y_n) are proportional. Equivalently the matrix

$$\left(\begin{array}{ccc} x_1 & \ldots & x_n \\ y_1 & \ldots & y_n \end{array}
ight)$$

has rank 1. This happens if and only if its 2×2 minors vanish. So we can write the equations

$$B_0\mathbb{A}^n = \mathbb{V}(x_iy_j - x_jy_i) \subset \mathbb{A}^n \times \mathbb{P}^{n-1}.$$

This shows in particular that $B_0 \mathbb{A}^n$ is a quasi-projective variety.

The blowup of affine space at the origin

The morphism

$$\pi:B_0\mathbb{A}^n\to\mathbb{A}^n,\ \pi(x,[y])=x$$

is birational with inverse

$$\mathbb{A}^n \dashrightarrow B_0 \mathbb{A}^n, \ x \mapsto (x, [x])$$

defined on $x \neq 0$: the point is that for $x \neq 0$, x lies in a unique line [x]. The fibre $\pi^{-1}(x)$ is a point for $x \neq 0$. Also

$$E_0 = \pi^{-1}(0) = \{0\} \times \mathbb{P}^{n-1},$$

called the **exceptional set** of π .

Thus

$$\pi: B_0\mathbb{A}^n \setminus E_0 \to \mathbb{A}^n \setminus 0$$

is an isomorphism, and π collapses E_0 to the point 0.

The blowup of affine space at the origin

Let $X \subset \mathbb{A}^n$ be an affine variety with $0 \in X$. **Definition** The **blow-up** of X at 0 is the Zariski closure

$$B_0 X = \overline{\pi^{-1}(X \setminus \{0\})} \subset B_0 \mathbb{A}^n.$$

The map $\pi|_{B_0X}: B_0X \to X$ is birational, and we have the **exceptional set**

$$E = \pi^{-1}(0) \cap B_0 X.$$

Interpretation The blowup B_0X keeps track of those directions $E \subset E_0$ along which X approaches 0.

Remark The blowup B_0X , the Zariski closure of $\pi^{-1}(X \setminus \{0\})$, is different from

$$\pi^{-1}(X) = B_0 X \cup_E E_0.$$

An example

Example Consider

$$X=\mathbb{V}(xy)\subset \mathbb{A}^2,$$

the union of the coordinate axes. Then $0 \in X$, and we can consider its blowup. First,

 $\pi^{-1}(X \setminus 0) = \{((x, y), [a : b]) \in \mathbb{A}^2 \times \mathbb{P}^1 : xb - ya = 0, xy = 0, (x, y) \neq (0, 0)\}.$

We get the following solutions: either

$$((x,0),[1:0]) \subset \mathbb{A}^2 \times \mathbb{P}^1$$

for $x \neq 0$, or

$$((0,y),[0:1]) \subset \mathbb{A}^2 \times \mathbb{P}^1$$

for $y \neq 0$.

Then we get the closure

$$B_0 X = (\mathbb{A}^1 \times 0, [1:0]) \sqcup (0 \times \mathbb{A}^1, [0:1]) \subset B_0 \mathbb{A}^2 \subset \mathbb{A}^2 \times \mathbb{P}^1,$$

a disjoint union of two lines.

We have

$$B_0X = (\mathbb{A}^1 \times 0, [1:0]) \sqcup (0 \times \mathbb{A}^1, [0:1]) \subset B_0\mathbb{A}^2 \subset \mathbb{A}^2 \times \mathbb{P}^1,$$

a disjoint union of two lines.

The exceptional set E consists of two points: ((0,0), [1:0]), ((0,0), [0:1]), the 2 directions of the lines in X.

Note also that X is **singular** at the origin, while B_0X is **nonsingular**.

Indeed, it is often (though not always) the case that if $0 \in X$ is a singular point, B_0X is 'less singular'.

An example

Example Consider the cuspidal curve

$$Y = \mathbb{V}(y^2 - x^3) \subset \mathbb{A}^2.$$

It is singular at $0 \in Y$. Let us describe the variety

$$B_0Y \subset \mathbb{A}^2 \times \mathbb{P}^1.$$

Use coordinates ((x, y), [a : b]); we have the equation xb - ya = 0 as one of the equations of the blowup. We want to compute the Zariski closure of

$$\pi^{-1}(Y) \subset \mathbb{A}^2 \times \mathbb{P}^1.$$

Instead of this mixture of affine and projective coordinates, it is a lot easier to work in affine coordinates (remember quasi-projective varieties are locally affine!). Use the usual open cover of \mathbb{P}^1 . We have the open set

$$(B_0Y)_a = (B_0Y) \cap (a \neq 0) \subset \mathbb{A}^2 \times \mathbb{A}^1,$$

with coordinates (x, y, u = b/a) and equation y = ux. Substitute into the equation of the curve Y, to get the equation

$$0 = y^2 - x^3 = x^2 u^2 - x^3.$$

The proper transform (Zariski closure) is obtained by dropping the x^2 factor:

$$u^2 - x = 0$$

We obtain a description of our open set

$$(B_0Y)_a = \{u^2 - x = 0, y = ux\} \subset \mathbb{A}^3_{x,y,u}.$$

This is a nonsingular curve, isomorphic (using projection to the last coordinate u) to \mathbb{A}^1 .

The second open set is

$$(B_0Y)_b = (B_0Y) \cap (b \neq 0) \subset \mathbb{A}^2 \times \mathbb{A}^1,$$

with coordinates (x, y, v = a/b) and equation x = vy. Substitute into the equation of the curve Y, to get the equation

$$0 = y^2 - x^3 = y^2 - y^3 v^3.$$

The proper transform (Zariski closure) is now obtained by dropping the y^2 factor:

$$1 - yv^3 = 0.$$

We get

$$(B_0Y)_b = \{1 - yv^3 = 0, x = vy\} \subset \mathbb{A}^3_{x,y,v}.$$

Again, this is a nonsingular curve.

The sets $(a \neq 0)$ and $(b \neq 0)$ cover \mathbb{P}^1 . So the two open sets we looked at cover the blowup:

$$B_0Y = (B_0Y)_a \cup (B_0Y)_b.$$

These open sets are described as explicit affine varieties

$$(B_0Y)_a = \{u^2 - x = 0, y = ux\} \subset \mathbb{A}^3_{x,y,u}$$

and

$$(B_0Y)_b = \{1 - yv^3 = 0, x = vy\} \subset \mathbb{A}^3_{x,y,v}.$$

Both are nonsingular, so B_0Y is a nonsingular curve. Finally the blowup map

$$\pi\colon B_0\mathbb{A}^2\to\mathbb{A}^2$$

induces a surjective, birational morphism

$$\pi|_{B_0Y} \colon B_0Y \to Y.$$

Another example: the cuspidal curve

Strategy for computing a general blowup

Consider in general

$$0 \in X \subset \mathbb{A}^n.$$

The blowup

$$B_0 X \subset \mathbb{A}^n \times \mathbb{P}^{n-1}$$

can be computed into the following steps.

- 1. Cover \mathbb{P}^{n-1} by the *n* standard affine open pieces. Introduce sensible names for the local coordinates.
- 2. Use the simplified quadric equations of $B_0\mathbb{A}^n$ to make substitutions into the equations of X.
- 3. Remove extra factors of local equations of the exceptional set to find the Zariski closure $(B_0X)_i$ in this local chart.
- 4. Check for singularities, etc of the resulting open pieces $(B_0X)_i$.

The whole blowup B_0X will be covered by the *n* affine pieces

$$B_0 X = \bigcup_{i=0}^{n-1} (B_0 X)_i.$$

We get a surjective, birational morphism

$$\pi|_{B_0X} \colon B_0X \to X.$$

In some cases, the singularities of B_0X will be better than the singularities of X.

In particularly favourable cases, an iterated blowup of points of X may lead to a chain of surjective, birational morphisms

$$X_m \to X_{m-1} \to \ldots \to X_1 = B_p X \to X$$

with $p \in X$ a singular point, and X_m a **nonsingular** quasi-projective variety.

Here is the general result, a cornerstone of 20th century algebraic geometry.

Hironaka's Resolution of singularities theorem Assume char k = 0. Given a quasi-projective variety $X \supset Z = \text{Sing}(X)$, there exists a surjective, birational morphism

$$f: Y \to X,$$

from a quasiprojective variety Y, such that with $E = f^{-1}(Z)$, f induces an isomorphism

$$Y \setminus E \cong X \setminus Z.$$

In other words, X is unchanged outside its singular locus. If X is projective, Y can also be chosen to be projective. The map f is a composite of certain kinds of blowups (not just that of closed points).