C3.3 Differentiable Manifolds

Problem Sheet 0

Michaelmas Term 2020–2021

- 1. For a smooth map $f : \mathbb{R}^n \to \mathbb{R}^m$ (or between open subsets of \mathbb{R}^n and \mathbb{R}^m) we let $df_p : \mathbb{R}^n \to \mathbb{R}^m$ denote the differential of f at $p \in \mathbb{R}^n$. Since df_p is a linear map, we can identify it with a matrix: if we write $f = (f_1, \ldots, f_m)$ and let (x_1, \ldots, x_n) denote coordinates on \mathbb{R}^n , then the matrix is $(\frac{\partial f_i}{\partial x_i})$.
 - (a) Let f : R → R² be given by f(t) = (t², t³).
 Calculate df_t for any t ∈ R and show that df_t is injective except at t = 0. Sketch the image of f in R².
 - (b) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x_1, x_2, x_3) = x_1^2 + x_2^2 x_3$. Calculate df_x for any $x \in \mathbb{R}^3$ and show that df_x is surjective for all $x \in \mathbb{R}^3$.
 - (c) Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $f(x_1, x_2, x_3) = (x_2 x_3, x_3 x_1, x_1 x_2)$. Calculate df_x for any $x \in \mathbb{R}^3$ and determine for which $x \in \mathbb{R}^3$ we have that df_x is an isomorphism.
 - (d) Let M_n(ℝ) be the n × n real matrices and let GL(n, ℝ) be the set of invertible n × n real matrices. Let f : GL(n, ℝ) → ℝ be given by f(A) = det A.
 Calculate df_A for any A ∈ GL(n, ℝ) as a map from M_n(ℝ) to ℝ and show that it is surjective for all A ∈ GL(n, ℝ).
- 2. Show that \mathbb{R}^n and $\mathcal{S}^n = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1^2 + \ldots + x_{n+1}^2 = 1\}$ are second countable and Hausdorff with respect to their natural topologies.
- 3. Let $N = (0, 0, 1) \in S^2$ and $S = (0, 0, -1) \in S^2$ and define $U_N = S^2 \setminus \{N\}$ and $U_S = S^2 \setminus \{S\}$. Let $\varphi_N : U_N \to \mathbb{R}^2$ and $\varphi_S : U_S \to \mathbb{R}^2$ be given by

$$\varphi_N(x_1, x_2, x_3) = \frac{(x_1, x_2)}{1 - x_3}$$
 and $\varphi_S(x_1, x_2, x_3) = \frac{(x_1, x_2)}{1 + x_3}$.

(a) By constructing explicit inverses, or otherwise, show that φ_N and φ_S are homeomorphisms (i.e. continuous bijections with continuous inverses).

Let $f = \varphi_S \circ \varphi_N^{-1}$ defined on $\varphi_N(U_N \cap U_S)$.

- (b) Calculate f and show that it defines a diffeomorphism of $\mathbb{R}^2 \setminus \{0\}$ (i.e. it is a smooth map with smooth inverse).
- (c) Calculate the differential df_y at any point $y \in \mathbb{R}^2 \setminus \{0\}$. Calculate det df_y when df_y is viewed as a matrix, and show that it is never zero.
- 4. (a) Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ by $f(x_1, x_2) = (e^{x_1} \cos x_2, e^{x_1} \sin x_2)$. Show that f is a local diffeomorphism (i.e. given any point $x \in \mathbb{R}^2$ there is an open set $U \ni x$ and $V \ni f(x)$ so that $f : U \to V$ is a diffeomorphism). Is f a diffeomorphism?
 - (b) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x_1, x_2) = x_1^3 + x_2^3 + e^{x_1 + x_2}$. Show that there is a smooth function $g(x_1)$ so that $f(x_1, x_2) = 0$ if and only if $x_2 = g(x_1)$. Deduce that $f^{-1}(0)$ is a manifold.