(C3.3 Differentiable Manifolds

Problem Sheet 0: Solutions

Michaelmas Term 2020-2021

1. For a smooth map f : R” — R™ (or between open subsets of R” and R™) we let df, : R" — R™

denote the differential of f at p € R™. Since df), is a linear map, we can identify it with a matrix: if
of )

k3
Bzvj

we write f = (f1,..., fm) and let (z1,...,2,) denote coordinates on R", then the matrix is (

(a) Let f:R — R? be given by f(t) = (t2,3).
Calculate df; for any ¢ € R and show that df; is injective except at t = 0. Sketch the image

of fin R2.
2t
we(2)

This matrix always has rank 1 (i.e. is not the zero matrix in this case) if ¢ # 0, and therefore df;

We calculate

is injective except for t = 0.

The image of f is a classic cusp curve, where the cusp is at 0.

(b) Let f:R3® — R be given by f(x1,72,23) = 27 + 23 — x3.
Calculate df, for any & € R? and show that df, is surjective for all x € R3.

We see that
dfm = (2.”[:1 2(1)2 — 1).

This matrix always has full rank (i.e. 1) because the last entry is never zero, and hence df, is

surjective for all z € R3.

(c) Let f:R® — R3 be given by f(x1,r2,23) = (v223, 2371, T122).
Calculate df, for any x € R?® and determine for which z € R? we have that df, is an

isomorphism.

We compute
0 Tr3 X2
dfz = I3 0 T

T2 X1 0

We see that detdf, = 2xizo23 for all 2 € R and so df, is an isomorphism if and only if all of

1, X9, T3 are NON-zero.

(d) Let M,(R) be the n x n real matrices and let GL(n,R) be the set of invertible n x n real
matrices. Let f: GL(n,R) — R be given by f(A) = det A.
Calculate df4 for any A € GL(n,R) as a map from M, (R) to R and show that it is surjective
for all A € GL(n,R).



To compute df4 we see that
f(A+ B) — f(A) = det(A+ B) —det A = det(A(I + A™'B)) — det A = det A(det(I + A~'B) — 1).

We then notice that
det(I + A™'B) = 1+ tr(A™'B) + o(|| B||).

From here, we then use the definition of df4 as the unique linear map so that

If(A+B) = f(A) —dfa(B]

—0
|B|

as ||B|| — 0. In other words, we see that
f(A+B) — f(A) =det Atr(A™'B) +o(|B|)

and so
dfa(B) = detAtr(A_lB).

Taking B = cA for any ¢ € R we see that
dfa(cA) = det Atr(cl) = ncdet A.

Since det A # 0 we can choose ¢ as we wish to ensure df4 is surjective onto R for any A.

. Show that R™ and 8" = {(#1,...,%p41) € R™™ : 2f + ...+ 22, = 1} are second countable and
Hausdorff with respect to their natural topologies.
To show that M = R™ or 8" is Hausdorff, suppose z,y € M are distinct. Then x; # y; for some i.
If ©; < y;, pick ¢ € (x;,y;) and set

U={ze8":zi<c}, V={z€8":2>c}.

Then U,V are disjoint open sets in M with z € U, y € V. If x; > y;, swap U,V. Thus M is
Hausdorff. [All we are doing here, of course, is a special case of showing that metric spaces are
Hausdorff.]

To see that R™ is second countable, note that
B= {(al,bl) X oo X (A, by) 1 a;, b €Q, a; < bi}
is a countable basis for its topology. Another option would be
B={B.(x) : 2€Q", reQt}

where B,.(z) denotes the Euclidean ball of radius r and centre z.

Hence, if B is a countable basis for R™, then {U ns*:UekB } is a countable basis for the topology
of 8™, so 8" is also second countable. [This just says that subspaces of second countable spaces are

second countable.]
. Let N =(0,0,1) € §? and S = (0,0, —1) € S? and define Uy = S?\ {N} and Us = §%\ {5}.
Let pn : Uy — R? and g : Us — R? be given by

($1,$2)
143

(551,%2)
1 — X3

on(x1, 22, 23) = and @g(z1,z2,23) =

(a) By constructing explicit inverses, or otherwise, show that ¢y and ¢g are homeomorphisms

(i-e. continuous bijections with continuous inverses).



We have explicit inverses:
(2y1, 22,97 + 93 — 1)
L+yi +y3

<P1_vl (y1,y2) =

and ) )
(2y1,2y2,1 — 91 —v3)
L+yi+ys

Both ¢y, ¢s and their inverses are clearly continuous, so they are homeomorphisms.

05 (y1,92) =

Let f = pgo <p;,1 defined on oy (Uy NUg).

(b) Calculate f and show that it defines a diffeomorphism of R?\ {0} (i.e. it is a smooth map with

smooth inverse).

We see that Uy NUg = S?\ {N, S} and o5 (UnNUs) = R?\ {0} = ps(UnNUs). We may compute
that f = pg ooy : R?\ {0} — R2\ {0} is

(y17 yz)
yi +vs

f(yla y2) =
This is smooth, because we are excluding the origin from R?, and f = f~!, so it is a diffeomorphism.

(c) Calculate the differential df, at any point y € R?\ {0}. Calculate det df,, viewed as a matrix
with respect to the standard basis of R2, and show that it is never zero.

df _ # y% - y% —23/13/2
Yy .
i)\ —2mye v — 3

We may calculate that

We see that )

(i +43)°
(a) Define f: R? — R? by f(x1,72) = (€*! cos o, €*! sinxs).
Show that f is a local diffeomorphism (i.e. given any point 2 € R? there is an open set U > x
and V 3 f(z) so that f: U — V is a diffemorphism). Is f a diffeomorphism?

detdf, = — <0.

We calculate that df, is given by the matrix

erlcosry —eflsinry

eflginxy €%l coszo

We quickly calculate that detdf, = e2** > 0 so df, is invertible for all x € R2. Therefore, by the
Implicit Function Theorem, f is a local diffeomorphism.
We see that f is not a diffeomorphism because f(x1,xs + 27) = f(x1,22) for all 21,22, so f is not

injective. It is also not surjective because f(x1,r2) is never zero as |f(ry,22)]? = 2%t > 0.

(b) Define f: R? — R by f(x1,72) = 23 + 23 + e®1 722,
Show that there is a smooth function g(z1) so that f(x1,z2) = 0 if and only if x5 = g(z1).
Deduce that f~1(0) is a manifold.
We calculate that
of
Oxa

for all x1,x9. So, by the Implicit Function Theorem, there is a smooth function g(z1) so that

=3z fem1 ™2 >0

f(z1,22) = 0 if and only if x5 = g(z1).

Therefore f~1(0) = {(z,g(z)) : € R}. We may therefore take a single chart U = f~1(0) and
o(x,g(x)) = . Then ¢ : f~1(0) — R is continuous and has inverse ¢~*(x) = (x,g(z)). The
transition function condition is trivially satisfied, since the only transition function is p o =1 = id

which is obviously a diffeomorphism. Hence f~1(0) is a 1-dimensional manifold.



