C3.3 Differentiable Manifolds

Problem Sheet 0: Solutions

Michaelmas Term 2020–2021

- 1. For a smooth map $f: \mathbb{R}^n \to \mathbb{R}^m$ (or between open subsets of \mathbb{R}^n and \mathbb{R}^m) we let $df_p: \mathbb{R}^n \to \mathbb{R}^m$ denote the differential of f at $p \in \mathbb{R}^n$. Since df_p is a linear map, we can identify it with a matrix: if we write $f = (f_1, \ldots, f_m)$ and let (x_1, \ldots, x_n) denote coordinates on \mathbb{R}^n , then the matrix is $(\frac{\partial f_i}{\partial x_j})$.
	- (a) Let $f : \mathbb{R} \to \mathbb{R}^2$ be given by $f(t) = (t^2, t^3)$. Calculate df_t for any $t \in \mathbb{R}$ and show that df_t is injective except at $t = 0$. Sketch the image of f in \mathbb{R}^2 .

We calculate

$$
\mathrm{d}f_t = \left(\begin{array}{c} 2t \\ 3t^2 \end{array}\right).
$$

This matrix always has rank 1 (i.e. is not the zero matrix in this case) if $t \neq 0$, and therefore df_t is injective except for $t = 0$.

The image of f is a classic cusp curve, where the cusp is at 0.

(b) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x_1, x_2, x_3) = x_1^2 + x_2^2 - x_3$.

Calculate df_x for any $x \in \mathbb{R}^3$ and show that df_x is surjective for all $x \in \mathbb{R}^3$.

We see that

$$
df_x = (2x_1 \ 2x_2 \ -1).
$$

This matrix always has full rank (i.e. 1) because the last entry is never zero, and hence df_x is surjective for all $x \in \mathbb{R}^3$.

(c) Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $f(x_1, x_2, x_3) = (x_2x_3, x_3x_1, x_1x_2)$. Calculate df_x for any $x \in \mathbb{R}^3$ and determine for which $x \in \mathbb{R}^3$ we have that df_x is an isomorphism.

We compute

$$
df_x = \begin{pmatrix} 0 & x_3 & x_2 \\ x_3 & 0 & x_1 \\ x_2 & x_1 & 0 \end{pmatrix}.
$$

We see that $\det df_x = 2x_1x_2x_3$ for all $x \in \mathbb{R}^3$ and so df_x is an isomorphism if and only if all of x_1, x_2, x_3 are non-zero.

(d) Let $M_n(\mathbb{R})$ be the $n \times n$ real matrices and let $GL(n,\mathbb{R})$ be the set of invertible $n \times n$ real matrices. Let $f: GL(n, \mathbb{R}) \to \mathbb{R}$ be given by $f(A) = \det A$. Calculate df_A for any $A \in GL(n, \mathbb{R})$ as a map from $M_n(\mathbb{R})$ to $\mathbb R$ and show that it is surjective for all $A \in GL(n, \mathbb{R})$.

To compute df_A we see that

$$
f(A+B) - f(A) = \det(A+B) - \det A = \det(A(I + A^{-1}B)) - \det A = \det A(\det(I + A^{-1}B) - 1).
$$

We then notice that

$$
\det(I + A^{-1}B) = 1 + \text{tr}(A^{-1}B) + o(||B||).
$$

From here, we then use the definition of df_A as the unique linear map so that

$$
\frac{\|f(A+B) - f(A) - df_A(B)\|}{|B|} \to 0
$$

as $||B|| \to 0$. In other words, we see that

$$
f(A + B) - f(A) = \det A \operatorname{tr}(A^{-1}B) + o(|B|)
$$

and so

$$
df_A(B) = \det A \operatorname{tr}(A^{-1}B).
$$

Taking $B = cA$ for any $c \in \mathbb{R}$ we see that

$$
df_A(cA) = \det A \operatorname{tr}(cI) = nc \det A.
$$

Since det $A \neq 0$ we can choose c as we wish to ensure df_A is surjective onto R for any A.

2. Show that \mathbb{R}^n and $\mathcal{S}^n = \{(x_1, ..., x_{n+1}) \in \mathbb{R}^{n+1} : x_1^2 + ... + x_{n+1}^2 = 1\}$ are second countable and Hausdorff with respect to their natural topologies.

To show that $M = \mathbb{R}^n$ or \mathcal{S}^n is Hausdorff, suppose $x, y \in M$ are distinct. Then $x_i \neq y_i$ for some i. If $x_i \leq y_i$, pick $c \in (x_i, y_i)$ and set

$$
U = \{ z \in S^n : z_i < c \}, \quad V = \{ z \in S^n : z_i > c \}.
$$

Then U, V are disjoint open sets in M with $x \in U$, $y \in V$. If $x_i > y_i$, swap U, V. Thus M is Hausdorff. [All we are doing here, of course, is a special case of showing that metric spaces are Hausdorff.]

To see that \mathbb{R}^n is second countable, note that

$$
\mathcal{B} = \{(a_1, b_1) \times \cdots \times (a_n, b_n) : a_i, b_i \in \mathbb{Q}, a_i < b_i\}
$$

is a countable basis for its topology. Another option would be

$$
\mathcal{B} = \{B_r(x) : x \in \mathbb{Q}^n, r \in \mathbb{Q}^+\}
$$

where $B_r(x)$ denotes the Euclidean ball of radius r and centre x.

Hence, if B is a countable basis for \mathbb{R}^n , then $\{U \cap S^n : U \in B\}$ is a countable basis for the topology of $Sⁿ$, so $Sⁿ$ is also second countable. [This just says that subspaces of second countable spaces are second countable.]

3. Let $N = (0, 0, 1) \in \mathcal{S}^2$ and $S = (0, 0, -1) \in \mathcal{S}^2$ and define $U_N = \mathcal{S}^2 \setminus \{N\}$ and $U_S = \mathcal{S}^2 \setminus \{S\}.$ Let $\varphi_N: U_N \to \mathbb{R}^2$ and $\varphi_S: U_S \to \mathbb{R}^2$ be given by

$$
\varphi_N(x_1, x_2, x_3) = \frac{(x_1, x_2)}{1 - x_3}
$$
 and $\varphi_S(x_1, x_2, x_3) = \frac{(x_1, x_2)}{1 + x_3}$.

(a) By constructing explicit inverses, or otherwise, show that φ_N and φ_S are homeomorphisms (i.e. continuous bijections with continuous inverses).

We have explicit inverses:

$$
\varphi_N^{-1}(y_1, y_2) = \frac{(2y_1, 2y_2, y_1^2 + y_2^2 - 1)}{1 + y_1^2 + y_2^2}
$$

and

$$
\varphi_S^{-1}(y_1, y_2) = \frac{(2y_1, 2y_2, 1 - y_1^2 - y_2^2)}{1 + y_1^2 + y_2^2}.
$$

Both φ_N , φ_S and their inverses are clearly continuous, so they are homeomorphisms.

Let $f = \varphi_S \circ \varphi_N^{-1}$ defined on $\varphi_N(U_N \cap U_S)$.

(b) Calculate f and show that it defines a diffeomorphism of $\mathbb{R}^2 \setminus \{0\}$ (i.e. it is a smooth map with smooth inverse).

We see that $U_N \cap U_S = S^2 \setminus \{N, S\}$ and $\varphi_N(U_N \cap U_S) = \mathbb{R}^2 \setminus \{0\} = \varphi_S(U_N \cap U_S)$. We may compute that $f = \varphi_S \circ \varphi_N^{-1} : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\}$ is

$$
f(y_1, y_2) = \frac{(y_1, y_2)}{y_1^2 + y_2^2}.
$$

This is smooth, because we are excluding the origin from \mathbb{R}^2 , and $f = f^{-1}$, so it is a diffeomorphism.

(c) Calculate the differential df_y at any point $y \in \mathbb{R}^2 \setminus \{0\}$. Calculate det df_y , viewed as a matrix with respect to the standard basis of \mathbb{R}^2 , and show that it is never zero.

We may calculate that

$$
df_y = \frac{1}{(y_1^2 + y_2^2)^2} \begin{pmatrix} y_2^2 - y_1^2 & -2y_1y_2 \ -2y_1y_2 & y_1^2 - y_2^2 \end{pmatrix}.
$$

We see that

$$
\det \mathrm{d} f_y = -\frac{1}{(y_1^2+y_2^2)^2} < 0.
$$

4. (a) Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ by $f(x_1, x_2) = (e^{x_1} \cos x_2, e^{x_1} \sin x_2).$

Show that f is a local diffeomorphism (i.e. given any point $x \in \mathbb{R}^2$ there is an open set $U \ni x$ and $V \ni f(x)$ so that $f: U \to V$ is a diffemorphism). Is f a diffeomorphism?

We calculate that df_x is given by the matrix

$$
df_x = \begin{pmatrix} e^{x_1} \cos x_2 & -e^{x_1} \sin x_2 \\ e^{x_1} \sin x_2 & e^{x_1} \cos x_2 \end{pmatrix}.
$$

We quickly calculate that $\det df_x = e^{2x_1} > 0$ so df_x is invertible for all $x \in \mathbb{R}^2$. Therefore, by the Implicit Function Theorem, f is a local diffeomorphism.

We see that f is not a diffeomorphism because $f(x_1, x_2 + 2\pi) = f(x_1, x_2)$ for all x_1, x_2 , so f is not injective. It is also not surjective because $f(x_1, x_2)$ is never zero as $|f(x_1, x_2)|^2 = e^{2x_1} > 0$.

(b) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x_1, x_2) = x_1^3 + x_2^3 + e^{x_1 + x_2}$. Show that there is a smooth function $g(x_1)$ so that $f(x_1, x_2) = 0$ if and only if $x_2 = g(x_1)$. Deduce that $f^{-1}(0)$ is a manifold.

We calculate that

$$
\frac{\partial f}{\partial x_2} = 3x_2^2 + e^{x_1 + x_2} > 0
$$

for all x_1, x_2 . So, by the Implicit Function Theorem, there is a smooth function $g(x_1)$ so that $f(x_1, x_2) = 0$ if and only if $x_2 = g(x_1)$.

Therefore $f^{-1}(0) = \{(x, g(x)) : x \in \mathbb{R}\}.$ We may therefore take a single chart $U = f^{-1}(0)$ and $\varphi(x,g(x)) = x$. Then $\varphi : f^{-1}(0) \to \mathbb{R}$ is continuous and has inverse $\varphi^{-1}(x) = (x,g(x))$. The transition function condition is trivially satisfied, since the only transition function is $\varphi \circ \varphi^{-1} = id$ which is obviously a diffeomorphism. Hence $f^{-1}(0)$ is a 1-dimensional manifold.