C3.3 Differentiable Manifolds

Problem Sheet 3

Michaelmas Term 2020–2021

1. Let (x_0, x_1, x_2, x_3) be coordinates on \mathbb{R}^4 and let

$$\omega = \mathrm{d}x_0 \wedge \mathrm{d}x_1 + \mathrm{d}x_2 \wedge \mathrm{d}x_3.$$

Let $u: \mathbb{R}^4 \to \mathbb{R}$ be smooth and consider the vector field

$$X = -\partial_1(u)\partial_0 + \partial_0(u)\partial_1 - \partial_3(u)\partial_2 + \partial_2(u)\partial_3.$$

Show that if ϕ_t^X defines the flow of X and ϕ_1^X is defined, then $(\phi_1^X)^*\omega = \omega$.

[Hint: Consider $\frac{d}{dt}(\phi_t^X)^*\omega$.]

- 2. A Riemann surface is a 2-dimensional manifold with an atlas $\{(U_i, \varphi_i) : i \in I\}$ whose transition maps $\varphi_j \circ \varphi_i^{-1}$ for $i, j \in I$ are maps from an open set $\varphi_i(U_i \cap U_j)$ of $\mathbb{C} = \mathbb{R}^2$ to another open set $\varphi_j(U_i \cap U_j)$ which are holomorphic and invertible. Show that a Riemann surface is orientable.
- 3. Let M_1 and M_2 be manifolds. Show that $M_1 \times M_2$ is orientable if and only if M_1 and M_2 are both orientable.
- 4. Let M be a manifold and let G act freely and properly discontinuously by diffeomorphisms f_g for $g \in G$ on M. Let $\pi: M \to M/G$ be the projection map.
 - (a) Suppose that M/G is orientable, so that there is a volume form Ω on M/G. Show that $\Upsilon = \pi^*\Omega$ is a volume form on M such that $f_q^*\Upsilon = \Upsilon$ for all $g \in G$.
 - (b) Suppose that Υ is a volume form on M such that $f_g^*\Upsilon = \Upsilon$ for all $g \in G$. Show that there is a volume form Ω on M/G such that $\pi^*\Omega = \Upsilon$, and hence that M/G is orientable.
 - (c) Suppose that $M = S^1 \times S^1 \subseteq \mathbb{R}^4$ is the standard 2-torus and $G = \mathbb{Z}_2 = \{-1, +1\}$ acting on \mathbb{R}^4 by diffeomorphisms $f_1 = \operatorname{id}$ and $f_{-1} = -\operatorname{id}$. Is M/G diffeomorphic to the Klein bottle?
- 5. Define $f:(0,1)\times(0,2\pi)\to B^2$, where B^2 is the unit ball centred at 0 in \mathbb{R}^2 , by

$$f(r,\theta) = (r\cos\theta, r\sin\theta)$$

and let (y_1, y_2) be coordinates on B^2 . Let $B_s \subseteq B^2$ denote the open ball centred at 0 of radius s, for $s \in (0, 1)$, with its standard orientation. Let $k \in \{1, -1\}$.

(a) Compute

$$f^* \left(4(1 - y_1^2 - y_2^2)^{2k} dy_1 \wedge dy_2 \right).$$

(b) Hence, or otherwise, calculate

$$\int_{B_s} 4(1 - y_1^2 - y_2^2)^{2k} \mathrm{d}y_1 \wedge \mathrm{d}y_2$$

in each of the cases k=1 and k=-1. What happens as $s\to 1$ in each case?

1

- 6. Use Stokes Theorem for manifolds with boundary to prove the following results.
 - (a) Let $\gamma: \mathcal{S}^1 \to \mathbb{R}^2$ be an embedding and let D be the region in \mathbb{R}^2 bounded by $C = \gamma(\mathcal{S}^1)$. Let $u_1, u_2: \mathbb{R}^2 \to \mathbb{R}$ be smooth functions. Then

$$\int_C u_1 dx_1 + u_2 dx_2 = \int_D \left(\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right) dx_1 dx_2.$$

(b) Let V be an open subset of \mathbb{R}^3 with compact closure and smooth boundary $S = \partial V$. Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be smooth. Then

$$\int_{V} \operatorname{div} F \, \mathrm{d}V = \int_{S} F \cdot \mathrm{d}S.$$

(c) Let Σ be a compact oriented surface in \mathbb{R}^3 with smooth boundary $\Gamma = \partial \Sigma$. Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ be smooth. Then

$$\int_{\Sigma} \operatorname{curl} F \cdot \mathrm{d} \Sigma = \int_{\Gamma} F \cdot \mathrm{d} \Gamma.$$