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Introduction

Historically, people first studied numbers and then realized that their collection forms a
set: e.g. the set of natural numbers, rational numbers etc. The next natural question is
as follows: what do sets or groups form? For two numbers they can either be equal or not
equal. On the other hand for sets, besides equality one also has a notion of isomorphism
of sets: the sets {1, 2} and {2, 3} are not equal but isomorphic. Thus, sets form a more
complicated structure, which we will call a category.

Categorical methods allow one to abstract from the precise context and prove statements
valid for any kinds of objects: sets, groups, vector spaces etc. Often in concrete contexts the
precise construction might be complicated but it may satisfy some universal property which
is easy to use in practice and which determines the construction uniquely. Let us give some
examples of this phenomenon.

Given two vector spaces V,W over a field k one can form their tensor product V ⊗W .
The precise definition is rather involved: V ⊗W is the vector space spanned by elements of
the form v ⊗ w for v ∈ V and w ∈ W modulo the relations

• (λv)⊗ w = v ⊗ (λw) for λ ∈ k,
• (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,
• v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.

However, it satisfies a universal property : a linear map f : V ⊗W → Z to another vector
space Z is the same as a map of sets V ×W → Z which is bilinear in each variable:

f(λ1v1 + λ2v2, w) = λ1f(v1, w) + λ2f(v2, w)

and similarly for the second slot.
We will later show in the course that this universal property determines the tensor product

uniquely. Let us give an easy example of how one works with universal properties by showing
that V ⊗ k ∼= V . Indeed, a map V ⊗ k → Z is the same as a map of sets V × k → Z which
is bilinear. Linearity in the second variable shows that the map is uniquely specified by its
value on V × {1}. Therefore, such a bilinear map is the same as a linear map V → Z.

Here is another example. Given two groups G,H one can consider their free product
G ∗H. Its underlying set consists of formal words g1g2...gn for gi either in G or H modulo
the relations that one can multiply two adjacent elements if they are both in G or in H. The
product is given by concatenation. Note that we have maps G→ G ∗H and H → G ∗H.

The universal property of the free product is the following. Given any group K together
with homomorphisms G → K and H → K one has a unique homomorphism G ∗ H → K
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such that the diagram

G

## ))
G ∗H // K

H

;; 55

commutes. We will later see that this construction can be generalized to objects of other
categories than just groups.

Literature. These are lecture notes from an introductory course on category theory taught
in Michaelmas term 2015. Due to time constraints we have not covered many topics that
could be found in a different introductory course. Besides the comprehensive classic Mac
Lane’s book [McL], let us also recommend the reader to check out [Awo], [Lei] and [Rie].

The following topics could be found in some other category theory courses:

• Monoidal, braided monoidal and symmetric monoidal categories,
• Operads,
• Kan extensions,
• 2-categories, higher categories.

The reader is invited to consult other sources for these (in particular, Mac Lane’s book).

1. Basic definitions

1.1. Categories. The main definition in this course is that of a category. We will use the
word “collection” to refer to certain large sets. These set-theoretic issues will be discussed
in the next section, but for now one can replace the word “collection” with “set”.

Definition 1.1. A category C consists of the following data:

(1) a collection ob C of objects of C,
(2) for every two objects x, y ∈ ob C a collection HomC(x, y) of morphisms,
(3) the identity morphism idx ∈ HomC(x, x) for every object x ∈ ob C,
(4) the composition map

◦ : HomC(y, z)× HomC(x, y)→ HomC(x, z)

for every triple of objects x, y, z ∈ ob C.
These have to satisfy the following two axioms:

(1) (Units). For any two objects x, y ∈ ob C and any morphism f ∈ HomC(x, y) one has

f ◦ idx = f

and

idy ◦f = f.

(2) (Associativity). For any four objects x, y, z, v ∈ ob C and any three morphisms
f ∈ HomC(x, y), g ∈ HomC(y, z), h ∈ HomC(z, v) one has

(h ◦ g) ◦ f = h ◦ (g ◦ f).



4 PAVEL SAFRONOV WITH MINOR UPDATES 2019 BY FRANCES KIRWAN

We will use a shorthand x ∈ C for x ∈ ob C and often omit the subscript in Hom when the
category in question is clear. Note that some people use C(x, y) for what we denote in the
course by HomC(x, y). We will also write EndC(x) for HomC(x, x) and refer to morphisms
from an object to itself as endomorphisms.

Informally one thinks of a category as a collection of objects connected by composable
arrows: an arrow between two objects specifies a morphism.

Example. Consider a category C with a single object, traditionally written ∗. Then EndC(∗)
forms what’s known as a monoid (and thus, a category can be thought of as a monoid with
many objects). Let EndC(∗) = A, then we denote such a category by ∗/A.

If we furthermore assume existence of inverses we get the definition of a group.

Given a category C we have its opposite category Cop. They have the same objects and
HomCop(x, y) = HomC(y, x).

1.2. Set-theoretic issues. This section can be skipped and will not be discussed in the
lectures. A more detailed account on Grothendieck universes can be found in [Low].

We would like to say that sets form a category Set with objects of Set being sets and
morphisms being maps of sets. Informally, all axioms seem to be satisfied. The problem is
that the set of all sets does not exist; there are several ways to get around this depending on
one’s axioms of set theory. For some choices of such axioms the collection of all sets forms
a class, but this has no meaning in the Zermelo–Fraenkel axiomatics.

We will adopt the Tarski–Grothendieck axioms of set theory.

Definition 1.2. A Grothendieck universe U is a set satisfying the following properties:

(1) If x ∈ y and y ∈ U , then x ∈ U .
(2) If x ∈ U and y ∈ U , then {x, y} ∈ U .
(3) If x ∈ U , then the power set of x is in U .
(4) If x ∈ U and f : x→ U is a map, then ∪i∈xf(i) ∈ U .

We will often refer to Grothendieck universes simply as universes. One way to formulate
the Tarski–Grothendieck axioms is to start with the axioms of Zermelo–Fraenkel with the
axiom of choice and add the following axiom known as the Tarski axiom.

Axiom. For every set X there is a universe U containing X.

We call a set X U-small for some universe U if X ∈ U . In this axiomatics Russel’s paradox
that the set of all sets doesn’t exist is avoided since a universe U is not a member of itself.
In other words, the universe U itself is not U -small.

Fix a universe U . Then we can define the category of U -small sets SetU . Its objects form
a set, but this set is not U -small. However, it follows from the axioms that the set of objects
of SetU is V -small for some bigger universe V .

Definition 1.3. A category C is U-small if ob C is a U -small set and HomC(x, y) is a U -small
set for any x, y ∈ C. A category C is U-locally small if ob C ⊆ U and HomC(x, y) is a U -small
set for any two objects x, y ∈ C.

In this course we will usually fix a universe implicitly, and we will use the following
definition.
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Definition 1.4. A small category is one which is U -small for some universe U . We say that
C is a locally small category if HomC(x, y) is a set for any two objects x, y of C.

1.3. Functors. Whenever one encounters a structure, one should ask what are the relations
between objects possessing that kind of structure so that one can define the category of such
objects, with morphisms given by maps preserving the structure. For categories themselves
this gives us the notion of a functor.

Definition 1.5. A functor F : C → D between two categories C and D consists of the
following data:

• a map ob C → obD of sets (also denoted by F ),
• for any two objects x, y ∈ C a map of sets HomC(x, y) → HomD(F (x), F (y)) (again

denoted by F ).

These have to satisfy the following axioms:

(1) (Unit). For any object x ∈ C we have F (idx) = idF (x).
(2) (Composition). For any three objects x, y, z ∈ C and morphisms f ∈ HomC(x, y),

g ∈ HomC(y, z) one has

F (g ◦ f) = F (g) ◦ F (f).

If A and B are two monoids, then a functor ∗/A→ ∗/B is the same as a homomorphism
of monoids. (If readers are scared by the word “monoid”, they can replace it by “group”
with the same result.)

We will say a functor F : C → D is faithful if the map HomC(x, y) → HomD(F (x), F (y))
is injective for any objects x and y. We say F is full if this map is surjective for any x, y,
and we say F is fully faithful if it is both full and faithful.

We say that F is a contravariant functor from C to D if it is a functor Cop → D. A functor
C → D is also referred to as a covariant functor.

1.4. Examples. We have already mentioned one example of a category, which is the cate-
gory of (small) sets. Let us give some more examples.

(1) Groups form a category Grp with morphisms given by homomorphisms of groups.
The notation Hom originates from this example.

(2) One can restrict groups to be abelian, these form a category Ab.
(3) If k is a field, k-vector spaces form a category Vectk with morphisms given by linear

maps.
(4) (Small) categories themselves form a category Cat with morphisms given by functors.
(5) A set X can be regarded as a category C with ob C = X and HomC(x, y) = ∅ for

x 6= y and EndC(x) = {idx}. We call such a category a discrete category.

Definition 1.6. A morphism f ∈ Hom(x, y) in a category is an isomorphism if there is a
morphism f−1 ∈ Hom(y, x) such that f−1 ◦ f = idx and f ◦ f−1 = idy. We also say that that
f is invertible.

The standard argument from group theory shows that the morphism f−1 is unique if it
exists; thus being an isomorphism is a property of a morphism rather than extra data.

If there is an isomorphism between two objects x, y ∈ C we will write x ∼= y.
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Definition 1.7. A category C is called a groupoid if every morphism is invertible.

The reason such categories are called groupoids is given by the following observation.
Consider a groupoid with a single object. The data needed to specify such a groupoid is
the monoid of endomorphisms in which every object has an inverse. In other words, the
monoid of endomorphisms is actually a group in this case. So, groupoids can be thought of
as “multi-object” versions of groups.

We will say that a groupoid is connected if any two objects are isomorphic.
Let us now give some examples of functors.

(1) Given an abelian group one can forget that it is abelian which gives a functor
Ab→ Grp. It is fully faithful.

(2) The abelianization G 7→ G/[G,G] gives a functor Grp → Ab. It is neither full nor
faithful.

(3) Given a set we can regard it as a discrete category. This gives a fully faithful functor
Set→ Cat.

1.5. Natural transformations. Consider the category of sets Set. Given two sets x, y ∈ Set
we can ask two different questions:

(1) Is x = y?
(2) Is x ∼= y?

Let us remind the reader that the axiom of extensionality implies that the sets x and y
are equal iff they have the same objects.

Clearly, if x = y then x ∼= y as we may take the identity morphism to represent the
isomorphism. However, there are isomorphic sets which are not equal: for instance, the
group of units in Z is isomorphic to Z/2Z but they are not equal. In general the philosophy
one usually takes in category theory is that questions of the first kind are unnatural1in
category theory and should always be replaced by questions of the second kind.

Let C and D be two categories and consider two functors F,G : C → D. The statement
F = G means the following:

(1) For every object x ∈ C we have F (x) = G(x).
(2) For every morphism f ∈ HomC(x, y) we have F (f) = G(f) in HomD(F (x), F (y)).

In particular, the statement F = G implies an equality of certain objects, which is an
unnatural question. We will formulate a “natural” version of equality for functors which is
called a natural isomorphism.

Definition 1.8. Let F,G : C → D be two functors. A natural transformation η : F ⇒ G
consists of morphisms ηx ∈ HomD(F (x), G(x)) for every object x ∈ C such that the diagram

F (x)

ηx

��

F (f)
// F (y)

ηy

��
G(x)

G(f)
// G(y)

commutes for every morphism f ∈ HomC(x, y).

1On the category theory wiki http://ncatlab.org these kind of questions are referred to as “evil”.

http://ncatlab.org
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We say a natural transformation η : F ⇒ G is a natural isomorphism if the morphisms ηx
are isomorphisms for any x ∈ C.

Given two categories C,D one can construct a category Fun(C,D) of functors between C
and D: its objects are functors C → D and morphisms are given by natural transformations.
Then natural isomorphisms are simply isomorphisms in the functor category.

1.6. Composing natural transformations. Given two categories C,D and a pair of func-
tors F,G : C → D we depict a natural transformation η : F ⇒ G in the following way:

C
F

))

G

55�� η D.

There are two main ways one can compose natural transformations: horizontal and verti-
cal.

(1) Consider a diagram

C

F

""�� η

==

H

�� εG
// D

We have a vertical composition F ⇒ H which has components given by the com-

posites F (x)
ηx→ G(x)

εx→ H(x) for all x ∈ C.
(2) Consider a diagram

C
F1

))

G1

55�� η D
F2

((

G2

66�� ε E

We have a horizontal composition F2F1 ⇒ G2G1 which has components

F2F1(x)
F2(ηx)→ F2G1(x)

εG1(x)→ G2G1(x)

for every x ∈ C. Note that we could have used the composition of ε and η in a
different order; the two expressions coincide due to naturality of ε and η.

(3) Finally, one can also compose natural transformations with functors. Consider a
diagram

C
F1

))

G1

55�� η D F2 // E

Then we have a whiskering of η and F2 being the natural transformation F2F1 ⇒ F2G1

whose components are F2F1(x)
F2(ηx)→ F2G1(x) for every x ∈ C. Clearly, whiskering

is an example of a horizontal composition where G2 = F2 and ε = id. Similarly,
we can precompose a natural transformation with a functor which is a horizontal
composition with η = id.
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1.7. Equivalences of categories. In the category Cat of categories an isomorphism F : C → D
is an isomorphism of sets ob C → obD and an isomorphism HomC(x, y)→ HomD(F (x), F (y))
for each x, y ∈ ob C. We are going to define a weaker notion of equivalence of categories.

Definition 1.9. An equivalence of categories C,D is a pair of functors F : C → D and
G : D → C together with natural isomorphisms e : idC ⇒ GF and ε : FG⇒ idD.

Definition 1.10. An adjoint equivalence of categories C,D is an equivalence (F,G, e, ε)
satisfying the following axioms:

(1) The composite natural transformation

F ∼= F ◦ idC
idF ◦e⇒ FGF

ε◦idF⇒ idD ◦F ∼= F

is the identity natural transformation on F .
(2) The composite natural transformation

G ∼= idC ◦G
e◦idG⇒ GFG

idG ◦ε⇒ G ◦ idD ∼= G

is the identity natural transformation on G.

Now we get three notions of sameness for categories:

(1) Isomorphism of categories,
(2) Equivalence of categories,
(3) Adjoint equivalence of categories.

Clearly, an isomorphism of categories is an adjoint equivalence, but the two notions of
equivalences are much more flexible compared to the strict notion of isomorphism which
does not appear in practice. Moreover, we will show that the two notions of equivalences
are the same.

Let us fix a functor F : C → D and consider the following category EquivF . Its objects are
functors G : D → C together with natural isomorphisms e and ε such that (F,G, e, ε) is an ad-
joint equivalence. A morphism (G1, e1, ε1)→ (G2, e2, ε2) consists of a natural transformation
f : G1 ⇒ G2 making the diagrams

idC
e1

x�

e2

�&
G1F

f◦idF +3 G2F

and

idD

FG1
idF ◦f +3

ε1
8@

FG2

ε2
^f

commute.

Proposition 1.11. Any two objects (G1, e1, ε1) and (G2, e2, ε2) of EquivF are isomorphic
and, moreover, this isomorphism is unique.
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Proof. To prove the first statement, consider the composite natural isomorphism f : G1 ⇒ G2

given by

G1
∼= idC ◦G1

e2◦idG1⇒ G2FG1

idG2
◦ε1⇒ G2.

To show that the first diagram commutes, consider the composite natural transformation

id
e1⇒ G1F

e2◦idG1
◦ idF⇒ G2FG1F

idG2
◦ε1◦idF⇒ G2F.

Since e1 and e2 are natural transformations, we can alternatively write this as

id
e2⇒ G2F

idG2
◦ idF ◦e1⇒ G2FG1F ⇒ G2F.

But then using the compatibility of e1 and ε1 we get that the composite natural transfor-
mation is e2 as required. The commutativity of the other diagram is checked in the same
way. Therefore, any two objects are isomorphic.

To prove the second statement, consider a morphism f ∈ Hom((G1, e1, ε1), (G2, e2, ε2))
and take any x ∈ C and y ∈ D. Then the commutativity of the diagrams implies that

fF (x) ◦ e1,x = e2,x

and
ε2,y ◦ F (fy) = ε1,y.

Equivalently,
fF (x) = e2,x ◦ e−11,x, F (fy) = ε−12,y ◦ ε1,y.

Applying G2 to the second equality we get

G2F (fy) = G2(ε2,y)
−1 ◦G2(ε1,y).

Since e2 is a natural isomorphism, we get

e2,G2(y) ◦ fy = G2(ε2,y)
−1 ◦G2(ε1,y) ◦ e2,G1(y)

which implies that
fy = G2(ε1,y) ◦ e2,G1(y).

In other words, f is determined uniquely. �

This proposition implies that given a functor F : C → D the other functor in the quadruple
(F,G, e, ε) is unique up to a unique natural isomorphism if it exists. Therefore, being an
adjoint equivalence is a property of a functor F : C → D rather than extra data.

Let us now give a more direct way of showing that a given functor underlines an equivalence
of categories.

Definition 1.12. A functor F : C → D is essentially surjective if for every object d ∈ D
there is c ∈ C such that F (c) ∼= d.

Note that we do not assume that such a c is unique or that the assignment d 7→ c is
functorial in any way.

Theorem 1.13. The following three properties of a functor F : C → D are equivalent:

(1) F is a part of an equivalence of categories,
(2) F is fully faithful and essentially surjective,
(3) F is a part of an adjoint equivalence of categories.
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Proof.

• (3)⇒ (1) is obvious.
• (1)⇒ (2).

Let (F,G, e, ε) be an equivalence. For any d ∈ D we have F (G(d)) ∼= d, so F is
essentially surjective.

For any objects x, y ∈ C the composite

HomC(x, y)→ HomD(F (x), F (y))→ HomC(GF (x), GF (y))

is an isomorphism, so F is faithful.
The same reasoning shows that G is faithful, so F has to be full.

• (2)⇒ (3).
Conversely, suppose F is fully faithful and essentially surjective. Consider the

following category CD:
– Its objects are objects c ∈ C and d ∈ D together with an isomorphism i : F (c)

∼→ d.
– A morphism from (c1, d1, i1) to (c2, d2, i2) is a morphism f ∈ HomC(c1, c2) and a

morphism f ′ ∈ HomD(d1, d2) making the diagram

F (c1)
i1 //

F (f)

��

d1

f ′

��
F (c2)

i2 // d2

commute.
We have the following natural functors:
– The forgetful functor PC : CD → C given by PC(c, d, i) = c.
– The forgetful functor PD : CD → D given by PD(c, d, i) = d.
– The inclusion functor IC : C → CD given by IC(c) = (c, F (c), idF (c)).
The composite PCIC is the identity functor on C, so there is a natural isomorphism

e : idC ⇒ PCIC given by the identity natural transformation. We also have a natural
isomorphism ε : ICPC ⇒ idCD. For an object (c, d, i) ∈ CD the morphism

ε(c,d,i) : ICPC(c, d, i) = (c, F (c), idF (c))→ (c, d, i)

is given by idc : c → c and i : F (c) → d. It is not difficult to see that this gives
a natural isomorphism and PC and IC therefore constitute an equivalence. It is an
adjoint equivalence since εIC(c) ◦ IC(ec) = εIC(c) = ε(c,F (c),idF (c)) = (idc, idF (c)) and

PC(ε(c,d,i)) ◦ ePC(c,d,i) = PC(ε(c,d,i)) = idc.
We are now going to define a functor ID : D → CD such that the pair (PD, ID) is

an equivalence.
For every object d ∈ D consider the set Sd consisting of objects c ∈ C together

with an isomorphism i : F (c)
∼→ d. Since F is essentially surjective, every set Sd is

nonempty. Using the axiom of choice we can therefore choose elements (cd, d, id) ∈ Sd
for every d ∈ D. We define the functor ID by sending d ∈ D to (cd, d, id) ∈ CD. A

morphism f : d1 → d2 determines uniquely a morphism f̃ : F (c1) → F (c2) making
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the diagram

F (cd1)

f̃
��

id1

∼
// d1

f

��
F (cd2)

id2

∼
// d2

commute. By fully faithfulness of F , there is a unique morphism ID(f) such that

F (ID(f)) = f̃ . This concludes the definition of the functor ID.
We have PDID = idD. The natural isomorphism IDPD ⇒ idCD is defined as follows.

IDPD(c, d, i) = (cd, d, id). By fully faithfulness of F we can find a unique morphism
f(c,d,i) : c→ cd making the diagram

F (c)

F (f(c,d,i))

��

i

∼
// d

id
��

F (cd)
id

∼
// d

commute, so the pair (PD, ID) is an equivalence. To show it is an adjoint equivalence
we observe that if i = id then by uniqueness f(c,d,i) is the identity on d.

To conclude the proof of the theorem, consider the diagram

CD

PC~~ PD !!
C

F
//

IC
>>

D

ID
aa

The diagram commutes strictly (i.e. PDIC = F ) and every pair of functors in the
diagram is an adjoint equivalence which implies that F itself is an adjoint equivalence.

�

Since the notions of adjoint equivalence and simply equivalence are essentially the same
by the previous theorem, from now on we will simply refer to a single functor constituting
an equivalence. In practice one often just checks the property (2) in Theorem 1.13.

2. Adjoint functors

2.1. Definition via units. If one has a map of sets f : X → Y , the only natural map that
goes in the other direction is the inverse f−1 : Y → X if it exists. For categories we can talk
about adjoint equivalences which is a notion analogous to the notion of inverses of maps of
sets. However, we can also relax the definition of adjoint equivalences to obtain more general
class of “inverses” of categories which are known as adjoint functors. Adjoint functors are
central constructions in category theory and we will give several equivalent definitions.

Let C,D be two categories.

Definition 2.1. A pair of functors F : C → D and G : D → C are adjoint if there are natural
transformations e : idC ⇒ GF and ε : FG⇒ idD satisfying the following axioms:
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(1) The composite

F
idF ◦e⇒ FGF

ε◦idF⇒ F

is the identity natural transformation,
(2) The composite

G
e◦idG⇒ GFG

idG ◦ε⇒ G

is the identity natural transformation.

If there is an adjoint pair (F,G) we say that F is a left adjoint and G is a right adjoint
and we write F a G. The natural transformation e is known as the unit of the adjunction
and ε is the counit of the adjunction.

Clearly, an adjoint equivalence is an instance of an adjunction where the natural transfor-
mations e, ε are isomorphisms. Note, however, that the definition of an adjoint equivalence
is symmetric under the exchange of F and G while a general adjunction is not.

We will prove the following theorem in the next section.

Theorem 2.2. Let F : C → D be a functor. If a right adjoint G : D → C exists, it is unique
up to a unique natural isomorphism. The same result holds true for the left adjoint.

2.2. Definition via natural isomorphisms. Suppose F a G and consider a morphism
f : F (x)→ y for x ∈ C and y ∈ D. The composite

x
ex→ GF (x)

G(f)→ G(y)

gives a morphism x→ G(y) in C. This defines a map of sets HomD(F (x), y)→ HomC(x,G(y)).
Using the counit one can define a map HomC(x,G(y))→ HomD(F (x), y) which is the inverse.
In other words, we have defined an isomorphism

HomD(F (x), y) ∼= HomC(x,G(y)).

This isomorphism is natural in the two variables x and y in the following sense. Con-
sider a morphism y → y′ in D. Then we get maps HomD(F (x), y) → HomD(F (x), y′) and
HomC(x,G(y)) → HomC(x,G(y′)) given by post-composition. The naturality is expressed
by the commutativity of the diagram

HomD(F (x), y) //

��

HomD(F (x), y′)

��
HomC(x,G(y)) // HomC(x,G(y′))

The commutativity of this diagram follows from the commutativity of the diagram

x
ex // GF (x) //

$$

G(y)

��
G(y′)
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Similarly, naturality in the first variable corresponds to a commutativity of the diagram

HomD(F (x), y)

��

HomD(F (x′), y)oo

��
HomC(x,G(y)) HomC(x

′, G(y))oo

given a morphism x→ x′ in C.

Proposition 2.3. An isomorphism HomD(F (x), y) ∼= HomC(x,G(y)) natural in x ∈ C and
y ∈ D is equivalent to the data of an adjunction F a G.

Proof. We have already shown that an adjunction gives rise to such an isomorphism. Let us
conversely start with such a natural isomorphism. Then we get an isomorphism

HomD(F (x), F (x)) ∼= HomC(x,GF (x)).

Let us denote by ex the image of the identity morphism F (x) → F (x). To show that ex is
natural consider the commutative diagram

HomD(F (x), F (x))

��

∼ // HomC(x,GF (x))

��
HomD(F (x), F (x′))

∼ // Hom(x,GF (x′))

HomD(F (x′), F (x′))

OO

∼ // Hom(x′, GF (x′))

OO

for a morphism x → x′. Here the top square is commutative due to naturality of the
isomorphism in the second variable while the bottom square is commutative due to naturality
of the isomorphism in the first variable.

Under the vertical maps both idF (x) and idF (x′) go to the same morphism F (x) → F (x′)
which shows that the diagram

x

ex
��

// x′

ex′
��

GF (x) // GF (x′)

is commutative, i.e. e : id⇒ GF is a natural transformation.
Similarly, under the isomorphism

HomD(FG(y), y) ∼= HomC(G(y), G(y))

the identity morphism G(y)→ G(y) goes to a morphism εy ∈ HomD(FG(y), y) which is also
a part of the natural transformation ε : FG⇒ id.

Let us now show that the composite

F
id ◦e⇒ FGF

ε◦id⇒ F
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is the identity. For an object x ∈ C consider the commutative diagram

HomD(FGF (x), F (x))
∼ //

��

HomC(GF (x), GF (x))

��
HomD(F (x), F (x))

∼ // HomC(x,GF (x))

where the vertical maps come from the precomposition with ex : x → GF (x). The commu-
tativity of the diagram implies that

εF (x) ◦ F (ex) = idF (x),

which is one of the adjunction axioms. The other axiom is proved in a similar way. �

Theorem 2.4. Let F : C → D be a functor. If (G, e, ε) exists such that (F,G, e, ε) is an
adjunction, then (G, e, ε) is unique up to unique natural isomorphism. The same result holds
true for the left adjoint.

Proof. Given two right adjoints G1, G2 : D → C we have natural bijections

φ(j)
x,y : HomD(F (x), y) ∼= HomC(x,Gj(y))

for j = 1, 2, so

ψx,y = φ(2)
x,y ◦ (φ(1)

x,y)
−1 : HomC(x,G1(y))→ HomC(x,G2(y))

is a bijection. Put x = G1(y) and ηy = ψG1(y),y(idG1(y)) ∈ HomC(G1(y), G2(y)) for y ∈ D.

By the naturality of φ
(j)
x,y, this defines a natural transformation η : G1 ⇒ G2 taking e1 to e2

and ε2 to ε1. Exchanging 1 and 2 and composing shows that η is a natural isomorphism.
The proof that this is the unique natural isomorphism from G1 to G2 taking e1 to e2 and

ε2 to ε1 is then identical to the proof of Proposition 1.11. �

2.3. Examples. Many categories that appear in nature are categories of sets equipped with
an extra algebraic structure. These have forgetful functors to Set which tend to possess left
adjoints.

(1) Consider the forgetful functor F : Vect → Set. We are going to define a left adjoint
Free, where Free(X) is known as the free vector space on a set X. In general, left
adjoints to forgetful functors tend to be called “free” functors while right adjoints
are called “cofree” functors.

Free(X) is the vector space with basis given by elements of X. One can write it as

Free(X) =
⊕
x∈X

k,

where k is the ground field. A linear map Free(X) → V is uniquely determined by
its value on the basis which gives a map of sets X → V . In other words,

HomVect(Free(X), V ) ∼= HomSet(X,F (V ))

and this isomorphism is natural in the variables X and V . We have proved that
Free a F .

In the next section we will show that the forgetful functor does not have a right
adjoint.
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(2) Similarly, the forgetful functor F : Grp→ Set has a left adjoint Free : Set→ Grp. The
free group Free(X) on a set X has the following description. Denote Y = X tX−1
where X−1 = X as a set with elements denoted by the inverse, i.e. if x ∈ X then
x−1 ∈ X−1. The free group Free(X) has as its underlying set the set of words on
elements Y modulo the cancellations of x and its inverse x−1 if they are next to each
other. The empty word is the unit and the multiplication is given by concatenation
of words.

From the definition it is not difficult to show that

HomGrp(Free(X), G) ∼= HomSet(X,F (G)).

In practice one just needs to know that there is a left adjoint Free rather than its
precise definition.

(3) Consider the forgetful functor F : Ab→ Grp from abelian groups to groups. Its left
adjoint is the abelianization functor (−)ab : Grp→ Ab where

Gab = G/[G,G].

(4) Let RepG be the category of representations of a finite group G over a field k. We
have a functor triv : Vect → RepG which associates to any vector space the same
vector space with the trivial action of G.

Recall that given a representation V we have its subspace of invariants V G ↪→ V
and the quotient space of coinvariants V � VG = V/〈gv − v : v ∈ V 〉. It is easy to
construct the following isomorphisms:

HomRepG(triv(V ),W ) ∼= HomVect(V,W
G)

and

HomRepG(V, triv(W )) ∼= HomVect(VG,W ).

In other words, the functor of invariants is a right adjoint while the functor of
coinvariants is a left adjoint. We can write

(−)G a triv a (−)G.

Now suppose the characteristic of k does not divide |G|, the order of the group G.
Then we can define a map V → V G by

v 7→ 1

|G|
∑
g∈G

g.v

which splits the inclusion V G ↪→ V . The map V → V G factors through coinvariants
and induces the inverse isomorphism to the composite

V G ↪→ V � VG.

Therefore, we have defined a natural isomorphism (−)G ∼= (−)G of functors. In this
case the adjunction between triv and either invariants or coinvariants is an example
of an ambidextrous adjunction (−)G a triv a (−)G.

(5) Let A and B be two algebras and let M be an A−B-bimodule, i.e. M is a right
A-module together with a commuting left B-module structure. We have a functor
− ⊗B M from right B-modules to right A-modules. Similarly, we have a functor
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HomA(M,−) called the internal Hom functor from right A-modules to right B-
modules (the B-module structure is given by precomposition with the left B-module
structure on M). These are adjoint, i.e. we have a natural isomorphism

HomA(N ⊗B M,L) ∼= HomB(N,HomA(M,L))

for any right B-module N and a right A-module L.
This is known as a tensor-Hom adjunction and is immensely useful in (commuta-

tive) algebra. For instance, Frobenius reciprocity from group theory is an instance
of a tensor-Hom adjunction.

2.4. Definition via initial objects.

Definition 2.5. An initial object of a category C is an object x ∈ C such that for every
y ∈ C the set HomC(x, y) has a unique element.

Dualizing, one gets a definition of final objects:

Definition 2.6. A final object of a category C is an object x ∈ C such that for every y ∈ C
the set HomC(y, x) has a unique element.

Notice that initial (and final) objects are unique up to unique isomorphism if they exist,
so we can (slightly sloppily) talk about ‘the’ initial (or final) object.

In the category of sets the initial object is the empty set while in the category of vector
spaces the initial object is the zero-dimensional vector space. We will see later that an initial
object is an example of a colimit in a category, but for now let us use the definition to give
an equivalent characterization of adjoints.

Let F : C → D and G : D → C be a pair of functors. Given an object x ∈ C consider the
following category (x⇒ G):

• Its objects are pairs consisting of an object y ∈ D and a morphism f : x→ G(y)
• A morphism from (y1, f1) to (y2, f2) is a morphism y1 → y2 making the diagram

x
f1 //

f2 !!

G(y1)

��
G(y2)

commute.

Remark: The category (x ⇒ G) is an example of what is sometimes called a comma
category. The category (F ⇒ y) for y ∈ D is defined similarly.

Theorem 2.7. The following two structures on the functors F,G are equivalent:

(1) An adjunction F a G,
(2) A natural transformation e : idC ⇒ GF such that (F (x), ex) is initial in (x⇒ G) for

all x ∈ C.

Proof.
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• (1)⇒ (2).
Suppose F a G. Then we want to prove that the unit of the adjunction gives rise

to an initial object of (x⇒ G).
Take an object (y, f) ∈ (x ⇒ G) where f : x → G(y) and consider a morphism

g : F (x)→ y making the diagram

x
f //

ex
��

G(y)

GF (x)

G(g)
::

commute. The composite G(g) ◦ ex = f is the image of g under the isomorphism

Hom(F (x), y) ∼= Hom(x,G(y)).

But then g ∈ Hom(F (x), y) is determined uniquely as the preimage of f ∈ Hom(x,G(y)).
In other words, the object (y, f) has a unique morphism from (F (x), ex).
• (2)⇒ (1).

Conversely, suppose ex : x→ GF (x) defines an initial object (F (x), ex) in (x⇒ G)
for every x ∈ C. Then we are going to define a counit for the adjunction and show it
is unique.

Let x = G(y) and consider the comma category (G(y)⇒ G). Since (FG(y), eG(y))
is initial, we have a unique morphism εy : FG(y)→ y making the diagram

G(y)
id //

eG(y)

��

G(y)

GFG(y)
G(εy)

::

commute.
To show that ε is a natural transformation, consider a morphism f : y1 → y2. We

get commutative diagrams

G(y1)
id //

eG(y1)

��

G(y1)
G(f)

// G(y2)

GFG(y1)
G(εy1 )

99

and

G(y1)
G(f)

//

eG(y1)

��

G(y2)

eG(y2)

��

id // G(y2)

GFG(y1)
GFG(f)

// GFG(y2)
G(εy2 )

99

We get two morphisms FG(y1) → y2 making the respective diagrams commute:
f ◦ εy1 and εy2 ◦ FG(f) and since (G(y1), eG(y1)) is an initial object of (G(y1)⇒ G),
these must be equal, i.e. ε is a natural transformation.
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By construction the composite

G
e◦id⇒ GFG

id ◦ε⇒ G

is the identity.
The other axiom states that the composite

F (x)
F (ex)→ FGF (x)

εF (x)→ F (x)

is the identity. To prove this, consider the commutative diagram

x
ex //

ex
��

GF (x)
eGF (x)// GFGF (x)

G(εF (x)) // GF (x)

GF (x)

GF (ex)
44

id

22

where the triangle commutes due to naturality of e. But then we get two morphisms
from the initial object (F (x), ex) to (F (x), ex) one of which is given by the identity
morphism F (x)→ F (x) and the other one is εF (x)◦F (ex) which are, therefore, equal.

So far we have shown that thus defined counit satisfies the required axioms and we
are left to show uniqueness. Suppose ε1 and ε2 are two counits for the adjunction.
Then we get a commutative diagram

G(y)

G(y)

id
::

id $$

eG(y)// GFG(y)

G(ε1,y)

OO

G(ε2,y)

��
G(y)

Therefore, ε1,y and ε2,y define morphisms from (FG(y), eG(y)) to (y, id) which by
initiality must be equal.

�

This theorem is how adjunctions are usually used in practice. For instance, let k be a
field and consider the category of vector spaces Vect over k and the category of algebras Alg
over k. We have a forgetful functor F : Alg → Vect which has a left adjoint T: Vect→ Alg
known as the tensor algebra functor; in other words, T(V ) is the free algebra on the vector
space V .

Suppose A is an algebra. By the previous theorem we get that for any morphism of vector
spaces f : V → F (A) there is a unique morphism f : T(V ) → A of algebras such that the
diagram

V

eV
��

f // F (A)

FT(V )
F (f)

::
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commutes. One says that T(V ) is freely generated by V and that maps out of tensor algebras
are uniquely determined by the maps on generators.

Let us also state an existence theorem which will be used later to prove a general adjoint
functor theorem. The proof is similar to the proof of Theorem 2.6.

Proposition 2.8. A functor F : C → D has a left adjoint iff (x ⇒ F ) has an initial object
for every x ∈ D. It has a right adjoint iff (F ⇒ x) has a final object for every x ∈ D.

2.5. Categorical duality. Recall that given a category C we have the opposite category
Cop with all morphisms reversed. A functor Cop → D is known as a contravariant functor
from C to D while a functor C → D is called a covariant functor; these notions make sense
only if one has a fixed category C in mind.

Given a theorem in category theory, one can apply the same theorem to the opposite
category and it will still remain true. One often gives definitions or proves statements
for some objects in C and then applies the principle of categorical duality to translate the
statement to the opposite category.

We will see many examples of this principle later. An easy example would be that a
functor F : C → D is left adjoint to G : D → C iff the functor F : Cop → Dop is right adjoint
to G : Dop → Cop.

2.6. Yoneda embedding. Consider a locally small category C with an object x ∈ C. Then
we have a functor Hom(−, x) : Cop → Set. Indeed, a morphism y1 → y2 gives a morphism
Hom(y2, x) → Hom(y1, x) by precomposition. Moreover, the assignment x 7→ Hom(−, x)
is functorial in the sense that a morphism x1 → x2 gives rise to a natural transformation
of functors Hom(−, x1) ⇒ Hom(−, x2) by postcomposition. In other words, we have the
Yoneda functor

Y : C → Fun(Cop, Set).

Definition 2.9. A functor F ∈ Fun(Cop, Set) is representable if it is in the essential image
of the Yoneda functor; that is, it is isomorphic to Y (c) for some c ∈ C.
Example. (1) The functor from Setop to Set which sends a set to its power set is representable.
We have a natural isomorphism from this functor to Hom(−, {0, 1}) which associates to a set
S the function from P(S) sending a subset T of S to its characteristic function χT : S → {0, 1}
given by

χT (x) =

{
1 if x ∈ T
0 otherwise.

(2) In contrast, the functor from Grpop to Set which sends a group to its set of subgroups
is not representable. This is because there is no group G with subgroup H 6 G such that
given any group G and subgroup H 6 G there is a unique homomorphism f : G → G
such that f−1(H) = H. To see this, take for example G = Z and H = {0}; then given
any homomorphism f : G → G such that f−1(H) = H, there is another homomorphism
F : G→ G such that F−1(H) = H and F 6= f , given by F (n) = f(2n).

The functor category Fun(Cop, Set) is sometimes known as the category of presheaves on
C (the category of sheaves being a certain subcategory).

Consider an object x ∈ C and a presheaf F ∈ Fun(Cop, Set). A natural transformation
between the representable functor Y (x) and F consists of morphisms Hom(y, x) → F (y)
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for every y ∈ C. In particular, the image of the identity morphism idx ∈ Hom(x, x) under
Hom(x, x)→ F (x) defines a restriction map Hom(Y (x), F )→ F (x).

Lemma 2.10 (Yoneda). Let x ∈ C and F ∈ Fun(Cop, Set). Then the canonical restriction
map HomFun(Cop,Set)(Y (x), F )→ F (x) is an isomorphism.

Proof. To show it is an isomorphism, we will construct an inverse F (x)→ HomFun(Cop,Set)(Y (x), F ).
Given an element f ∈ F (x), define a natural transformation Y (x) ⇒ F whose components
are

Hom(y, x)→ F (y)

given by sending g ∈ Hom(y, x) to F (g)(f). To show that is is a natural transformation, we
have to show that for a morphism h : y1 → y2 in C the diagram

Hom(y1, x) // F (y1)

Hom(y2, x) //

h

OO

F (y2)

F (h)

OO

is commutative. This immediately follows from the fact that F preserves composition of
morphisms.

Clearly, the composite F (x) → Hom(Y (x), F ) → F (x) is the identity, so we just have to
check that the other composite is the identity.

Let η : Y (x) ⇒ F be a natural transformation with components ηy : Hom(y, x) → F (y).
Given a morphism g ∈ Hom(y, x) naturality of η implies that we have a commutative diagram

Hom(y, x)
ηy // F (y)

Hom(x, x)

g◦
OO

ηx // F (x)

F (g)

OO

The image of idx ∈ Hom(x, x) under the morphism on the left is g, so the commutativity
of the diagram implies that ηy(g) = F (g)(ηx(idx)) as required. �

Corollary 2.11. The Yoneda functor is fully faithful.

Proof. Let x1, x2 ∈ C. We want to show that the morphism

HomC(x1, x2)→ HomFun(Cop,Set)(Y (x1), Y (x2))

is an isomorphism. It is not difficult to check that this morphism is inverse to the canonical
restriction

Hom(Y (x1), Y (x2))→ Y (x2)(x1) = HomC(x1, x2)

constructed in the course of the proof of the Yoneda lemma. Therefore, the Yoneda lemma
implies that it is an isomorphism. �

Let Fun(Cop, Set)repr ↪→ Fun(Cop, Set) be the subcategory of representable functors, i.e.
the essential image of the Yoneda functor. Combining Yoneda lemma with Theorem 1.13 we
see that the functor C → Fun(Cop, Set)repr is an equivalence and so there is a functor

P : Fun(Cop, Set)repr → C
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such that Y a P forms an adjoint equivalence.
Here is an example where the Yoneda lemma is most clear.

Example. Consider a one-object groupoid C = ∗/G. The presheaf category Fun(Cop, Set)
can be identified with the category of G-sets GSet. Indeed, every such functor is given by
specifying a single set X ∈ Set together with a homomorphism G→ Hom(X,X).

Under the Yoneda embedding ∗/G ↪→ GSet the unique object goes to the set G considered
as a set with a left G-action. The Yoneda lemma in this case asserts that the morphism
HomGSet(G,X) → X given by evaluating any morphism on the unit element e ∈ G is an
isomorphism. Just like categories generalize groups, the Yoneda lemma generalizes Cayley’s
theorem from group theory which asserts that every group is a subgroup of the symmetric
group on G.

Using categorical duality one also has a contravariant Yoneda embedding

C → Fun(C, Set)op

given by sending x 7→ HomC(x,−). Functors in the essential image of the contravariant
Yoneda functor are known as corepresentable functors.

2.7. Adjoints via representable functors. Let F : C → D be a functor. Define its formal
right adjoint Gformal to be the functor

Gformal : D → Fun(Cop, Set)

given by

y 7→ (x 7→ HomD(Fx, y)).

Proposition 2.12. A right adjoint G to F exists iff Gformal(y) is representable for every
y ∈ D.

Proof.

• ⇒.
We have a natural isomorphism HomD(Fx, y) ∼= HomC(x,Gy) for every x ∈ C and

y ∈ D. Therefore, the functorGformal(y) is representable by the functor HomC(−, Gy).
• ⇐.

We define the right adjoint G to be the composite G = P ◦ Gformal, where
P : Fun(Cop, Set)repr → C is the inverse to the Yoneda embedding Y .

To show that F a G, we have to construct an isomorphism HomD(Fx, y) ∼= HomC(x,Gy)
natural in x and y. It is constructed in the following way:

HomC(x,Gy) = HomC(x, PG
formaly)

∼= HomFun(Cop,Set)(Y x,G
formaly)

∼= Gformal(y)(x)

= HomD(Fx, y),

where in the second line we have used the adjoint equivalence Y a P and in the third
line we applied the Yoneda lemma.

�
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In other words, adjoints can be thought of as factorizations of the diagram

D

Gformal

��

G

%%
Fun(Cop, Set) C

Y
oo

More precisely, a right adjoint consists of a functor G : D → C and a natural isomorphism
Y G ∼= Gformal. Using Yoneda lemma one can give an easier proof of Theorem 2.4.

Indeed, suppose G1 and G2 are two right adjoints. Then we have isomorphisms

Y G1
∼= Gformal ∼= Y G2.

Since the Yoneda embedding is fully faithful, a natural isomorphism Y G1
∼= Y G2 is equiva-

lently a natural isomorphism G1
∼= G2.

3. Limits and colimits

3.1. Examples. We now come to another important construction in category theory: limits
and colimits. These are certain constructions defined by universal properties examples of
which include many known constructions such as amalgamated products of groups, direct
sums of vector spaces, tensor products of algebras and so on. Before we give a definition of
a general limit, we will define particular instances of this phenomenon.

Recall the notion of a final object: this is an object ∗ ∈ C such that there is a unique
morphism x→ ∗ for every x ∈ C. It is immediate that a final object is unique up to a unique
isomorphism if it exists: if ∗′ is another final object there is a unique morphism ∗ → ∗′ which
is necessarily an isomorphism.

Another example of a limit is a product.

Definition 3.1. Let X, Y ∈ C. We say that a collection (X × Y, pX , pY ) where X × Y ∈ C,
pX : X×Y → X and pY : X×Y → Y is a product if for every object W together with maps
W → X and W → Y there is a unique morphism W → X × Y making the diagram

W

∃!
��

�� ��

X × Y

pX{{
pY

##
X Y

commute.

Here are some examples.

• The product in Set is the Cartesian product of sets: X × Y has projection maps to
X and Y and whenever Z maps to X and Y one has a morphism to X × Y given by
the product of the maps. To show that it is unique, note that an arbitrary morphism
Z → X × Y can be written uniquely as z 7→ (fX(z), fY (z)).
• One can similarly define products in Grp to be the Cartesian product of groups G×H

with the multiplication given pointwise: (g1, h1)(g2, h2) = (g1g2, h1h2).
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• The product in abelian groups Ab is given by the same formula (note that the product
of two abelian groups is automatically abelian). If G and H are abelian groups, the
product is also denoted by G⊕H.
• Product in Vect is given by the direct sum of vector spaces V ⊕W .

One can also generalize the product from two objects to objects parametrized by a set I.
In this case the product

∏
i∈I Xi is defined to be the object with projections to Xi satisfying

a universal property as before.

Remark. A collection of objects of C parametrized by a set I is the same as a functor I → C
where I is considered as a discrete category. This will motivate a definition of a general
limit.

Yet another example of a limit is an equalizer.

Definition 3.2. Let X, Y ∈ C together with two maps f, g : X → Y . An equalizer of X ⇒ Y
is an object E ∈ C together with a map E → X such that the two composites E → Y are
equal satisfying the following universal property: for every W with compatible maps to X, Y
there is a unique map W → E making the diagram

E // X
f //
g
// Y

W

∃!

OO >> 66

commute.

One denotes an equalizer by eq(X ⇒ Y ).

• Let us work out equalizers in the category of sets. Consider two morphisms f, g : X → Y
and a morphism h : W → X such that f ◦ h = g ◦ h. Clearly, the map W → X fac-
tors through the subset E ⊂ X defined by E = {x ∈ X|f(x) = g(x)} which is the
equalizer.
• Suppose G,H are abelian groups and one has maps f, g : G→ H. Then the equalizer

eq(G⇒ H) can be defined to be the kernel ker(f − g : G→ H). More generally, this
defines the equalizer in the category of R-modules for any ring R.

The final example of a limit we will give is that of a fibre product.

Definition 3.3. Consider a diagram

X

��
Y // Z

A fibre product X ×Z Y is an object with morphisms to X and Y such that the two
composites X ×Z Y → Z are equal, and satisfying the following universal property: for
every object W with maps to X and Y such that the two composites W → Z are equal
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there is a unique morphism W → X ×Z Y making the diagram

W

%%

##

∃!

$$
X ×Z Y //

��

X

��
Y // Z

commute.

A fibre product is also known as a pullback. We say that the squares of the form

X ×Z Y //

��

X

��
Y // Z

are Cartesian. This is denoted by a little corner symbol.
fibre products can be written as combinations of products and equalizers:

eq(X × Y ⇒ Z) ∼= X ×Z Y.

Indeed, a morphism W → X × Y is the same as a pair of morphisms W → X, Y and the
equalizer condition implies that the two composites W → Z are equal.

Conversely, if ∗ ∈ C is the final object we have

X × Y ∼= X ×∗ Y.

An example of a fibre product in sets is the inverse image: given a morphism f : X → Y
and an element y ∈ Y which we represent as a morphism ∗ → Y the fibre product X ×Y ∗
is the inverse image f−1(y).

3.2. Limits. Perhaps, the reader has already noticed a general pattern. A limit involves a
diagram of certain shapes and it’s an object satisfying a universal property. Let us make
this precise.

Definition 3.4. Let F : I → C be a functor from a category I. A limit of F is an object
limI F ∈ C together with maps fi : limI F → F (i) for every i ∈ I such that for every
morphism g : i → j in I one has F (g) ◦ fi = fj and it is a universal such object; that is,
for every object W with compatible projections W → F (i) one has a unique morphism
W → limI F .

A functor F : I → C is called a diagram of shape I.
Here is a reformulation. Given a diagram F a cone on F is an object x ∈ C together

with morphisms x→ F (i) which are compatible as in the definition of limits. Cones form a
category and a limit is a final object in that category. The dual notion to a cone is called a
cocone.

• If I is the empty category we recover the notion of a final object.
• If I is a discrete category, we recover the notion of a product indexed by I.
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• If I is the category with two objects and two non-identity morphisms as in

∗⇒ ∗,

then we recover equalizers.
• If I = ∗, the limit is simply the value of the functor on the unique object.
• If I is the poset of natural numbers N, limits of shape Iop are known as inverse limits.

Proposition 3.5. A limit, if it exists, is unique up to a unique isomorphism.

Proof. Suppose limI F and lim′I F are two limits of the functor F : I → C. By the universal
property we have unique morphisms limI F → lim′I F and lim′I F → limI F making the
natural diagrams commute. Clearly, they compose to the identity as there is a unique
morphism limI F → limI F making the natural diagrams commute. �

Let us give another point of view on limits. A morphism W → limI F is the same as
a collection of morphisms pi : W → F (i) such that for every morphism g : i → j one has
F (g) ◦ pi = pj.

Let us introduce the diagonal functor ∆: C → Fun(I, C) given by sending x ∈ C to the
constant functor i 7→ x (and f : x → y sent to the natural transformation i 7→ f). Then a
morphism W → limI F is the same as a natural transformation ∆(W )⇒ F . In other words,
we have a natural isomorphism

HomFun(I,C)(∆W,F ) ∼= HomC(W, lim
I
F ).

Theorem 3.6. Suppose C has all limits of shape I. Then the limit limI : Fun(I, C) → C is
a right adjoint to the diagonal functor ∆: C → Fun(I, C).

Suppose I and J are two categories and consider a diagram F : I × J → C. Then we can
try to compare limI limJ F and limJ limI F .

Theorem 3.7. Suppose C has limits for diagrams of shapes I and J . Then it has limits for
diagrams of shape I × J and

lim
I×J

F ∼= lim
I

lim
J
F ∼= lim

J
lim
I
F

for any diagram F : I × J → C.

Proof. Let F : I×J → C be a diagram. In the proof we will freely reinterpret it as a functor
I → Fun(J, C).

Let ∆I : C → Fun(I, C), ∆(I),J : Fun(I, C)→ Fun(J,Fun(I, C)) and ∆I×J : C → Fun(I×J, C)
be the diagonal functors.

Take x ∈ C and consider the sequence of natural isomorphisms

HomC(x, lim
I

lim
J
F ) ∼= HomFun(I,C)(∆I(x), lim

J
F )

∼= HomFun(J,Fun(I,C))(∆(I),J(∆I(x)), F )
∼= HomFun(I×J,C)(∆I×J(x), F ).

This tells us that limI limJ F has the properties required to be the limit limI×J F ; in other
words, since these properties define the limit up to unique isomorphism, the limit limI×J F
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exists and is isomorphic to limI limJ F . But we also get an isomorphism

lim
J

lim
I
F ∼= lim

I×J
F.

Therefore,
lim
I

lim
J
F ∼= lim

J
lim
I
F.

�

In other words, limits commute and we can interchange them. This is a kind of Fubini
theorem for limits.

3.3. Constructing limits. We say that a category C has limits (or it is complete) if for
every (small) category I and every functor F : I → C there is a limit limI F . We say that a
category has finite limits if it has limits for all shapes I where I is a finite category (i.e. a
category with finitely many objects and finitely many morphisms).

Let us begin by proving that Set has all limits. Consider a diagram F : I → Set. Then
we must have

lim
I
F ∼= HomSet(∗, lim

I
F ) ∼= HomFun(I,Set)(∆(∗), F ).

The latter set is the set of morphisms ∗ → F (i), i.e. elements xi ∈ F (i), such that for
every morphism f : i→ j one has f(xi) = xj. Note that we have constructed this limit as a
subset of the product satisfying some equations.

More generally, we have the following theorem.

Theorem 3.8.

• A category C has limits iff it has products and equalizers.
• A category C has finite limits iff it has binary products, final object and equalizers.

Proof. Clearly, if a category has limits, then it has products and equalizers.
Conversely, suppose the category C has products and equalizers and consider a diagram

F : I → C. We want to repeat the construction of limits in Set in C. For every morphism
f : i→ j we define a pair of morphisms∏

k∈I

F (k)→ F (j)

as follows. One of the morphisms is simply the projection
∏

k∈I F (k) → F (j) on the com-
ponent k = j. The other map is given by the composite∏

k∈I

F (k)→ F (i)
F (f)→ F (j).

By the universal property of the product we get maps∏
k∈I

F (k)⇒
∏

(i→j)∈Fun([1],I)

F (j).

Here Fun([1], I) is the category of arrows in I, i.e. pairs of objects i, j ∈ I together with a
morphism i→ j.

We claim that the equalizer E of this diagram is the limit of F . Indeed, the universal
property of the equalizer is that for any morphism W →

∏
k∈I F (k), i.e. for any collection
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of morphisms W → F (k), such that the composite W → F (i)
F (f)→ F (j) coincides with

W → F (j) for every f : i → j there is a unique morphism W → E. But this is exactly the
universal property of the limit.

The same proof shows that a category has finite limits iff it has finite products and equaliz-
ers. But any finite product is a final object (if the indexing set is empty), the identity functor
(if the indexing set has a single element) or can be constructed as an iterated application of
binary products. �

Let us give another way to construct limits. We want to generalize the example of inverse
limits to so-called cofiltered limits.

Definition 3.9. A category I is cofiltered if it satisfies the following three properties:

• It is non-empty.
• For every pair of objects i, j ∈ I there is k ∈ I together with morphisms k → i and
k → j.
• For every pair of objects i, j ∈ I and a pair of morphisms u, v : i → j there is an

object k ∈ I together with a morphism k → i such that the diagram k → i ⇒ j
commutes.

Equivalently, a cofiltered category is one which has cones for every finite diagram.
We say that a category I is filtered if Iop is cofiltered. That is, a filtered category is one

which has cocones for every finite diagram.
For instance, the category N is filtered while Nop cofiltered. We call limits over cofiltered

diagrams cofiltered limits.

Theorem 3.10. A category C has limits iff it has cofiltered limits and finite limits.

Proof. Suppose C has cofiltered and finite limits. Let us prove that C has products.
Indeed, consider a set I and a functor F : I → C. Consider the category I+ of finite

subsets of I with morphisms given by inclusion. Then (I+)op is cofiltered. We define a
functor F+ : (I+)op → C by sending a finite subset J ⊂ I to limJ F |J . This is well-defined
since we assume the category has finite limits. It is not difficult to show then that the limit
lim(I+)op F

+ gives the product
∏

I F . �

3.4. Colimits. A colimit is a notion dual to that of a limit: given a diagram F : I → C we
define

colimI F = lim
Iop

F,

where F is identified with F : Iop → Cop.
Let us now dualize the definitions of limits to understand the colimits better.

Definition 3.11. A colimit of a diagram F : I → C is an object colimI F ∈ C together with
maps fi : F (i)→ colimI F for every i ∈ I such that for every morphism g : i→ j in I one has
fj ◦ F (g) = fi and it is a universal such object; that is, for every object W with compatible
maps F (i)→ W one has a unique morphism colimI F → W .

This definition can be succinctly summarized by saying that a colimit is an initial cocone
on F (cocones are dual to cones).

One can also define it as a left adjoint to the diagonal functor ∆:
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Theorem 3.12. Colimit colimI : Fun(I, C) → C is left adjoint to the diagonal functor
∆: C → Fun(I, C) sending an object of C to the constant functor.

We have the following basic shapes of colimits:

• Colimit over I = ∅ is the same as an initial object.
• Colimit over I = ∗ is the value of the functor on the unique object in I.
• Colimit over I = ∗ t ∗ is a coproduct.
• Colimit over I = ∗⇒ ∗ is a coequalizer.
• Colimit over ∗ ← ∗ → ∗ is a pushout.
• Colimit over the poset N is an inductive limit.

Let us now give examples of these concepts.

Definition 3.13. A coproduct of X, Y ∈ C is an object X tY ∈ C together with morphisms
X, Y → X t Y such that for every object W and morphisms X, Y → W one has a unique
morphism X t Y → W making the diagram

X

##

��

Y

{{

��

X t Y
∃!
��
W

commute.

Here are some examples:

• In Set the coproduct is simply the disjoint union. If one has morphisms X, Y → W
there is a unique morphism X t Y → W which has the right components.
• In the category of vector spaces the coproduct is the direct sum of vector spaces
V ⊕W .
• In the category of groups the coproduct is the free product of groups G ∗H.
• In the category of abelian groups the coproduct is the direct product of groups
G×H ≡ G⊕H. Note that it is different from the one in the category of groups!

Next, let’s discuss coequalizers.

Definition 3.14. Let X, Y ∈ C together with two maps f, g : X → Y . A coequalizer of
X ⇒ Y is an object C ∈ C together with a map Y → C such that the two composites
X → C are equal satisfying the following universal property: for every W with compatible
maps from X, Y there is a unique map C → W making the diagram

X
f //
g
//

''

Y //

  

C

∃!
��
W

commute.
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For a pair of morphisms f, g : X → Y we denote the coequalizer by coeq(X ⇒ Y ). Let
us work it out in the category of sets. This should be a set C with a map from Y such that

the two composites X
f,g→ Y → C are the same. We define C = Y/ ∼ where we identify

f(x) ∼ g(x) for every x ∈ X. Suppose we have a map Y → W such that the two composites

X
f,g→ Y → W are the same. Therefore, we can factor the map Y → W as Y → C → W .

Since Y → C is surjective, such a factorization is unique.
Next we discuss pushouts.

Definition 3.15. Consider a diagram

Z

��

// X

Y

A pushout X tZ Y is an object with maps from X and Y such that the two composites
Z → X tZ Y are equal, satisfying the following universal property: for every object W
with maps from X and Y such that the two composites Z → W are equal there is a unique
morphism X tZ Y → making the diagram

Z //

��

X

��

��

Y //

//

X tZ Y
∃!

$$
W

commute.

We call commutative squares of the form

Z

��

// X

��
Y // X tZ Y

coCartesian squares and denote this by a little corner symbol similarly to Cartesian squares.
As for pullbacks, we can define them as a combination of coproducts and coequalizers:

X tZ Y ∼= coeq(Z ⇒ X t Y ),

where the morphisms Z → XtY are the composites Z → X → XtY and Z → Y → XtY .
Finally, let us discuss an example of a filtered colimit which is an inductive limit (also

known as a direct limit). These are colimits over the poset N. So, consider a sequence of
sets X0, X1, X2, ... together with morphisms fi : Xi → Xi+1. An inductive limit

colimn∈NXn

can be described as the disjoint union of all Xn modulo the following equivalence relation:
xi ∼ fi(xi) for every xi ∈ Xi.

We can dualize Theorems 3.8 and 3.10 for colimits.
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Theorem 3.16.

• A category C has colimits iff it has coproducts and coequalizers.
• A category C has colimits iff it has filtered colimits and finite colimits.
• A category C has finite colimits iff it has binary coproducts, initial object and coequal-

izers.

In particular, since Set has coproducts, coequalizers, products and equalizers we see that
it is both complete and cocomplete, i.e. it has all limits and all colimits.

We also have a dual theorem to Theorem 3.7:

Theorem 3.17. Suppose C has colimits over diagrams of shape I and J . Then it has colimits
over diagrams of shape I × J and

colimI×J F ∼= colimI colimJ F ∼= colimJ colimI F

for every diagram F : I × J → C.

Note that, however, limits and colimits do not interchange in general: if X, Y, Z,W are
sets, the sets (X tY )× (Z tW ) and (X ×Z)t (Y ×W ) are not isomorphic in general since

(X t Y )× (Z tW ) ∼= (X × Z) t (X ×W ) t (Y × Z) t (Y ×W ).

Nevertheless, we have the following theorem about filtered colimits and finite limits in sets
which we state without proof.

Theorem 3.18. Filtered colimits and finite limits commute in Set.

3.5. Epimorphisms and monomorphisms. In the category of sets we have a notion of
an injective map: a map f : X → Y is injective if for all elements x, y ∈ X the equality
f(x) = f(y) implies x = y. We can reformulate it in a slightly more categorical way: a map
f : X → Y is injective if for all maps x, y : ∗ → X the equality f ◦ x = f ◦ y implies x = y.
Note that this definition is equivalent to the one where we replace ∗ by any other set.

Definition 3.19. A morphism f : X → Y in a locally small category C is a monomorphism
if the induced morphism HomC(Z,X) → HomC(Z, Y ) is injective for every object Z ∈ C.
That is, an equality f ◦ g1 = f ◦ g2 for two morphisms gi : Z → X implies that g1 = g2.

Dually, we have epimorphisms.

Definition 3.20. A morphism f : X → Y is an epimorphism if the induced morphism
HomC(Y, Z)→ HomC(X,Z) is injective for all Z.

We have already mentioned that monomorphisms and epimorphisms in Set are just injec-
tive or surjective morphisms. Here is a characterization of a class of monomorphisms and
epimorphisms in concrete categories.

Proposition 3.21. Suppose C is a category with a faithful functor F to Set. Then a mor-
phism f : x→ y is a monomorphism or epimorphism if it is so in Set.
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Proof. Let us assume that F (f) : F (x) → F (y) is a monomorphism. Take an object z ∈ C
and consider the diagram

HomC(z, x) //

��

HomC(z, y)

��
HomSet(Fz, Fx) // HomSet(Fz, Fy)

.

Since F (f) is a monomorphism, the bottom map is injective. Since F is faithful, the verti-
cal maps are injective. Therefore, the top map is injective as well, i.e. f is a monomorphism.

The statement about epimorphisms is proved by dualizing. Let us assume that F (f) : F (x)→ F (y)
is an epimorphism. Take an object z ∈ C and consider the diagram

HomC(y, z) //

��

HomC(x, z)

��
HomSet(Fy, Fz) // HomSet(Fx, Fz)

.

Since F (f) is an epimorphism, the bottom map is injective. Since F is faithful, the vertical
maps are injective. Therefore, the top map is injective as well, i.e. f is an epimorphism. �

Many categories arising in practice are categories of sets equipped with some extra struc-
ture. In particular, all such categories have faithful functors to Set, so the theorem applies.

In the categories of groups, abelian groups and vector spaces monomorphisms and epi-
morphisms are exactly injective and surjective morphisms. However, a morphism of monoids
N → Z is an epimorphism even though it is not surjective: a morphism Z → M for some
monoid M is an invertible element m ∈M while a morphism N→M is any element of M .
Clearly, if two morphisms Z → M give the same composites N → Z → M they have to be
equal.

Definition 3.22. We say that a morphism X → Y is a regular monomorphism if it exhibits
X as an equalizer of some diagram Y ⇒ Y ′.

Dually we have a notion of a regular epimorphism.

Definition 3.23. A morphism X → Y is a regular epimorphism if it exhibits Y as a
coequalizer of some diagram X ′ ⇒ X.

Proposition 3.24. A regular monomorphism is a monomorphism. Dually, a regular epi-
morphism is an epimorphism.

Proof. Suppose

X
h→ Y

f1
⇒
f2

Y ′

is an equalizer diagram. We want to prove that h : X → Y is a monomorphism.
Indeed, consider two morphisms g1, g2 : Z → X such that their composites Z → X → Y

with h are equal. By the definition of an equalizer we have

f1 ◦ h = f2 ◦ h



32 PAVEL SAFRONOV WITH MINOR UPDATES 2019 BY FRANCES KIRWAN

which implies that

f1 ◦ h ◦ g1 = f1 ◦ h ◦ g2 = f2 ◦ h ◦ g2 = f2 ◦ h ◦ g1.
Therefore, by the universal property of the equalizer there is a unique morphism g : Z → X

such that h ◦ g = h ◦ gi for i = 1, 2. In other words, g1 = g2.
The statement about epimorphisms is proved by duality. �

4. Adjoint functors and limits

4.1. Functors and limits. Suppose F : C → D is a functor and consider a diagram J : I → C.
Clearly, F sends cones on J to cones on F ◦J . Therefore, we can ask what happens to special
cones, namely limits, under this functor.

Definition 4.1. We say that F preserves limits if for any diagram I → C the functor F
sends a universal cone to a universal cone.

Definition 4.2. We say that F reflects limits if for any diagram J : I → C and any cone on
J which is sent to a universal cone is universal.

Dually, we talk about preservation and reflection of colimits.
Here is a more explicit way to write the condition of preservation of limits. Suppose

J : I → C is a diagram in C which has a limit. Then F ◦J has a limit in D and the canonical
morphism

F (lim
I
J)→ lim

I
F ◦ J

is an isomorphism. The morphism is constructed as follows: we have compatible projec-
tion maps limI J → J(i) for every i ∈ I which are sent to compatible projection maps
F (limI J)→ (F ◦ J)(i), so by universal property we have a unique morphism

F (lim
I
J)→ lim

I
F ◦ J.

Here is a basic example of a functor preserving limits.

Theorem 4.3. Suppose C is a locally small category. Then the Hom functor

HomC(x,−) : C → Set

preserves limits for any x ∈ C.

Proof. Suppose J : I → C is a diagram with a limit in C and consider an object x ∈ C.
Let us start with the following observation:

HomFun(I,C)(∆(x), J) ∼= HomFun(I,Set)(∆(∗),HomC(x, J)).

Indeed, a morphism on the left is a compatible family of morphisms x → J(i) while a
morphism on the right is a compatible family of morphisms ∗ → HomC(x, J(i)).

We get the following chain of isomorphisms natural in x:

HomSet(∗,HomC(x, lim
I
J)) ∼= HomC(x, lim

I
J)

∼= HomFun(I,C)(∆(x), J)
∼= HomFun(I,Set)(∆(∗),HomC(x, J)).

Therefore, HomC(x, J) has a limit which is isomorphic to HomC(x, limI J). �
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By duality the functor
HomC(−, x) : Cop → Set

takes colimits in C to limits, i.e. for any diagram J : I → C with a colimit we have

Hom(colimI J, x) ∼= lim
I

Hom(J, x).

Proposition 4.4. Suppose F : C � D : G is an adjunction with F a G. Then G preserves
limits while F preserves colimits.

Proof. We will prove the statement for the right adjoint, the other statement is proved by
duality.

Suppose J : I → D is a diagram with a limit in D. Then for any object x ∈ C we have a
chain of isomorphisms

HomC(x,G lim
I
J) ∼= HomD(Fx, lim

I
J)

∼= lim
I

HomD(Fx, J)

∼= lim
I

HomC(x,G ◦ J).

Therefore G limI J satisfies the properties required to be limI G ◦ J . �

This proposition gives a necessary condition for the existence of adjoints: if a right adjoint
exists, the functor has to preserve colimits. The forgetful functors Grp→ Set and Vect→ Set
do not preserve colimits (e.g. they do not send initial objects to initial objects), so they do
not have right adjoints.

Let us give more examples. Clearly, the forgetful functor Grp → Set preserves and re-
flects limits. But more is true. Consider two groups G1 and G2. We claim that their
product has a unique group structure such that the projections G1 × G2 → Gi are ho-
momorphisms. Indeed, the product of (g1, g2) and (h1, h2) has to be (g1h1, ...) since the
projection to G1 is a homomorphism. The same argument for the second factor shows that
(g1, g2) · (h1, h2) = (g1h1, g2h2). In this case we say that the forgetful functor Grp → Set
creates limits.

Definition 4.5. A functor F : C → D creates limits if for any diagram J : I → C and any
universal cone C on F ◦ J its preimage in cones on J is nonempty and consists of universal
cones.

In other words, for any final cone on F ◦ J there is a unique cone on J up to a unique
isomorphism which maps to the given cone and that cone on J is final. The following
statement explains the terminology of “creation” of limits.

Proposition 4.6. Suppose F : C → D is a functor. Suppose that limits of shape I exist in
D and F creates them. Then limits of shape I exist in C and F preserves and reflects them.

Proof. For any diagram J : I → C there is a universal cone in D on F ◦ J . Since F creates
limits of shape I, there is a universal cone on J in C, so C has limits of shape I. Clearly, F
reflects limits of shape I.

To show that F preserves limits of shape I, suppose C is a universal cone on J and D is a
universal cone on F ◦ J . Since F creates limits of shape I, there is a universal cone D′ on J
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which maps to D. But any universal cones are isomorphic, i.e. C ∼= D′ which implies that
F (C) ∼= D, i.e. F (C) is universal. �

4.2. Limits in functor categories. Suppose C and D are two categories such that D has
certain limits or colimits. In this section we will prove that the functor category Fun(C,D)
has those limits or colimits and they are computed pointwise.

In the course we mainly work with locally small categories. The functor category Fun(C,D)
is, however, not locally small even if C and D are. However, if we assume that C is small
and D is locally small, the functor category Fun(C,D) is still locally small.

Theorem 4.7. Suppose D has limits of shape I and denote by limI : Fun(I,D) → D the
limit functor. Then the composite

Fun(I,Fun(C,D)) ∼= Fun(C,Fun(I,D))→ Fun(C,D)

is the limit functor. In other words, limits in Fun(C,D) are computed pointwise.
Dually, if D has colimits of shape I, colimits in Fun(C,D) are computed pointwise.

Proof. Consider the adjunction limI ` ∆ between categories Fun(I,D)� D. We claim that
it induces an adjunction

Fun(C,Fun(I,D))� Fun(C,D).

Indeed, it is easy to write the unit and counit for the adjunction on the functor categories
from the one on the ordinary categories.

Next we claim that the composite

Fun(C,D)→ Fun(C,Fun(I,D)) ∼= Fun(I,Fun(C,D))

where the first functor comes from the constant functor ∆: D → Fun(I,D) coincides with
the constant functor

Fun(C,D)→ Fun(I,Fun(C,D)).

Indeed, a functor A : C → D is sent under ∆ to the functor

x ∈ C 7→ (i ∈ I 7→ A(x)).

Viewed as a functor I → Fun(C,D) this is

i ∈ I 7→ (x ∈ C 7→ A(x)),

i.e. the constant functor.
But then the functor Fun(C,Fun(I,D)) → Fun(C,D) is right adjoint to the constant

functor and is hence the limit functor.
The dual statement is proved similarly. �

For instance, suppose C is a small category. Since Set has small limits and colimits, the
presheaf category

PShv(C) = Fun(Cop, Set)

also has small limits and colimits.
Recall that the Yoneda functor Y : C → PShv(C) is given by x 7→ HomC(−, x). Since

limits in the functor category are computed pointwise, Theorem 4.3 implies that the Yoneda
functor preserves limits. However, there is no reason to expect that it preserves colimits; in
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fact, the opposite is true: the presheaf category is a free cocompletion of C. To explain this
notion, let us first state the following straightforward lemma.

Given a presheaf F : Cop → Set we denote by (∗ ⇒ F )op the comma category whose objects
are pairs (x, y) with x ∈ C and y ∈ F (x) and morphisms being morphisms x1 → x2 in C
which induce maps of pointed sets F (x2)→ F (x1). We have a functor

P : (∗ ⇒ F )op → PShv(C)
which assigns P (x, y) = Y (x) and the diagonal functor

∆: PShv(C)→ Fun((∗ ⇒ F )op,PShv(C)).
Note that if C is small, so is the comma category (∗ ⇒ F )op.

Lemma 4.8. Let C be a small category. Then for any two presheaves F,G we have a natural
isomorphism

HomPShv(C)(F,G) ∼= HomFun((∗⇒F )op,PShv(C))(P,∆(G)).

Proof. Suppose that η belongs to HomPShv(C)(F,G), so that η is a natural transformation from
F toG. We define a corresponding natural transformation ζ in HomFun((∗⇒F )op,PShv(C))(P,∆(G))
by

ζ(x,y)(g) = G(g)(ηx(y))

for any object (x, y) of (∗ ⇒ F )op and any g in HomC(x
′, x). Conversely using the definition

of a natural transformation we see that any ζ in HomFun((∗⇒F )op,PShv(C))(P,∆(G)) must be of
this form for a unique η in HomPShv(C)(F,G). �

Since colimits are left adjoint to the constant functor, we conclude the following.

Corollary 4.9. Every presheaf is a colimit of representables. More precisely, for a presheaf
F we have an isomorphism

F ∼= colim(∗⇒F )op P.

One says that the presheaf category is the free cocompletion of C. It is not true that the
formation of presheaves is a left adjoint to some forgetful functor due to size issues, but we
have the following statement.

Corollary 4.10. Let C be a small category and D a category which has small colimits. Then
we have an equivalence of categories

Funcolim(PShv(C),D) ∼= Fun(C,D),

where the category on the left is the full subcategory of functors which preserve small colimits.

Proof. Given a functor PShv(C) → D we can restrict it to representable presheaves to get
a functor C → D. Conversely, given a functor F : C → D we define the colimit-preserving

functor F̂ : PShv(C) → D as follows. For any presheaf G ∈ PShv(C) we can use Corollary
4.9 to get a presentation as a colimit:

G ∼= colim(∗⇒G)op P.

We define
F̂ (G) = colim(∗⇒G)op F ◦ P.
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Note that P lands in the subcategory of representable presheaves, so the expression F ◦ P
makes sense.

We need to check that the functor F̂ commutes with colimits. On the one hand, for a
diagram of presheaves Gi we have

F̂ (colimiGi) := colim(∗⇒colimiGi)op F ◦ P.

On the other hand,

colimi F̂ (Gi) := colimi colim(∗⇒Gi)op F ◦ P.

It is easy to see that both colimits are isomorphic, so F̂ preserves small colimits.
Suppose G ∼= Y (x) for some x ∈ C. Then

F̂ (Y (x)) = colim(∗⇒Y (x))op F ◦ P ∼= F (x)

as the category (∗ ⇒ Y (x))op has a final object (x, idx). Therefore, the composite

Fun(C,D)→ Funcolim(PShv(C),D)→ Fun(C,D)

is naturally isomorphic to the identity.
Suppose F̃ : PShv(C) → D is a functor preserving small colimits. Then it is uniquely

determined on the subcategory of representable presheaves as any presheaf is a small colimit
of representables. This shows that the composite

Funcolim(PShv(C),D)→ Fun(C,D)→ Funcolim(PShv(C),D)

is naturally isomorphic to the identity. �

4.3. Adjoint functor theorem. We have seen (Proposition 4.4) that if a functor F : C → D
admits a right adjoint, it has to preserve colimits. However, even if C has small limits and F
preserves colimits, the right adjoint might not exist due to set-theoretic issues. An adjoint
functor theorem asserts that under some smallness assumptions if F preserves colimits it has
a right adjoint (and dually for left adjoints). In this section we will present several versions
of the adjoint functor theorem.

Let F : C → D be a functor. Recall that its right adjoint G can be defined as a lift of the
formal right adjoint Gformal : D → PShv(C) along the Yoneda embedding

D

Gformal

��

G

##
PShv(C) C

Y
oo

where the formal right adjoint is defined as Gformal(y)(x) = HomD(Fx, y) for y ∈ D and
x ∈ C.

We could try to construct the right adjoint G universally if we had a functor PShv(C)→ C.
The Yoneda embedding preserves limits but not colimits, so we might expect it to have a
left adjoint.

Definition 4.11. A category C is total if the Yoneda embedding Y : C → PShv(C) has a left
adjoint.
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We denote by Y L the left adjoint. If P ∈ PShv(C) is a presheaf, then

Y L(P ) ∼= colim
x∈C

z∈P (x)

x.

Conversely, the category C is total if this colimit exists.
Examples of total categories include the category of sets and the category of vector spaces

(more generally, locally presentable categories which we will define shortly).

Theorem 4.12. Suppose F : C → D is a functor between locally small categories with C
total. Then F preserves colimits iff it has a right adjoint.

Proof. We define the right adjoint by

G = Y LGformal.

Explicitly, for y ∈ D the object Gy is the colimit

Gy = colim
x∈C

z∈Hom(Fx,y)

x.

Unpacking the definition of the colimit we see that one has maps

Hom(Fx, y)→ Hom(x,Gy)

natural in x and y. This allows one to define the unit of the adjunction. To define the counit
we just need to exhibit an element of Hom(FGy, y) which maps to idGy ∈ Hom(Gy,Gy).

We have

Hom(FGy, y) ∼= Hom(F colimx,z x, y)
∼= Hom(colimx,z Fx, y)
∼= lim

x∈C
z∈Hom(Fx,y)

Hom(Fx, y)

There is a canonical element in the limit which assigns z ∈ Hom(Fx, y) to every z ∈ Hom(Fx, y).
By tracing through the isomorphisms, it is easy to see that the composite

lim
x,z

Hom(Fx, y)→ lim
x,z

Hom(x,Gy) ∼= Hom(Gy,Gy)

sends this canonical element to idGy. �

It might be difficult to check that a given category is total, but many locally small cate-
gories with small colimits are locally presentable in the following sense.

Definition 4.13. A category is essentially small if it is equivalent to a small category.

Definition 4.14. A locally small category C is called locally presentable if there is an essen-
tially small subcategory Cc ↪→ C of compact objects such that the functor C → Funlex(Cc,op, Set)
is an equivalence.

Here the functor category Funlex is the subcategory of functors which preserve finite limits,
i.e. ones that send finite colimits in Cc to finite limits in Set.

Here are some examples of locally presentable categories:

• C = Set. Compact objects are finite sets.
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• C = Vect. Compact objects are finite-dimensional vector spaces.
• C = Grp. Compact objects are finitely presented groups.

Here is an alternative characterization.

Proposition 4.15. A category C is locally presentable iff it has a fully faithful embedding
i : C ↪→ PShv(D) for D an essentially small category such that i commutes with filtered
colimits and it has a left adjoint.

If C is locally presentable, the embedding is given by Funlex(Cc,op, Set) ↪→ PShv(Cc).
This proposition explains the name locally presentable: the category of presheaves PShv(Cc)

is obtained by freely adding colimits of objects of Cc and the left adjoint PShv(Cc)→ C im-
poses certain relations thus giving a presentation for objects of C.

Theorem 4.16. Suppose C is a locally presentable category and D a locally small category.
Then a functor F : C → D has a right adjoint iff it preserves small colimits.

Proof. Suppose F preserves colimits.
Let Cc ⊂ C be the subcategory of compact objects. We can define a functor

G : D → PShv(Cc)
by G(y)(x) = HomD(Fx, y) for y ∈ D and x ∈ Cc. Since F preserves colimits, G lands in
the subcategory Funlex(Cc,op, Set) ∼= C.

By the Yoneda lemma we have

HomC(x,Gy) ∼= G(y)(x)

= HomD(Fx, y)

for any x ∈ Cc and y ∈ D.
Since any presheaf is a colimit of representables, the same formula holds for x ∈ C by

writing any such element as a colimit of compact objects and observing that F preserves
colimits. �

Let us finally state the most general adjoint functor theorem due to Freyd. Recall Propo-
sition 2.8 which asserts that a right adjoint to F : C → D exists iff we can find a final object
in the comma category (F ⇒ x) for every x ∈ D. A final object is a limit over the empty
diagram. But we can also write it as a colimit over the identity functor which, however, is
not a small colimit unless the category itself is small. In other words, we could find the final
object if we are able to deal with some set-theoretic issues by reducing the colimit to a small
colimit. This is the content of the so-called “solution set condition”.

Lemma 4.17. Let C be a locally small category with small colimits. Then C has a final
object iff the following condition is satisfied:

• (Solution set condition) There is a small set I and a family of objects {ci}i∈I of C
such that for every x ∈ C there is an i ∈ I so that HomC(x, ci) is non-empty.

Proof.

• ⇒.
Suppose C has a final object. Then we take I = ∗ and c to be the final object. By

the definition of final objects HomC(x, c) consists of a single element for every x ∈ C.
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• ⇐.
Conversely, suppose the solution set condition is satisfied and let w =

∐
i∈I ci.

Define c to be the coequalizer of all endomorphisms of w (since C is locally small,
End(w) is a small set). Our goal is to prove that c is final.

For any object x ∈ C there is a morphism x → w given by the composite
x → ci → w for some i ∈ I. Post-composing with pc : w → c we get a morphism
x→ c.

Suppose f, g : x → c are two morphisms and let d = coeq(f, g : x → c) be their
coequalizer. We denote by pd : c→ d the projection morphism. As before, we have a
morphism a : d→ w. The composite

w
pc→ c

pd→ d
a→ w

defines an endomorphism of w. Since c is coequalizes any two endomorphisms of w,
in particular idw and a ◦ pd ◦ pc, we have

pc = pc ◦ a ◦ pd ◦ pc.

Since pc is an epimorphism (Proposition 3.24), we have

idc = pc ◦ a ◦ pd.

Similarly,

pd = pd ◦ pc ◦ a ◦ pd
which implies that

id = pd ◦ pc ◦ a,
i.e. pd is an isomorphism. Since d was a coequalizer of x⇒ c we conclude that f = g,
i.e. the set Hom(x, c) has a single element.

�

The solution set condition can be informally formulated as an assertion that even though
the category C is large, every object can be detected from a small set of objects. With this
lemma we can formulate the adjoint functor theorem.

Theorem 4.18. Suppose F : C → D is a functor between locally small categories where C
has small colimits. Then it has a right adjoint iff if preserves colimits and (F ⇒ x) satisfies
the solution set condition for all x ∈ D.

Proof.

• ⇒.
If F has a right adjoint, it has to preserve colimits by Proposition 4.4. The counit

defines a final object by Proposition 2.8, so we see that (F ⇒ x) satisfies the solution
set condition.
• ⇐.

Suppose (F ⇒ x) satisfies the solution set condition for all x ∈ D. In view of
Lemma 4.17 and Proposition 2.8 to conclude that F has a right adjoint we need to
show that the comma category (F ⇒ x) has small colimits.
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By Theorem 3.16 it is enough to show (F ⇒ x) has small coproducts and co-
equalizers. By Proposition 4.6 it is enough to show that the projection functor
P : (F ⇒ x)→ C creates respective colimits as C has small colimits.

Suppose J is a small set and consider a collection {(yj, fj)}j∈J of objects of (F ⇒ x)
where yj ∈ C and fj : F (yj)→ x. Consider a coproduct tyj in C. Since F preserves
coproducts, we have a unique morphism F (tyj) ∼= tF (yj)→ x making the diagram

F (yj)

�� ""
F (tyj) // x

commute. It is easy to show that this cocone is universal since tyj is universal. In the
same way one shows that P creates coequalizers and so (F ⇒ x) has small colimits.

�

Let us give an example of the application of a dual statement to Theorem 4.18. Consider
the forgetful functor F : Grp→ Set; we will show that its left adjoint (the functor of the free
group on a set) exists. Since F creates limits and Set has small limits, we just need to check
the solution set condition for (X ⇒ F ) for all sets X. Consider a group G and a map of sets
X → F (G). Each such map factors through the subgroup of G generated by the images of
elements of X. Such a subgroup has cardinality bounded in terms of cardinality of X, so we
can take as the generating set the set of representatives of each isomorphism class of such
subgroups.

5. Monads

5.1. Definitions. The easiest category one encounters is the one-object category ∗/M for
M a monoid. One completely understands this category if one understands the monoid. One
can freely complete this category with respect to colimits, i.e. consider Fun((∗/M)op, Set);
this is the category of sets equipped with an action of M . Even though this is some large
category we completely understand it since we understand what sets are and what an action
of M is. In general a category involves a lot of data such as the set of objects, morphisms
and composition maps. This might be difficult to understand especially if the category is
constructed in an inexplicit way such as through some universal construction. Monads and
in particular the Barr–Beck theorem gives us a way to reduce the complexity of categories
by realizing them as categories of modules; once we understand the simpler category (such
as the category of sets, vector spaces etc) and the algebra acting on it (called a monad in
this case), we completely understand the original category.

Definition 5.1. A monad acting on a category C is an endofunctor T : C → C together
with two natural transformations called multiplication µ : T ◦ T ⇒ T and unit η : idC ⇒ T
making the following diagrams commutative:
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• (Associativity)

T ◦ T ◦ T id ◦µ +3

µ◦id
��

T ◦ T
µ
��

T ◦ T µ +3 T

• (Unit)

T ◦ id
id ◦η +3 T ◦ T

µ
u}

T

and

id ◦T η◦id +3 T ◦ T

µ
v~

T

Note that in older texts a monad is called a triple.
Here is a basic example of a monad. Let A be a unital associative algebra. Then the

functor T : Vect → Vect given by V 7→ A ⊗ V has a structure of a monad. Indeed, the
multiplication and the unit natural transformations come from the corresponding maps on
A; the axioms are equivalent to those of a unital associative algebra.

Dually, one has comonads. That is, comonads on C are monads on Cop.

Definition 5.2. A comonad acting on C is an endofunctor T : C → C together with two nat-
ural transformations called comultiplication ∆: T ⇒ T ◦ T and counit ε : T ⇒ idC satisfying
the coassociativity and counit axioms dual to those of monads.

For instance, if A is a coalgebra, the functor V 7→ A ⊗ V defines a comonad on vector
spaces with the comultiplication and counit being those on A.

Another large source of examples of (co)monads comes from adjunctions.

Proposition 5.3. Let F : C � D : G be an adjunction F a G. Then FG has a structure of
a comonad on D and GF has a structure of a monad on C.

Proof. Let T = GF be an endofunctor of C. The unit of T is given by the unit of the
adjunction

η : idC ⇒ GF.

The multiplication µ is induced by the counit ε : FG⇒ idD:

µ : GFGF
idG ◦ε◦idF⇒ GF.

The axioms are easily checked using string diagrams. We will give an algebraic proof.
First, consider a diagram

FGFG
idFG ◦ε+3

ε◦idFG

��

FG

ε
��

FG
ε +3 idD
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Commutativity of a diagram of natural transformations is checked on objects, and for any
x ∈ D the diagram

FGFG(x)
FG(εx)//

εFG(x)

��

FG(x)

εx

��
FG(x)

εx // x

is commutative due to naturality of ε.
We can compose the diagram withG on the left and F on the right to obtain a commutative

diagram

GFGFGF
idGFG ◦ε◦idF +3

ε◦idFG
��

GFGF

idG ◦ε◦idF
��

GFGF
idG ◦ε◦idF +3 GF

This is exactly the associativity diagram for T .
One of the unit diagrams is

GF
η +3 GFGF

idG ◦ε◦idFv~
GF

Commutativity of this diagram is equivalent to one of the adjunction axioms. The com-
mutativity of the other unit axiom is equivalent to the other adjunction axiom. �

5.2. Algebras. Given a monoid a natural notion to understand is that of a module over the
monoid. For monads this notion is called an algebra over a monad.

Definition 5.4. Let T : C → C be a monad. An algebra over T is an object x ∈ C together
with a morphism a : Tx→ x in C which satisfies the following two axioms:

• (Associativity) The diagram

T 2x
T (a)

//

µx
��

Tx

a

��
Tx

a // x

commutes.
• (Unit) The composite

x
ηx→ Tx

a→ x

is the identity.
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We denote by AlgT (C) the category of T -algebras in C. The objects are T -algebras (x, a)
and morphisms (x, ax)→ (y, ay) are given by morphisms f : x→ y making the diagram

Tx

T (f)
��

ax // x

f

��
Ty

ay // y

commute.
Dually one defines coalgebras over comonads and we denote by CoAlgT (C) the category

of T -coalgebras in C.
Recall that an algebra A defines a monad V 7→ A⊗ V on vector spaces. The category of

algebras over this monad is equivalent to the category of A-modules.
Here is an example of a different kind. We have a monad on Set given by sending a set

X to the set of finite words on X. The unit is given by the inclusion of one-letter words
and the multiplication is given by concatenation: a word on a set of words on a set X can
be written as a word on X. Algebras over this monad are the same as unital monoids: the
action map is given by the composition of the word within the monoid. The fact that this
definition is equivalent to the usual compact definition of monoids in terms of an associative
composition rule is an example of a coherence theorem.

Given a monad T on C a reasonable question is whether it can be presented as a monad
associated to an adjunction. It turns out to always be the case.

Proposition 5.5. Let T be a monad acting on C. Then the forgetful functor F : AlgT (C)→ C
has a left adjoint and the associated monad on C is naturally isomorphic to T . Dually, for
a comonad T the forgetful functor CoAlgT (C) → C has a right adjoint and the associated
comonad on C is naturally isomorphic to T .

Proof. Let T be a monad C → C. We define a functor L : C → AlgT (C) by x 7→ Tx. The

T -algebra structure on Tx is given by T 2x
µx→ Tx. It is immediate that the axioms for

T -algebras are satisfied.
Let (A, aA) be a T -algebra and x ∈ C. Then a morphism of T -algebras Tx → A is the

same as a morphism f : Tx→ A in C such that the bottom square in the diagram

Tx

T (ηx)
��

T 2x
µx //

T (f)
��

Tx

f
��

TA
aA // A

is commutative. The commutativity of the top triangle follows from the unit axiom of the
monad.

But then the morphism f : Tx→ A is given by the composite

Tx
T (ηx)→ T 2x

T (f)→ TA
aA→ A.
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In other words, f is uniquely determined by the composite

x
ηx→ Tx

f→ A.

Hence

HomAlgT (C)(Lx,A) ∼= HomC(x, FA).

By definition FL(x) = Tx. �

Let F : C � D : G be an adjunction with F a G. We have the associated monad T = GF
on C and a comonad S = FG on D. Moreover, we get natural functors

Genh : D → AlgT (C)

and

Fenh : C → CoAlgS(D)

such that the diagrams of categories

D
Genh

��

G // C

AlgGF (C)
forget

::

and

C
Fenh

��

F // D

CoAlgFG(D)
forget

99

naturally commute.
For instance Genh : D → AlgT (C) is given by y 7→ Gy. Its T -algebra structure is given by

GFGy
G(εy)→ Gy.

Definition 5.6. A functor G : D → C is monadic if it has a left adjoint and for the corre-
sponding monad T the functor D → AlgT (C) is an equivalence.

Definition 5.7. A functor F : C → D is comonadic if it has a right adjoint and for the
corresponding comonad S the functor C → CoAlgS(D) is an equivalence.

Our goal in the next subsection will be to characterize (co)monadic functors. Let us first
make few preliminary observations.

Proposition 5.8. Let T be a monad on C. Then the forgetful functor AlgT (C)→ C creates
limits. If T preserves colimits of shape I, then the forgetful functor reflects those colimits.

Proof. Consider a diagram J : I → AlgT (C) and denote the forgetful functor by F : AlgT (C)→ C.
To show that F creates limits, we have to show that limI FJ has a unique T -algebra structure
compatible with the forgetful maps.
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That is, we have to construct and show uniqueness of the map T (limI FJ) → limI FJ
making the diagrams

T (limI FJ) //

��

limI FJ

��
TFJ(i) // FJ(i),

where at the bottom we use the T -algebra maps on J(i). By the universal property of the
limit every such map is determined uniquely. It is then straightforward to check that thus
defined T -algebra satisfies a universal property.

Now suppose T preserves colimits of shape I and consider a diagram J : I → AlgT (C). We
are going to define a T -algebra structure on colimI FJ . The action map is given by

T (colimI FJ) ∼= colimI TFJ → colimI FJ.

The universal property of this T -algebra is immediate from the universality of the colimit.
�

5.3. Barr–Beck. In this subsection we will prove a recognition theorem for monadic func-
tors, i.e. we will prove necessary and sufficient conditions for a functor to be monadic. The
corresponding statement is known as the Barr–Beck theorem (also called Beck’s monadicity
theorem).

Before we state the Barr–Beck theorem, we need two preliminary notions: that of a
conservative functor and a split coequalizer.

Definition 5.9. A functor F : C → D is conservative if it reflects isomorphisms, i.e. if for
some morphism f : x→ y the morphism F (f) is an isomorphism, so is f .

For instance, many forgetful functors are conservative: Vect→ Set, Grp→ Set, Alg→ Vect
etc.

Here is a basic lemma about conservative functors.

Lemma 5.10. Suppose F : C → D is a conservative functor which admits either a fully
faithful left adjoint or a fully faithful right adjoint. Then F is an equivalence.

Proof. We assume that F admits a fully faithful left adjoint. The other statement is proved
by duality.

Let FL be the left adjoint. Since FL is fully faithful, the unit

η : idD ⇒ FFL

is a natural isomorphism. To show F is an equivalence we have to show that the counit
ε : FLF ⇒ idC is also an isomorphism. By one of the adjunction axioms we know that the
composite

F (x)
ηF (x)→ FFLF (x)

F (εx)→ F (x)

is idF (x) for every x ∈ C. This implies that F (εx) is an isomorphism and by conservativity
εx is an isomorphism. �
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Next we discuss split pairs of morphisms. Let f, g : x → y be a pair of morphisms in a
category C. A fork is a cocone

x
g

⇒
f
y

e→ z.

We say that a fork is split if there exist morphisms s : z → y and t : y → x such that

es = idz, ft = idy, gt = se.

Proposition 5.11. Every split fork is a coequalizer.

Proof. Suppose w ∈ C and we have a morphism e′ : y → w such that

e′f = e′g.

We want to prove there is a unique morphism h : z → w such that he = e′. Uniqueness is
clear: we have

h = hes = e′s.

Now suppose h = e′s. Then he = e′se = e′gt = e′ft = e′. �

Definition 5.12. A pair of morphisms f, g : x→ y is called a split pair if their coequalizer
exists and is split.

Let F : C → D be some functor. Then we say that a pair f, g of morphisms in C is F -split
if the pair F (f), F (g) is split.

Here are two important examples of split pairs:

(1) Let T : C → C be a monad with µ : T 2 ⇒ T the multiplication and x ∈ C be a
T -algebra with the action map a : Tx→ x. Then the pair

T 2x
µx
⇒
T (a)

Tx

is split.
Indeed, we have a fork

T 2x
µx
⇒
T (a)

Tx
a→ x

due to the associativity axiom of the action a.
We claim that s = ηx : x→ Tx and t = ηTx : Tx→ T 2x give a splitting. Indeed,

aηx = idx

by the unit axiom of a T -algebra. The equation

µxηTx = idTx

is the unit axiom of the monad and

T (a)ηTx = ηxa

holds by naturality of η.
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(2) Now let F a G be an adjunction where F : C � D : G. We claim that for every
y ∈ D the fork

FGFG(y)
εFG(y)

⇒
FG(εy)

FG(y)
εy→ y

is G-split. Indeed, after applying G we get a fork

GFGFG(y)
G(εFG(y))

⇒
GFG(εy)

GFG(y)
G(εy)→ G(y)

which is a split fork for the GF -algebra G(y) by the previous example.

Theorem 5.13 (Barr–Beck). A functor G : D → C is monadic iff the following conditions
are satisfied:

• G admits a left adjoint,
• G is conservative,
• Every G-split pair of morphisms admits a coequalizer in D and it is preserved by G.

The proof of this theorem is not examinable.

Proof. Consider the diagram

D G //

Genh

��

C

AlgT (C)
forget

;;

where T = GF .

• ⇒.
Suppose G is a monadic functor, i.e. Genh is an equivalence. Then G is conservative

iff the forgetful functor AlgT (C)→ C is conservative. Suppose x, y ∈ AlgT (C) are two
T -algebras together with a morphism of T -algebras f : x→ y which is an isomorphism
in C. That is, the diagram

Tx
T (f)

//

��

Ty

��
x

f
// y

is commutative. But then the diagram

Tx

��

Ty

��

T (f)−1
oo

x
f−1

// y

is commutative and hence f−1 is a morphism of T -algebras, i.e. f is an isomorphism
in AlgT (C) and so G is conservative.
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Now suppose x, y ∈ AlgT (C) are two T -algebras with a pair of morphisms of T -
algebras f, g : x→ y. Moreover, assume we have a split fork

x
g //

f
// y

e //

t

VV z

s

WW

where s, t, e are merely morphisms in C while f, g are morphisms of T -algebras. Let
us now prove that z is also a T -algebra and e is a morphism of T -algebras. Define
the T -action az on z as the composite

Tz
T (s)→ Ty

ay→ y
e→ z.

Associativity of z is the commutativity of the diagram

T 2z
T (az) //

µz
��

Tz

az

��
Tz az

// z

We can expand it to a diagram

T 2z
T 2s //

µz

��

T 2y
Tay //

µy

��

Tay

!!

Ty
Te //

Tt
��

Tz

Ts
��

Ty

ay

��

Tx
Tfoo Tg //

ax

��

Ty

ay

��
x

g //

f

��

y

e

��
Tz

Ts
// Ty ay

// y e
// z

The commutativity of the subdiagrams follows from the associativity and fork
axioms. For instance, the top trapezoid commutes since ft = idy. Therefore, the
action map az is associative.

The unit axiom follows from the commutative diagram

z
ηz //

s

��

Tz

Ts
��

y
ηy //

e

��

Ty

ay

��
z ye
oo
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since es = idz. We also get a commutative diagram

Ty

��

T (e)
// Tz

��
y

e // z

and so e is a morphism of T -algebras.
Finally, we have to show that z is a coequalizer. Consider a T -algebra w together

with a morphism e′ : y → w such that e′f = e′g. Since z is a coequalizer in C, there is
a unique morphism h : z → w in C given by h = e′s and we just need to show that h
is a morphism of T -algebras. This is equivalent to the commutativity of the diagram

Tz
T (s)

// Ty
ay //

T (e′)
��

y
e //

e′

��

z

s

��
Tw

aw // w y
e′oo

Commutativity of the first square follows from the fact that e′ is a morphism of
T -algebras and the commutativity of the second square follows from the chain of
equalities

e′se = e′gt = e′ft = e′.

• ⇐. 2

Conversely, suppose the conditions of the theorem are satisfied. To prove that
G is monadic, i.e. that Genh is an equivalence, by Lemma 5.10 it is enough to
show that Genh is conservative and admits a fully faithful left adjoint. Clearly, con-
servativity of G implies that of Genh: if f : x → y is a morphism in D such that
Genh(f) : Genh(x) → Genh(y) is an isomorphism of T -algebras, then G(f) is an iso-
morphism in C and hence f is an isomorphism.

Recall that the forgetful functor forget : AlgT (C) → C admits a left adjoint free
which sends an object x ∈ C to the free T -algebra Tx. The putative left adjoint GL

enh

is thus uniquely determined on free T -algebras:

GL
enh(Tx) ∼= F (x)

for any x ∈ C. The idea of the proof is to resolve every T -algebra by free T -algebras
and apply this prescription to the resolution to construct the left adjoint for all
T -algebras.

Let A ⊂ AlgT (C) be the full subcategory of objects satisfying the following two
conditions:
(1) For every x ∈ A the functor

D → Set

given by y 7→ HomAlgT (C)(x,Genhy) is corepresentable.

2This proof is adapted from Lemma 4.7.4.13 in J. Lurie, Higher algebra.

http://math.harvard.edu/~lurie/papers/higheralgebra.pdf
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(2) The unit morphism ηx : x → GenhG
L
enh(x) for every x ∈ A induces an isomor-

phism

forget(x)→ forget(Genh(G
L
enh(x))) ∼= G(GL

enh(x)).

Then we can define a functor GL
enh : A → D which is a partial left adjoint to Genh:

HomD(GL
enh(x), y) ∼= HomAlgT (C)(x,Genh(y))

naturally in x ∈ A and y ∈ D. We will show that A is equivalent to AlgT (C) and so
the left adjoint to Genh exists.

First, the essential image of free : C → AlgT (C) is in A:

HomAlgT (C)(free(x), Genh(y)) ∼= HomC(x,Gy) ∼= HomD(Fx, y)

for x ∈ C and y ∈ D and the unit

free(x)→ GenhG
L
enhfree(x)

induces an isomorphism

forget(free(x))→ forget(Genh(G
L
enh(free(x)))) ∼= GF (x) = T (x).

By the example preceding this theorem, every T -algebra x fits into a coequalizer

T 2x
µx
⇒
T (ax)

Tx
ax→ x

of free T -algebras. We denote by xi the corresponding diagram T 2x ⇒ Tx. More-
over, we’ve shown that forget(xi) ∼= GGL

enh(xi) defines a split coequalizer. By the
assumptions of the theorem, we see that Genh(xi) is G-split and so has a coequalizer
in D.

Then for every x ∈ AlgT (C) and y ∈ D we have

HomAlgT (C)(x,Genh(y)) ∼= HomAlgT (C)(colimi xi, Genh(y))
∼= lim

i
HomAlgT (C)(xi, Genh(y))

∼= lim
i

HomD(GL
enh(xi), y)

∼= HomD(colimiG
L
enh(xi), y).

For x ∈ AlgT (C) the morphism

forget(x)→ GGL
enh(x)

is given by the composite

colimi xi ∼= colimiGG
L
enh(xi)→ G(colimiG

L
enh(xi))

∼= GGL
enh(x)

which is an isomorphism since GL
enh(xi) is G-split and G preserves such coequalizers.

In this way we’ve defined the left adjoint GL
enh : AlgT (C) → D to Genh such that

the unit
ηx : x→ GenhG

L
enh(x)

is an isomorphism after applying the functor forget. But the latter functor is con-
servative, so the unit is an isomorphism. Therefore, GL

enh is fully faithful and since
Genh is conservative we see that Genh is an equivalence.
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�

One application of the Barr–Beck theorem is to Tannakian formalism (this is due to
Deligne). Namely, it is a formalism allowing one to recognize which categories are categories
of representations of an algebraic group.

5.4. Descent. In this section we will apply the Barr–Beck theorem to the problem of descent
first in Galois theory (extensions of fields) and then more generally to commutative algebra
(extensions of rings). We will be quite sketchy here just to outline the general idea. We will
apply the comonadic version of the Barr–Beck theorem which is dual to 5.13, so let us state
it here.

Theorem 5.14. A functor F : C → D is comonadic iff the following conditions are satisfied:

• F admits a right adjoint,
• F is conservative,
• Every F -cosplit pair of morphisms admits an equalizer in C and it is preserved by F .

In the statement we have used the term “F -cosplit pair” to denote the notion dual to that
of a split pair. This will be irrelevant in this subsection as all categories will have equalizers
and the functors F will preserve them.

Let us begin with the baby case of descent which is descent for functions. Given a set X
we denote by O(X) the commutative k-algebra of k-valued functions on X for some fixed
field k which will be implicit. Given a map of sets X → Y we can precompose functions with
this map to obtain a pullback morphism O(Y )→ O(X). In this way we get a contravariant
functor

O : Setop → CAlg

from sets to commutative algebras. Since O is the algebra of functions, it is immediate that
O preserves limits, i.e. it sends colimits in Set to limits in CAlg.

Now, if X → Y is a surjective map, the canonical map

coeq(X ×Y X ⇒ X)→ Y

is an isomorphism simply by explicitly computing the coequalizer (here the two maps
X ×Y X ⇒ X are the two natural projections). Therefore, we get that the pullback
O(Y )→ O(X) induces an isomorphism of commutative algebras

O(Y )
∼→ eq(O(X)⇒ O(X ×Y X)).

In other words, functions on Y can be written in terms of functions on X satisfying a
descent condition that their two pullbacks to O(X ×Y X) are equal. Descent theory gener-
alizes this to morphisms of some geometric objects where we replace the vector spaces O(−)
by certain categories associated to the geometric objects. In that case descent conditions
become descent data which have to satisfy further coherences.

5.4.1. Galois descent. We begin with the easiest case of descent which is that of vector spaces
over fields. Let k ⊂ L be an extension of fields. Then on the categories of vector spaces we
get an adjunction

Ind: Vectk � VectL : Res,
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where the left adjoint Ind is given by sending a k-vector space V to the L-vector space V ⊗kL
and the right adjoint Res is given by considering an L-vector space as a k-vector space via the
embedding k ⊂ L. This adjunction is an instance of the tensor-Hom adjunction of modules
over rings that we have discussed before.

Let us try to apply the Barr–Beck theorem to this adjunction. Both categories Vectk and
VectL have all limits and colimits. Clearly, Res is conservative. So, to prove that Ind is
conservative we just need to show that the composite Res ◦ Ind is conservative. Suppose
f : V → W is a linear map of k-vector spaces which induces an isomorphism

V ⊗k L→ W ⊗k L

of k-vector spaces. Since L ∼= ⊕ik as a k-vector space we see that

⊕iV
⊕if→ ⊕iW

is an isomorphism. But this implies that f itself is an isomorphism.

An equalizer V
g

⇒
f
W in Vectk is the same as a kernel of f − g, so we just need to show

that Ind preserves kernels, i.e. the natural map

ker(f)⊗k L→ ker(f ⊗k L)

is an isomorphism for any linear map f : V → W . This is proved again by writing L ∼= ⊕ik
as k-vector spaces.

Therefore, Ind satisfies the conditions of the Barr–Beck theorem 5.14 and so Ind is
comonadic. The comonad S = Ind ◦ Res on VectL is given by

V 7→ S(V ) = V ⊗k L ∼= V ⊗L L⊗k L

and the Barr–Beck theorem asserts that Vectk is equivalent to S-coalgebras in VectL. But
this comonad is simply given by tensoring with the L-coalgebra L ⊗k L and hence Vectk is
equivalent to the category of L⊗k L-comodules in VectL. Note that the coproduct

L⊗k L→ L⊗k L⊗L L⊗k L ∼= L⊗k L⊗k L

is given by l1 ⊗ l2 7→ l1 ⊗ 1⊗ l2 and the counit

L⊗k L→ L

is l1 ⊗ l2 7→ l1l2.

Definition 5.15. A k-form of an L-vector space V is a k-vector space Vk together with an
isomorphism Vk ⊗k L ∼= V .

Therefore, the Barr–Beck theorem implies the following proposition.

Proposition 5.16. Let k ⊂ L be a field extension and V an L-vector space. Then the
category of k-forms of V is equivalent to the category of coactions of L⊗k L on V .
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5.4.2. Faithfully flat descent. Let us generalize the descent picture from fields to commu-
tative rings. Suppose R, S are commutative rings with a morphism R → S. Recall that
the functor S ⊗R − : R − mod → S − mod commutes with colimits since it has a right
adjoint. It also commutes with finite products since those coincide with finite coproducts in
the categories of modules.

Definition 5.17. A morphism f : R→ S is faithfully flat if the functor

Ind = S ⊗R − : R−mod→ S −mod

is faithful and preserves equalizers.

Assume that we are given a faithfully flat morphism R → S. We are going to apply the
Barr–Beck theorem to the tensor product functor Ind to show that it’s comonadic.

The tensor-Hom adjunction asserts that the right adjoint to Ind: R−mod→ S −mod is
the functor HomS(S,−) : S −mod → R −mod which is simply the restriction functor Res
from S-modules to R-modules.

To show that Ind is conservative, consider a morphism of R-modules g : M → N and
suppose S⊗RM → S⊗RN is an isomorphism. The coequalizer of g and the zero morphism
is simply the cokernel of g; similarly, the equalizer of g and 0 is the kernel of g. By assumption
the tensor product functor preserves kernels and cokernels, so we just need to show that if
Ind(P ) ∼= 0 for some R-module P , then P ∼= 0. Indeed, for any R-module Q we have an
injective map HomR(Q,P ) → HomS(Ind(Q), Ind(P )) ∼= {0}. Therefore, there is a unique
morphism into P from any R-module, so P has to be a final object and hence P ∼= 0.
Therefore, Ind is conservative.

The comonad Ind ◦ Res is given by M 7→ S ⊗RM ∼= S ⊗R S ⊗S M . We get the following
statement from the Barr–Beck theorem.

Proposition 5.18. The category of R-modules is equivalent to the category of S-modules
M equipped with a coassociative coaction morphism M → S ⊗RM .

This statement is usually formulated as follows: modules over rings satisfy faithfully flat
descent.

It turns out that while faithfully flat morphisms of rings are sufficient for descent, they
are not necessary. The necessary and sufficient condition is given by the notion of a pure
monomorphism of rings.

Definition 5.19. A morphism of R-modules M1 →M2 is a pure monomorphism if for every
R-module N the induced morphism N ⊗RM1 → N ⊗RM2 is injective.

Let us show that if R→ S is a faithfully flat morphism of rings, it is a pure monomorphism
of R-modules. That is, we have to show that

N → N ⊗R S
is injective for every R-module N . By faithful flatness of R → S it is enough to show that
N ⊗R S → N ⊗R S ⊗R S is injective, but this is split: there is the multiplication map
N ⊗R S ⊗R S → N ⊗R S given by n⊗ s1 ⊗ s2 7→ n⊗ s1s2 which splits the inclusion.

It turns out that being a pure monomorphism is the optimal condition for descent (see
[JT, Corollary 5.4]).
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Theorem 5.20. The tensor product functor S⊗R− : R−mod→ S−mod is comonadic iff
the morphism of R-modules R→ S is a pure monomorphism.

6. Categorical algebraic geometry

Functors of points. In this section (which is not examinable) we sketch how category theory
is applied in modern algebraic geometry. Many details will be omitted; see for example [EH]
for a much more thorough introduction.

Algebraic geometry is concerned with viewing solutions of polynomial equations as geo-
metric objects. For instance, we can consider the set C(Z) of integers (x, y) satisfying the
equation

y2 = x3 − 1.

Notice, however, that it makes sense to consider solutions where x and y belong to any
ring. The assignment to any ring the set of solutions of this equation defines a functor

C : Rng→ Set.

The set of solutions of the equation

y2 = x3 − π
cannot be made sense of in any ring since we need to have π in the ring as well. However,
this equation defines a functor

AlgC → Set

from the category of C-algebras to sets.
So, let’s fix a base ring k. In the above examples k = Z or C. The above examples show

that geometric objects can be considered as functors.

Definition 6.1. A space is a functor Algk → Set.

Let Sp ≡ Fun(Algk, Set) be the category of spaces. The approach to algebraic geometry
via such functors is known as the functor of points approach. The value of a functor on a
ring R is called the set of R-points of the space.

We have the Yoneda embedding
Algopk → Sp

and we define the essential image of the Yoneda embedding to be the category of affine
schemes Aff. Since the Yoneda embedding is fully faithful,

Aff ∼= Algopk .

We may tautologically rewrite spaces as contravariant functors Affop → Set, i.e. spaces
are just presheaves on the category of affine schemes:

Sp ∼= PShv(Aff).

The Yoneda embedding in terms of affine schemes is called the spectrum functor

Spec : Aff → Sp.

The examples we have given above are both affine schemes. To show that, we need to
prove that the functor

Rng→ Set
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sending a ring to the set of solutions of y2 − x3 + 1 = 0 is corepresented by a ring. Indeed,
consider the quotient ring R = Z[x, y]/(y2 − x3 + 1). A morphism of rings f : R → S is
uniquely determined by specifying the elements f(x), f(y) ∈ S satisfying the equation

f(y)2 = f(x)3 − 1.

Thus, C ∼= SpecR, i.e. it is an affine scheme.

Functions. What are possible functions on SpecR? We are allowed to measure x and y,
which are not independent but have to satisfy the equation y2 = x3 − 1. In other words, if
we denote by O(X) the ring of functions on a space X, then we expect

O(SpecR) ∼= R.

We will take it as a definition of the ring of functions on an affine scheme. How do we
determine functions on an arbitrary space X? For any morphism f : X → Y of spaces we
expect to be able to restrict functions f ∗ : O(Y )→ O(X). But any presheaf is determined by
morphisms from representable presheaves, so we might define O(X) as follows. A function
g ∈ O(X) is an assignment to a pair (R, f), where R ∈ Algk and f : SpecR → X, the
function f ∗g ∈ R. These have to be compatible in the sense that if we have (R1, f) and
a morphism h : R1 → R2, then h(f ∗g) = (f ◦ h)∗g. More concisely, we define the functor
O : Sp→ Rngop to be

O(X) = lim
SpecR→X

R.

It is immediate that the functor O sends colimits in Sp to limits in Rng, so we could
instead take it as a defining property and use the fact that every presheaf is a colimit of
representables.

An important example of an affine scheme is an affine space An. It is defined to be the
functor which sends a ring R to the set Rn whose elements are given by sequences of n
elements of R. Alternatively,

An ∼= Spec k[x1, ..., xn].

Another important example of an affine scheme is Gm. It is defined by Gm(R) = R×, the
set of invertible elements (i.e. units) of R. It is also an affine scheme and we have

Gm
∼= Spec k[x, x−1].

So far all examples we’ve given were affine schemes. Let us now give a natural example
of a non-affine scheme. Before we define it, we will need a notion of an invertible module.

Definition 6.2. A module M over a commutative ring R is invertible if there is an R-module
N such that M ⊗R N ∼= R.

For instance, the module M = R is invertible with the inverse given by itself.
We define the projective space Pn to be the functor which assigns to R the set of invertible

R-submodules of R⊕(n+1). If R = k is a field, all invertible modules are isomorphic to k. In
this case Pn(k) is the set of lines (i.e. one-dimensional subspaces) in kn+1 which gives the
classical notion of a projective space associated to a given vector space kn+1.

Proposition 6.3. Pn is not an affine scheme. In fact, O(Pn) ∼= k.
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Note that since Spec sends colimits in Rng to limits in Sp (Yoneda embedding preserves
limits), we have

SpecR1 ×SpecS SpecR2
∼= Spec(R1 ⊗S R2).

Tangent spaces. All geometric properties of spaces can be completely encoded in the corre-
sponding functor of points. Let us give a single example. Let X ∈ Sp be a space and let
x ∈ X(k) be a k-point. Let us denote by π : k[ε]/ε2 → k the natural projection.

Definition 6.4. The tangent space TxX of X at x is the fibre of X(π) : X(k[ε]/ε2)→ X(k)
at x ∈ X(k).

Exercise. Show that TxX is a k-vector space.

For instance, let L ∈ Pn(k) be a line in kn+1. Then TLPn ∼= kn+1/L.

Quasi-coherent sheaves. Since O(Pn) ∼= k, we see that the set of global functions on a space
is not a very good approximation to the space if the space is not an affine scheme. Instead,
one might consider certain categorical functions by replacing elements of R by R-modules.
Here is the definition.

Definition 6.5. Let X be a space. A quasi-coherent sheaf F on X is the following collection
of data:

• For each ring R and f : SpecR→ X an R-module f ∗F
• For every morphism g : SpecR1 → SpecR2 of affine schemes and f : SpecR2 → X

an isomorphism f ∗F ⊗R2 R1
∼= (f ◦ g)∗F .

The isomorphisms have to satisfy the cocycle condition: for any pair of morphisms
g1 : SpecR1 → SpecR2 and g2 : SpecR2 → SpecR3 and a morphism f : SpecR3 → X
the two isomorphisms

(f ◦ g2 ◦ g1)∗F ∼= f ∗F ⊗R3 R1

and
(f ◦ g2 ◦ g1)∗F ∼= (f ◦ g2)∗F ⊗R2 R1

∼= f ∗F ⊗R3 R2 ⊗R2 R1
∼= f ∗F ⊗R3 R1

are equal.

Even thoughO(Pn) ∼= k, the category of quasi-coherent sheaves QCoh(Pn) is non-trivial: it
is a certain quotient of the category of graded modules over k[x1, ..., xn+1], where k[x1, ..., xn+1]
is considered as a graded ring with each xi in degree 1.

As for functions, one can write

QCoh(X) = l̃imSpecR→XR−mod,

where we take the limit in the 2-category of categories whose definition is beyond the scope
of this course.

Exercise. Define QCoh(X)′ = limSpecR→X R−mod where the limit is taken in the category
of categories and compare the definition of objects of QCoh(X)′ to the definition of quasi-
coherent sheaves.

The faithfully flat descent property allows one to compute the category of quasi-coherent
sheaves on a space by giving a faithfully flat cover by an affine scheme.
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