
SHEET 3, EXERCISE 19

Please send comments/corrections to Jay Swar!

Exercise. Let k be a �eld, R = k[x, y],M := R/(x, y)2 ∼= k ⊕ kx⊕ ky as a k-module.
Consider the following ModR-SES's and compute the associated Tor-LES's:
0→ k ⊕ k →M → k → 0:
i) LES from M ⊗R −
0→ k → Homk(M,k)→ k ⊕ k → 0:
ii) LES from M ⊗R −
iii) LES from k ⊗R −
0→ k⊕3 → M⊕M

〈(y,−x)〉 → k ⊕ k → 0:

iv) LES from k ⊗R −.
For the SES 0→ A→ B → C → 0 above, I name morphisms A

α→ B
β→ C.

Solution. First, let's take a second to appreciate that the SES in iv 0 → k⊕3 → M⊕M
(y,−x)R → k⊕2 → 0

might appear, at �rst glance, to be ambiguous. If we think of the coproduct being taken in the category of

k-modules, then by mapping to the �rst factor and quotienting, we have a SES of R-modules: 0 → M
q◦i1→

M⊕M
(y,−x)R →

R
(x,y2) = k[y]

y2 → 0. We also have 0 → (kx⊕ky)⊕(kx⊕ky)
(y,−x)R → M⊕M

(y,−x)R → k⊕2 → 0; this is a non-

isomorphic SES of R-modules (e.g. since the �rst module has 0-action by x, y). Thus, the only reasonable
way to interpret the ⊕'s in this question is as the coproducts in ModR (maybe this was obvious to the
ever-alert; however when starting with parts i and ii, one might be distracted since it isn't di�cult to see
that the only possible ModR objects of the correct dimk on the left and right have 0-action by x, y � hence
why my Frankensteined answer awkwardly shows that). Note that kx ⊕ ky is allowed notation since kx in
this usage refers to the R-submodule of M generated by x; in particular, this is ModR-isomorphic to k with
0-action by x, y, ie. R/(x, y).

In preparation for what is to come, for a ∈ R, we write a = a0 + a1x + a2y + O((x, y)2) (there'll be an
obvious place where some ni are still meant to be in R and I use ni0, ni1, ni2!).

Let's note another important thing: there is not a unique injective R-module homomorphism k⊕3 →
M⊕M
(y,−x)R , even though the image is unique (since for ai, bi ∈ k, we have that x(a0 + a1x + a2y, b0 + b1x +

b2y) = (a0x + b0y, 0) and y(a0 + a1x + a2y, b0 + b1x + b2y) = (0, a0x + b0y) are both 0 i� a0 = b0 = 0).
For example, mapping α :e1 7→ (x, 0), e2 7→ (y, 0), e3 7→ (0, y) is not really preferred, yet is distinct, from

the same map where instead e1 7→ (−x, 0). However, the image of this map is unique ( (kx+ky)⊕(kx+ky)(y,−x)R ).

This level of ambiguity arguably suggests that we should only �describe the maps in the induced LES�
up to unique isomorphism. This is slightly di�erent from earlier where we were in situations involving
HomModZ(Z/2,Z/2) = Z/2 where there is an on-the-nose unique isomorphism. I'll do part iv) completely
explicitly (i.e. I'll describe explicit morphisms by what they do to bases of our objects), and then I'll only
describe the morphisms in parts i), ii), and ii) up to unique isomorphism.

Let us begin with the one I do completely explicitly, iv).

A Modk[x,y]-projective resolution of k = R/(x, y) is · · · → 0 → R
d2→ R2 d1→ R = P0 given by d1(f, g) =

xf + yg, d2(h) = (yh,−xh). The algorithmic approach to describing the morprhisms completely explicitly
is: �nd resolutions for k⊕n, apply the horseshoe lemma to get a split SES of complexes, apply k ⊗R −, and
�nally apply the snake lemma. The �rst three steps result in the following:

1
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∂′′
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// R⊕3 ⊕R⊕2

∂0
��
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∂′′
0

��
0 // k⊕3

α
// M⊕M
(y,−x)R β

// k⊕2 // 0

k⊗R− 0
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// 0

��

// 0

��
k⊕3

∂′
2

��

// k⊕3 ⊕ k⊕2

∂2
��

// k⊕2

∂′′
2

��
(k2)⊕3

∂′
1

��

// (k2)⊕3 ⊕ (k2)⊕2

∂1
��

// (k2)⊕2

∂′′
1

��
k⊕3

∂′
0

��

// k⊕3 ⊕ k⊕2

∂0

��

// k⊕2

∂′′
0

��
0 // 0 // 0

Where wlog we take α :e1 7→ (x, 0), e2 7→ (y, 0), e3 7→ (0, y) and β : (m,n) 7→ (m0, n0) for m,n ∈ R
representing an element in M⊕M

(y,−x)R . Let's narrate the horseshoe lemma: We lift ∂′′0 to get R⊕2 → M⊕M
(y,−x)R :

(m,n) 7→ (m,n). We subsequently won't bother with writing the overlines (which just indicates that the
element is in a natural quotient of R⊕2). Thus we have ∂0(r, s, t, a, b) = (r0x+ s0y + a, t0y + b). This is 0 i�
a0 = b0 = 0 and t0 = −b2, r0 = −a1, s0 = −(a2 + b1). So ker ∂0 = {(−f + (x, y)R,−(g +m) + (x, y)R,−n+
(x, y)R, xf + yg, xm+ yn) : f, g,m, n ∈ R} where by the (x, y)R I mean any element in this ideal as opposed
to a quotient � this naturally surjects onto ker ∂′′0 . We can then lift ∂′′1 : (f, g,m, n) 7→ (fx + gy,mx + ny)
to get σ1 : (R2)⊕2 → R⊕3 ⊕ R⊕2 : (f, g,m, n) 7→ (−f,−g − m,−n, fx + gy,mx + ny). Thus we get
∂1(r, f, g,m, n) = (∂′1(r), 0, 0) + (−f,−g − m,−n, fx + gy,mx + ny) for r ∈ (R2)⊕3. Note ker ∂1 implies
x|g, y|f, x|n, y|m, so g0, f0,m0, n0 are 0 for elements in this kernel. In fact, f = yh, g = −xh,m = yp, n =
−xp. Set r = (r, s, t, u, v, w) ∈ R⊕6. So we have rx+ sy = hy, tx+ uy = py − xh, vx+ wy = xp. So we may
write a lift of ∂′′2 to this kernel via σ2 : (h, p) 7→ (h, 0,−h, p, p, 0, yh,−xh, yp,−xp). Now ∂2 = ∂′2 ⊕ σ2, and
our projective resolution terminates (since σ2, ∂

′
2 are both injective).

Note that ∂1 = ∂′1 ⊕ σ1 : (r, s, t, u, v, w, f, g,m, n) 7→ (−f0,−g0 −m0,−n0, 0, 0), and
∂2 = ∂′2 ⊕ σ2 : (a, b, c, h, p) 7→ (h0, 0,−h0, p0, p0, 0, 0, 0, 0, 0). The di�erentials in the left and right

columns are all identically 0. So TorR0 (k,
M⊕M
(y,−x)R ) = ke4 ⊕ ke5, Tor

R
1 (k,

M⊕M
(y,−x)R ) =

⊕6
i=1 kei

⊕
k(e8−e9)

k(e1−e3)⊕k(e4+e5)
∼=

k⊕5,TorR2 (k,
M⊕M
(y,−x)R ) =

⊕3
i=1 kei.

So our LES looks like:
· · · // 0

ss
k⊕3

α2 //⊕3
i=1 kei

β2 // k⊕2

δ2

tt
k⊕6

α1// TorR1 (k,
M⊕M
(y,−x)R )

β1 // k⊕4

δ1

tt
k⊕3

α0 // ke4 ⊕ ke5
β0 // k⊕2

δ0
ss0 // · · ·

and now the bene�t of this method: we write the explicit maps:

• β0 : e4 7→ e1, e5 7→ e2
• α0 = 0
• δ1 : e1 7→ −e1, e2 7→ −e2, e3 7→ −e2, e4 7→ e3 (we look at pre-images of ∂1(ei) for i = 7, 8, 9, 10, resp.)
• β1 : e8 − e9 7→ e2 − e3, all other ei 7→ 0
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• α1 : ei 7→ ei for i = 1, . . . , 6 (note e1 = e3, e4 = −e5 in the target)
• δ2 : e1 7→ e1 − e3, e2 7→ e4 + e5 (we look at pre-images of ∂2(ei) for i = 4, 5, resp.)
• β2 = 0
• α2 : ei 7→ ei.

Note that we could have deduced many things (e.g. α2 being an isomorphism and α0 = 0) just from knowing
the groups in the long exact sequence, however we wouldn't have been able to write explicit non-zero maps.
The algorithmic outline of this anwer can be mimicked for the other parts, but it's very painful to type up.
For the remaining parts, I'll show how we might describe the maps up to canonical isomorphism (i.e. a choice
of basis in any object would explicitly determine our maps if we went through the above pain!).

Caveat: I had decided on the k⊕n notation later in my writing-timeline to emphasize that we are considering
this object as a coproduct in ModR rather than some R-module which is Modk-isomorphic to kn, apologies
for the many subsequent inconsistencies.

i) Our outline here will be: �nd the groups in the LES, then see what exactness and our knowledge of the
x, y-actions determine. The following is a Modk[x,y]-projective resolution of M :

· · · → 0→ R2 ∂2→ R3 ∂1→ R→ 0 with ∂1(f, g, h) = x2f + xyg + y2h. To justify this, we check: x2f + xyg +
y2h = 0 =⇒ f = yf ′, h = xh′ =⇒ x|g + yh′, y|g + xf ′since xf ′ + g + yh′ = 0.

If x - h′, then g = xg′ − yh′ and f ′ = −g′. Thus our triple looks like (−yg′, xg′ − yh′, xh′).
If y - f ′, then g = yg′ − xf ′ and h′ = −g′. Thus our triple looks like (yf ′, yg′ − xf ′,−xg′).
Now suppose h′ = xh′′, f ′ = yf ′′. Thus g = xyg′′ and we have f ′′ + g′′ + h′′ = 0. Our triple looks like

(y2f ′′,−xy(f ′′ + h′′), x2h′′).
We note that these are all in the image of ∂2(a, b) = (ya,−xa− yb, xb) which is also always in ker ∂1 and

so we have our P2. Further, ker ∂2 = 0 so our resolution terminates here.

So applying − ⊗R M , we have TorRi (M,M) = Hi(· · · → 0 → M2 ∂2→ M3 ∂1→ M → 0). im∂1 = 0, ker ∂1 =
M3, im∂2 = {(ya,−xa − yb, xb) : a, b ∈ M}= {(ya0,−xa0 − yb0, xb0) : a0, b0 ∈ k}. Note ker ∂2 = {(xa1 +
ya2, xb1 + yb2) : ai, bi ∈ k} has 0-action by x, y so TorR2 (M,M) = k4 with R-action given by x· = 0 = y·.
TorR1 (M,M) ∼= k7 as a k-mod. Note TorR0 (M,M) = M ⊗R M = M

(x,y)2M = M as an R-module since

M = R
(x,y)2 .

Applying −⊗Rk, we have TorRi (M,k) = Hi(· · · → 0→ k2
0→ k3

0→ k → 0) =


k i = 0

k⊕3 i = 1

k⊕2 i = 2

0 o/w

. Consequently,

TorRi (M,
⊕n

k) =


k⊕n i = 0

k⊕3n i = 1

k⊕2n i = 2

0 o/w

.

So our LES looks like · · · → 0 → k4
α2→ k4

β2→ k2
δ2→ k6

α1→ TorR1 (M,M)
β1→ k3

δ1→ k2
α0→ M

β0→ k → 0
where all the kn have 0-action by x, y as R-mods. We have β0 = β, α0 = α from our original SES since
β0(xm1+ym2) = xβ0(m1)+yβ0(m2) = 0, i.e. kerβ0 ⊇ kx⊕ky (which must then be equality by exactness).1

Since α0 is injective, δ1 = 0 and β1 is surjective. From the other side, α2 is injective and so must be an
isomorphism. Thus β2 = 0 and so δ2 is injective. Thus, α1 is a projection onto k4 with 0-action by x, y
composed with an inclusion into TorR1 (M,M).

So we need to understand 0→ k4↪→TorR1 (M,M)→ k3 → 0. Note that x·(f0 + xf1 + yf2, g0 + xg1 + yg2, h0 + xh1 + yh2) =

(xf0, xg0, xh0) and y· acts similarly. Thus, k4 injects into {(xf1+yf2,xg1+yg2,xh1+yh2):fi,gi,hi∈k}
im∂2∩{the above submodule} . But im∂2 ⊆

{the above submodule}, and so we see {(xf1+yf2,xg1+yg2,xh1+yh2):fi,gi,hi∈k}
im∂2∩{the above submodule} ' k4 and we've completely de-

scribed our LES (up to canonical isomorphisms).
ii) Homk(M,k) ∼= ke∗0 + ke

∗
1 + ke

∗
2 where e∗i represent the dual basis for 1, x, y resp. Note x · (f0e∗0 + f1e∗1 +

f2e
∗
2) = f1e

∗
0 and y · (f0e∗0 + f1e

∗
1 + f2e

∗
2) = f2e

∗
0.
2 Now k↪→Homk(M,k), so we note that x2 acts by 0 on

1Of course, α0 and β0 can be seen as α⊗ k, β ⊗ k from general theory.
2Probably there is a way to use the fact that if we apply Homk(−, k), then we are back to our �rst SES.
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k. Thus x can't act on this k by a non-zero scalar, ie. x acts by 0. Similarly, y acts by 0 on the submodule
k. The submodule of Homk(M,k) on which x and y act by 0 is ke∗0 which is one-dimensionalk and so this
injection (and thus the SES) is canonically determined and the k, k2 have 0-action by x, y. (Of coure this
deduction is unnecessary once one decides to exclusively read ⊕ to be the ModR-coproduct!)

We again have TorRi (M,kn) =


kn i = 0

k3n i = 1

k2n i = 2

0 o/w

where each km has zero-action by x, y as an R-module.

Now applying − ⊗R Homk(M,k) to our resolution of M , we consider: · · · → 0 → Homk(M,k)2
∂2→

Homk(M,k)3
∂1→ Homk(M,k) → 0 where ∂1(f, g, h) = x2f + xyg + y2h, ∂2(a, b) = (ya,−xa − yb, xb). We

write a = a0e
∗
0 + a1e

∗
1 + a2e

∗
2 ∈ Homk(M,k) for ai ∈ k, etc.

So ∂1 = 0. ∂2(a, b) = (a2e
∗
0,−a1e∗0 − b2e∗0, b1e∗0), so im∂2 = (ke∗0) ⊕ (ke∗0) ⊕ (ke∗0) ⊆ M3 and ker ∂2 =

{(a0e∗0 + a1e
∗
1, b0e

∗
0 − a1e

∗
2) : a1, a0, b0 ∈ k}. Thus, the non-trivial Tori are: TorR0 (M,Homk(M,k)) =

Homk(M,k) (note Tor0 can be seen easily anyways); TorR1 (M,Homk(M,k)) ' k6 where x, y act by 0;
and Tor2(M,Homk(M,k)) = ker ∂2 = k(e∗0, 0) ⊕ k(e∗1,−e∗2) ⊕ k(0, e∗0) with the inherited x, y action from
Homk(M,k)2.

So our LES looks like · · · → 0→ k2
α2→ ker ∂2

β2→ k4
δ2→ k3

α1→ k6
β1→ k6

δ1→ k
α0→ Homk(M,k)

β0→ k2 → 0 where
the kn all have 0-action given by x, y. Homk(M,k) is 3-dimensional/k so α0 must be injective (since its source
is k). The subspace of Homk(M,k) upon which x, y act by 0 is one-dimensional/k and so α0 = α, β0 = β.
Thus δ1 = 0 and β1 is surjective and thus an isomorphism. In turn, this implies α1 = 0 and δ2 being a
surjection, so β2 is a surjection onto k followed by an inclusion into k4. Now α2 is a surjection; the subset of
ker ∂2 on which x, y act by 0 is k(e∗0, 0) ⊕ k(0, e∗0) which is 2-dimensional and so α2 is an isomorphism onto
this subset, and β2 is the morphism ker ∂2 → ker ∂2/(k(e

∗
0, 0)⊕ k(0, e∗0)) ' k↪→k4.

iii) A Modk[x,y]-projective resolution of k (where x, y act by 0) is · · · → 0→ R
∂2→ R2 ∂1→ R = P0 given by

∂1(f, g) = xf + yg, ∂2(h) = (yh,−xh).

Applying −⊗R k⊕n, we get TorRi (k, k⊕n) =


k⊕n i = 0, 2

k⊕2n i = 1

0 o/w

.

Applying − ⊗R Homk(M,k), we have: · · · → 0 → Homk(M,k)
∂2→ Homk(M,k)⊕2

∂1→ Homk(M,k) → 0.
Recall from O(3) minutes ago: Homk(M,k) ∼= ke∗0 + ke∗1 + ke∗2 where e∗i represent the dual basis for 1, x, y
resp. and x · (f0e∗0 + f1e

∗
1 + f2e

∗
2) = f1e

∗
0, y · (f0e∗0 + f1e

∗
1 + f2e

∗
2) = f2e

∗
0.

So ∂1(
∑
fie
∗
i ,
∑
gie
∗
i ) = (f1+g2)e

∗
0 and Tor

R
0 (k,Homk(M,k)) ' k⊕2. ∂2(f0e∗0+f1e∗1+f2e∗2) = (f2e

∗
0,−f1e∗0).

Thus, TorR2 (k,Homk(M,k)) ' R/(x, y) = k.

So our LES looks like · · · → 0 → k
α2→ k

β2→ k2
δ2→ k2

α1→ TorR1 (k,Homk(M,k))
β1→ k4

δ1→ k
α0→ k2

β0→ k2 → 0
where the kn all have 0-action given by x, y. So β0 is an isomorphism, α0 = 0, δ1 is surjective, and β1 maps
onto k⊕3. From the other side, α2 is an isomorphism, β2 = 0, δ2 is thus an injection and so further must be
an isomorphism. Thus α1 = 0. But thus, β1 is an injection, and so we've shown TorR1 (k,Homk(M,k)) ' k⊕3
(this can also be observed directly from ker ∂1/im∂2) and all the maps are canonically determined.


