Double complexes

Monday, 12 October 2020 15:30

 $Ch(A)$ is an allelian category. So we can form $Ch(Ch(A))$ $1/2$ $\sqrt{44}$ a $\int 9321$ $CL(Ch(A)) \rightarrow Ch(A)$ which λ and λ and λ α λ la solu to get nice formaly $w e w i l$ define an isonorphic $C \triangle t e$ porg $d_{0} C \triangle C \triangle C \triangle P$ $1)$ et; A dohble complex (bicomplex) $\begin{array}{ccccc} & & & & & \text{if} & & \text{if} & & \text{if} & \$ \int objects in A $with$ $ln \sim y$ A^{0} . $C_{p,q}$ -7 $C_{p,q}$ $\wedge'': \mathcal{L}_{p,q} \to \mathcal{L}_{p-1,q}$ $(d^4)^l = (d')^l = 0$ $\begin{array}{ccc} \begin{array}{ccc} \zeta & \zeta & \zeta \end{array} & \begin{array}{ccc} \zeta & \zeta & \zeta \end{array} \end{array}$ $494i-C04443$ $C_{p^{-1}:q^{-1}} \leftarrow \frac{1}{p-1}$ Note: it we replace of pig $y^{(n)}(1) = (1)^n y^{(n)}(1) = 1$ $f|_{\ell}$ sphares Commute so LQ have an object in $Ch(A))$ ach this gives an iso of
Cadegories. Total complexes given a biconylex $C = \sum_{p_1, q_2} \left\{\begin{array}{ccc} 0 & \text{if } q_1 & \text{if } q_2 \text{ is } q_1 & \text{if } q_2 \text{ is } q_2 \text{ is } q_1 & \text{if } q_2 \text{ is } q_2 \text{ is } q_1 & \text{if } q_2 \text{ is } q_2 \text{ is } q_1 & \text{if } q_2 \text{ is } q_2 \text{ is } q_1 & \text{if } q_2 \text{ is } q_2 & \text{if } q_2 \text{ is } q_2 & \text{if } q_2 \text{ is } q_1$ $T_{0}f^{\pi}(C)_{n}=\prod_{p+q=n}P_{p}$ $T_{n}f^{\mathcal{P}}(c)_{n}=\bigoplus_{p+q=n}C_{p+q}$ $d = d^h + d^v$ N.fe: $d^2 =$ Note: for this to be plurys $Well - de fixed$ $head$ $k4a$ A A his countable products respondents. Acgalia Essembly Remain Let CE_{frg}) le a double soylex. if D C is an upper half place a D Light half place couplex $width$ $exact$ x x the $Tot^{\prime\prime}(C)$ is acgulie. $i\}$ (is an 3 upper h aff n/a $cos\frac{1}{x}$ with $cos\theta$ $x \rightarrow y$ a D right half place couplex with $exand columns the
\n $T \circ t$ (0) is $argclic$.$ Note: We will prove D. from D or use the same proof idea. Need less: $\{x \in \mathbb{C} \mid x \in \mathbb{C} \text{ and } x \in \mathbb{C} \}$ Aiagonals are bounded in lover r_{ij} ht r $f \circ r$ d and \bigcirc d reg on als are bounded in α pper left. $posf$ of D : let \subset le an opper half place bicomplex with
EXECT Columns. $Let's sbv the 1 (1000)$ by trasfation we will get $that = \pi s f^{\pi} (f)$ is acjobic. $f(x) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $= \sqrt{2} \int_0^{\pi} (1) e^{-x} dx$ $0 - Cyck$ wil' wil' $ihAcc1_{ism}$ \qquad $\$ $6 - p$, $p + r$ A d^{v} (b $_{p_{r}p_{11}}$) + $d^{u}(b_{p_{11}r_{11}})$ = $c_{p_{11}r_{11}}$ So we will get an elempt y c y \in π \in $-p$ p \in ∞ \in $Let\quad b_{10}=\circ\quad for\quad p=-1$ $C_{0, -1} = 0$) $d^{v}(C_{0,0}) = 0$ Since dk ω^{lk} $(\frac{1}{2}h_{ky}$ is ω^{rk} there is a 6_{\circ} , ϵ C_{\circ} $s, 1,$ $d'(6_{0},) \leq c_{03}$. By 444704 $d'(C_{\gamma^{p,q}}-d'(C_{\gamma^{p+1,q}}))=$ $d^V(C_{\gamma^{\prime},\gamma}) + d^V U^{\prime}(G_{p^{\prime\prime},\gamma}) =$ $d'(C_{\gamma_{1,2}})+d(C_{\gamma_{1,3}})$ $d^{h}d^{h}$ (b $_{\gamma}$ +2 $_{\gamma}$ -1) = 0 Since kh_{e} p^{43} column is exact there is b_{γ} , p_{τ} , s.f.
 $d'(b_{\gamma p_1 p_1 \ldots}) \leq C_{\gamma p_1 p_2} - d'(b_{\gamma p_1 p_1})$ This long, will be used to $sh_{2}w$ dhat le desired $\int n \nu t$ fors of \mathbb{Z} and H_{2n} don't dyend α which raviable you derive $60/a^2$ $\frac{1}{2}$ aue $C \times C$. Spectral Sequnces.