Homological algebra

André Henriques

Sheet 2

Exercise 9. Prove that \mathbb{Q} is not a projective \mathbb{Z} -module.

Exercise 10. Write down an injective resolution of \mathbb{Z} as a \mathbb{Z} -module. (You may invoke without proof the fact that \mathbb{Q}/\mathbb{Z} is an injective \mathbb{Z} -module.)

Exercise 11. Write down free resolutions for:

- $\mathbb{Z}/2$ as a \mathbb{Z} -module.
- $\mathbb{Z}/2$ as a $(\mathbb{Z}/2)[x]$ -module.
- $\mathbb{Z}/2$ as a $\mathbb{Z}[x]$ -module.
- $\mathbb{Z}/2$ as a $\mathbb{Z}[x]/(2x)$ -module.

Exercise 12. Let R be a principal ideal domain, and let M be a free R-module. Prove that any submodule of M is free.

Exercise 13. Let R be a commutative ring, and let $r \in R$ be an element. Then

$$R[r^{-1}] := R[x]/(rx - 1) = \operatorname{coker}(R[x] \xrightarrow{rx - 1} R[x]).$$

Let M be an R-module, and let $M[r^{-1}] := \operatorname{coker}(M[x] \xrightarrow{rx-1} M[x])$, (where $M[x] = \left\{ \sum_{i} m_i x^i \right\}$ with $m_i \in M$). Prove that

$$M \otimes_R R[r^{-1}] = M[r^{-1}].$$

Exercise 14. Prove the general Frobenius reciprocity formula:

$$\operatorname{Hom}_S(A, \operatorname{Hom}_R(B, C)) \cong \operatorname{Hom}_R(A \otimes_S B, C).$$

(Here, A is a right S-module, B is an S-R-bimodule, and C is a right R-module.)

Exercise 15. Compute the following Ext and Tor groups:

- Tor_{*}^{k[x]}(k[x]/(x a), k[x]/(x b)), for a, b ∈ k.
 Tor_{*}^x(Z/a, Z/b), for a, b ∈ Z.
 Ext_{Z/4}(Z/2, Z/2).
 Ext_{Z/2a}(Z/2^b, Z/2^c), for a ≥ b ≥ c.
 Ext_{k[x,y]/(x²,xy,y²)}(k, k).

Hand in the Monday before the exercise class, at 12:00.