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1. BACKGROUND

In this section I use some material, like multivariable analysis, which is not necessary for the main body of the
course, but if you know it (and hopefully if you don’t but are willing to think imprecisely at some points) it will
help to put the course in context. For those worried about such things, fear not, it is non-examinable.

In mathematics, group actions give a way of encoding the symmetries of a space or physical system.
Formally these are defined as follows: an action of a group G on a space1 X is a map a : G ×X → X ,
written (g.x) 7→ a(g, x) or more commonly (g, x) 7→ g.x which satisfies the properties

(1) e.x = x, for all x ∈ X , where e ∈ G is the identity;
(2) (g1g2).x = g1.(g2.x) for all g1, g2 ∈ G and x ∈ X .

Natural examples of actions are that of the group of rigid motions SO3 on the unit sphere {x ∈ R3 :
||x|| = 1}, or the general linear group GLn(R) on Rn.

Whenever a group acts on a spaceX , there is a resulting linear action (a representation) on the vector
space of functions onX . Indeed if Fun(X) denotes the vector space of real-valued functions onX , then
the formula

g(f)(x) = f(g−1.x), (g ∈ G, f ∈ Fun(X), x ∈ X),

defines a representation of G on Fun(X). If X and G have more structure. e.g. that of a topological
space or smooth manifold, then this action may also preserve the subspaces of say continuous, or
differentiable functions. Lie algebras arise as the “infinitesimal version” of group actions, which loosely
speaking means they are what we get by trying to differentiate group actions.

Example 1.1. Take for example the natural action of the circle S1 by rotations on the plane R2. This
action can be written explicitly using matrices:

g(t) =

(
cos(t) − sin(t)
sin(t) cos(t)

)
where we have smoothly parametrized the circle S1 using the trigonometric functions. Note that for
this parametrization, g(t)−1 = g(−t). The induced action on Fun(R2) restricts to an action on C∞(R2)
the space of smooth (i.e. infinitely differentiable) functions on R2. Using our parametrization, it makes
sense to differentiate this action at the identity element (i.e. at t = 0) to get an operation ν : C∞(R2) →
C∞(R2), given by

f 7→ d

dt

(
f(g(−t).

(
x
y

)
)
)
|t=0

= y∂x − x∂y.

It is immediate from the product rule for differentiation, that the operator ν constructed in the above
example obeys the “Leibniz rule”:

ν(f.g) = ν(f).g + f.ν(g).

An operator on smooth functions which satisfies this property is called a derivation. It’s not hard to
see that any such operator on C∞(R2) will be of the form a(x, y)∂x + b(x, y)∂y where a, b ∈ C∞(R2).
Thus, heuristically for now, we think of the infinitesimal version of a group action as the collection of
derivations on smooth functions we obtain by “differentiating the group action at the identity element”.
(For the circle the collection of vector fields we get are just the scalar multiples of the vector field ν, but
for actions of larger group we would attach a larger space of derivations). It turns out this set of

1I’m being deliberately vague here about what a “space” is, X could just be a set, but it could also have a more geometric
nature, such as a topological space or submanifold of Rn.
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derivations forms a vector space, but it also has a kind of “product” which is a sort of infinitesimal
remnant of the group multiplication2. Let’s set this up a little more formally.

Definition 1.2. A vector field onX = Rn (or, with a bit more work, any manifold) is a (smooth) function
ν : Rn → Rn, which one can think of as giving the infinitesimal direction of a flow (e.g. of a fluid, or an
electric field say). The set of vector fields forms a vector space which we denote by ΘX . Such fields can
be made to act on functions f : X → R by differentiation. If ν = (a1, a2, . . . , an) in standard coordinates
(here ai : Rn → R), then set

ν(f) =

n∑
i=1

ai
∂f

∂xi
.

This formula gives an action of ΘX on the space of smooth functions C∞(X), since if f ∈ C∞(X), then
so is ν(f). This action is linear, and interacts with multiplication of functions according to the Leibniz
rule, that is, if ν is a vector field, and f1, f2 ∈ C∞(X) then

ν(f1f2) = ν(f1).f2 + f1.ν(f2),

in other words, vector fields act as derivations on smooth functions in the above sense. Note we can
talk about vector fields and derivations interchangeably, since the derivation given by a vector field
completely determines the vector field, and any derivation comes from a vector field (this is an exercise
that is worth checking).

Note that if we compose two derivations ν1 ◦ ν2 we again get an operator on functions, but it is
not given by a vector field, since it involves second order differential operators. However, it is easy
to check using the symmetry of mixed partial derivatives that if ν1, ν2 are derivations, then [ν1, ν2] =
ν1 ◦ ν2 − ν2 ◦ ν1 is again a derivation. Thus the space ΘX of vector fields on X is equipped with a
natural product3 [., .] which is called a Lie bracket. The derivatives of a group action give subalgebras of
the algebra ΘX .

Example 1.3. Consider the action of SO3(R) on R3. Using the fact that every element of SO3(R) is a
rotation about some axis through the origin it is not too hard to find the space of vector fields on R3

which can be associated to this action, and check that it forms a Lie algebra. Indeed as we saw before,
the action of the circle fixing the z-axis gives the derivation −y∂x + x∂y , and the derivation obtained
from rotation about any other axis will be obtained by an orthogonal change of coordinates. It can
be shown that these form the 3-dimensional space g = spanR{x∂y − y∂x, y∂z − z∂y, z∂x − x∂z}, and
moreover it is then not hard to check that g is closed under the bracket operations [·, ·]. (This also gives
a non-trivial example of a 3-dimensional Lie algebra).

2. DEFINITIONS AND EXAMPLES

The definition of a Lie algebra is an abstraction of the above example of the product on vector fields.
It is purely algebraic, so it makes sense over any field k.

Definition 2.1. A Lie algebra over a field k is a pair (g, [., .]g) consisting of a k-vector space g, along
with a bilinear operation [., .]g : g× g→ g taking values in g known as a Lie bracket, which satisfies the
following axioms:

(1) [., .]g is alternating, i.e. [x, x]g = 0 for all x ∈ g.
(2) The Lie bracket satisfies the Jacobi Identity: that is, for all x, y, z ∈ g we have:

[x, [y, z]g]g + [y, [z, x]g]g + [z, [x, y]g]g = 0.

Remark 2.2. It is easy to check directly from the definition that the Lie bracket we put on the space of
vector fields ΘX satisfies the above conditions.

Note that by considering the bracket [x + y, x + y]g it is easy to see that the alternating condition
implies that for all x, y ∈ L we have [x, y]g = −[y, x]g, that is [., .]g is skew-symmetric. If char(k) 6= 2,
the alternating condition is equivalent to skew-symmetry. Note that a Lie algebra is an algebra with
a product which is neither commutative nor associative, and moreover it does not have an identity
element4. We will normally simply write [., .] and reserve use the decorated bracket only for emphasis
or where there is the potential for confusion.

2To be a bit more precise, it comes from the conjugation action of the group on itself.
3This is in the weakest sense, in that it is a bilinear map ΘX ×ΘX → ΘX . It is not even associative – the axiom it does satisfy

is discussed shortly.
4This makes them sound awful. However, as we will see this is not the way to think about them!
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Example 2.3. (1) If V is any vector space then setting the Lie bracket [., .] to be zero we get a (not
very interesting) Lie algebra. Such Lie algebras are called abelian Lie algebras.

(2) Generalising the example of vector fields a bit, if A is a k-algebra and δ : A → A is a k-linear
map, then we say δ is a k-derivation if it satisfies the Leibniz rule, that is, if:

δ(a.b) = δ(a).b+ a.δ(b), ∀a, b ∈ A.
It is easy to see by a direct calculation that if Derk(A) denotes the k-vector space of k-derivations
on A, then Derk(A) is a Lie algebra under the commutator product, that is:

[δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1.
Indeed the alternating property is immediate, so the only thing to check is the Jacobi identity,
which is an easy computation.

(3) For a more down-to-earth example, take g = gln the k-vector space of n × n matrices with
entries in k. It is easy to check that this is a Lie algebra for the commutator product:

[X,Y ] = X.Y − Y.X.
Slightly more abstractly, if V is a vector space, then we will write gl(V ) for the Lie algebra
End(V ) equipped with the commutator product as for matrices.

(4) If g is a Lie algebra and N < g is a k-subspace of g on which the restriction of the Lie bracket
takes values inN , so that it induces a bilinear form [., .]N : N×N → N , then (N, [., .]N ) is clearly
a Lie algebra, and we say N is a (Lie) subalgebra of g.

(5) Let sln = {X ∈ gln : tr(X) = 0} be the space of n×nmatrices with trace zero. It is easy to check
that sln is a Lie subalgebra of gln (even though it is not a subalgebra of the associative algebra
End(V )). More generally we say any Lie subalgebra of gl(V ) for a vector space V is a linear Lie
algebra.

(6) If A is an associative k-algebra, then if a ∈ A let δa : A→ A be the linear map given by

δa(b) = a.b− b.a, b ∈ A.
One can check that δa is a derivation on A, and that this is equivalent to the statement that
(A, [., .]A) is a Lie algebra, where [., .]A is the commutator bracket onA, that is [a, b]A = a.b−b.a.
Thus any associative algebra can be given the structure of a Lie algebra. (This is a generalisation
of the case of n× n matrices).

Remark 2.4. One could begin to try and classify all (say finite-dimensional) Lie algebras. In very low
dimension this is actually possible. For dimension 1 clearly there is a unique (up to isomorphism5)
Lie algebra since the alternating condition demands that the bracket is zero. In dimension two, one
can again have an abelian Lie algebra, but there is another possibility: if g has a basis {e, f} then we
may set [e, f ] = f , and this completely determines the Lie algebra structure. All two-dimensional
Lie algebras which are not abelian are isomorphic to this one (check this). It is also possible to classify
three-dimensional Lie algebras, but it becomes rapidly intractable to do this in general as the dimension
increases. In this course we will focus on a particular class of Lie algebras, known as semisimple Lie
algebras, for which an elegant classification theorem is known.

3. HOMOMORPHISMS AND IDEALS

We have already introduced the notion of a subalgebra of a Lie algebra in the examples above,
but there are other standard constructions familiar from rings which make sense for Lie algebras. A
homomorphism of Lie algebras (g, [., .]g) and (g′, [., .]g′) is a k-linear map φ : g → g′ which respects the
Lie brackets, that is:

φ([a, b]g) = [φ(a), φ(b)]g′ ∀a, b ∈ g.

An isomorphism of Lie algebras is a bijective homomorphism. An ideal in a Lie algebra g is a subspace
I such that for all a ∈ g and x ∈ I we have [a, x]g ∈ I . It is easy to check that if φ : g → g′ is a
homomorphism, then ker(φ) = {a ∈ g : φ(a) = 0} is an ideal of g. Conversely, if I is an ideal of g then
it is easy to check that the quotient space g/I inherits the structure of a Lie algebra, and the canonical
quotient map q : g→ g/I is a Lie algebra homomorphism with kernel I .

Remark 3.1. Note that because the Lie bracket is skew-symmetric, we do not need to consider notions
of left, right and two-sided ideals, as they will all coincide. If a nontrivial Lie algebra has no nontrivial
ideals we say it is simple.

5Of course I haven’t said what an isomorphism of Lie algebras is yet (see below) but you probably know...
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Just as for groups and rings, we have the normal stable of isomorphism theorems, and the proofs
are identical.

Theorem 3.2. (1) Let φ : g → g′ be a homomorphism of Lie algebras. The subspace φ(g) = im(φ) is a
subalgebra of g′ and φ induces an isomorphism φ̄ : g/ker(φ)→ im(φ).

(2) If J ⊂ I ⊂ g are ideals of g then we have:

(g/J)
/

(I/J) ∼= g/J

(3) If I, J are ideals of g then we have

(I + J)/J ∼= I/(I ∩ J).

4. REPRESENTATIONS OF LIE ALGEBRAS

Just as for finite groups (or indeed groups in general) one way of studying Lie algebras is to try and
understand how they can act on other objects. For Lie algebras, we will use actions on linear spaces, or
in other words, “representations”. Formally we make the following definition.

Definition 4.1. A representation of a Lie algebra g is a vector space V equipped with a homomorphism
of Lie algebras ρ : g→ gl(V ). In other words, ρ is a linear map such that

ρ([x, y]) = ρ(x) ◦ ρ(y)− ρ(y) ◦ ρ(x)

where ◦ denotes composition of linear maps. We may also refer to a representation of g as a g-module.
A representation is faithful if ker(ρ) = 0. When there is no danger of confusion we will normally
suppress ρ in our notation, and write x(v) rather than ρ(x)(v), for x ∈ g, v ∈ V .

We will study representation of various classes of Lie algebras in this course, but for the moment we
will just give some basic examples.

Example 4.2. (1) If g = gl(V ) for V a vector space, then the identity map gl(V ) → gl(V ) is a rep-
resentation of gl(V ) on V , which is known as the vector representation. Clearly any subalgebra
g of gl(V ) also inherits V as a representation, where then the map ρ is just the inclusion map.

(2) Given an arbitrary Lie algebra g, there is a natural representation ad of g on g itself known as
the adjoint representation. The homomorphism from g to gl(g) is given by

ad(x)(y) = [x, y], ∀x, y ∈ g.

Indeed the fact that this is a representation is just a rephrasing6 of the Jacobi identity. Note that
while the vector representation is clearly faithful, in general the adjoint representation is not.
Indeed the kernel is known as the centre of g:

z(g) = {x ∈ g : [x, y] = 0,∀y ∈ g}.
Note that if x ∈ z(g) then for any representation ρ : g → gl(V ) the endomorphism ρ(x) com-
mutes with all the elements ρ(y) ∈ End(V ) for all y ∈ g.

(3) If g is any Lie algebra, then the zero map g → gl1 is a Lie algebra homomorphism. The corres-
ponding representation is called the trivial representation. It is the Lie algebra analogue of the
trivial representation for a group (which send every group element to the identity).

(4) If (V, ρ) is a representation of g, we say that a subspace U < V is a subrepresentation if φ(x)(U) ⊆
U for all x ∈ g. It follows immediately that φ restricts to give a homomorphism from g to gl(U),
hence (U, φ|U ) is again a representation of g. Note also that if {Vi : i ∈ I} are a collection of in-
variant subspaces, their sum

∑
i∈I Vi is clearly also invariant, and so again a subrepresentation.

There are a number of standard ways of constructing new representations from old, all of which
have their analogue for group representations. For example, recall that if V is a k-vector space, and U
is a subspace, then we may form the quotient vector space V/U . If φ : V → V is an endomorphism of V
which preserves U , that is if φ(U) ⊆ U , then there is an induced map φ̄ : V/U → V/U . Applying this to
representations of a Lie algebra g we see that if V is a representation of g and U is a subrepresentation
we may always form the quotient representation V/U . Next, if (V, ρ) and (W,σ) are representations of
g, then clearly V ⊕W the direct sum of V and W becomes a g-representation via the obvious homo-
morphism ρ⊕ σ. More interestingly, the vector space Hom(V,W ) of linear maps from V to W has the
structure of a g-representation via

(4.1) x(φ) = σ(x) ◦ φ− φ ◦ ρ(x), ∀x ∈ g, φ ∈ Hom(V,W ).

6Check this! It’s also (for some people) a useful way of remembering what the Jacobi identity says.
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It is straight-forward to check that this gives a Lie algebra homomorphism from g to gl(Hom(V,W )).
One way to do this is simply to compute directly. Another, slightly quicker way, is to notice that
Endk(V ⊕W ) = Homk(V ⊕W,V ⊕W ) contains Endk(V ), Endk(W ) and Homk(V,W ) since

Homk(V ⊕W,V ⊕W ) = Homk(V, V )⊕Homk(V,W )⊕Homk(W,V )⊕Homk(W,W ),

thus we may combine ρ and σ to give a homomorphism τ : g→ gl(V ⊕W ). Since Homk(V,W ) is clearly
preserved by τ(g), it is a subrepresentation of gl(V ⊕W ), where the latter is a g-representation via the
composition of τ : g → gl(V ⊕W ) with the adjoint representation ad : gl(V ⊕W ) → gl(gl(V ⊕W )). It
is then easy to see that the equation (4.1) describes the resulting action of g on Homk(V,W ).

An important special case of this is where W = k is the trivial representation (as above, so that the
map σ : g → gl(k) is the zero map). This allows us to give V ∗ = Hom(V, k), the dual space of V , a
natural structure of g-representation where (since σ = 0) the action of x ∈ g on f ∈ V ∗ is given by
ρ∗ : g→ gl(V ∗) where

ρ∗(x)(f) = −f ◦ ρ(x) (f ∈ V ∗).
If α : V → V is any linear map, recall that the transpose map αt : V ∗ → V ∗ is defined by αt(f) = f ◦ α,
thus our definition of the action of x ∈ g on V ∗ is just7−ρ(x)t. This makes it clear that the action of g on
V ∗ is compatible with the standard constructions on dual spaces, e.g. if U is a subrepresentation of V ,
the U0 the annihilator of U will be a subrepresentation of V ∗, and moreover, the natural isomorphism
of V with V ∗∗ is an isomorphism of g-representations.

We end this section with some terminology which will be useful later.

Definition 4.3. A representation is said to be irreducible if it has no proper non-zero subrepresentations,
and it is said to be completely reducible if it is isomorphic to a direct sum of irreducible representations.

Example 4.4. Giving a representation of gl1 is equivalent to giving a vector space equipped with a
linear map. Indeed as a vector space gl1 = k, hence if (V, ρ) is a representation of gl1 we obtain a
linear endomorphism of V by taking ρ(1). Since every other element of gl1 is a scalar multiple of 1 this
completely determines the representation, and this correspondence is clearly reversible.

If we assume k is algebraically closed, then you know the classification of linear endomorphisms is
given by the Jordan canonical form. From this you can see that the only irreducible representations
of gl1 are the one-dimensional ones, while indecomposable representations correspond to linear maps
with a single Jordan block.

4.1. Tensor products and g-representations. Another important method for constructing representa-
tions of a finite group G arises from the fact that if V and W are G-representations, then so is V ⊗W . It
turns out that the same is true for representations of a Lie algebra. In this section we try to understand
why this should be the case.

It is useful first recall the case of group representations. Thus suppose that G is a group (which
can be finite or infinite) and that (V, ρ) and (W,σ) are representations of G. The (ρ, σ) : G × G →
GL(V )×GL(W ) is a homomorphism of groups, hence it suffices to show that V ⊗W is a representation
of GL(V ) × GL(W ). To see why that is true, notice that if U is a representation of a product of groups
G × H say, then if τ : G × H → GL(U) is a representation of G × H , it is clearly determined by its
restrictions to G×{1} ∼= G and {1}×H ∼= H , which we denote by τG and τH . But since the subgroups
G and H commute in G×H , the action maps τG, τH cannot be arbitrary, they must have the property
that τ(g)τ(h) = τ(h)τ(g) for all g ∈ G, h ∈ H . Thus to give a representation of GL(V )×GL(W ) on V ⊗W
we must give actions of G and H on V ⊗W which commute with each other. But this is easy: if α ∈
Hom(V, V ) and β ∈ Hom(W,W ), then the pair (α, β) defines a linear map α⊗β ∈ Hom(V ⊗W,V ⊗W )
where α⊗ β is given by (α⊗ β)(v ⊗w) = α(v)⊗ β(w). (The map (v, w) 7→ α(v)⊗ β(w) from V ×W to
V ⊗W is bilinear, and hence by the universal property it induces a linear map from V ⊗W to itself.)
Moreover, if α1, α2 ∈ Hom(V, V ) and β1, β2 ∈ Hom(W,W ), then, using the universal property, and the
fact that composition of linear maps is bilinear, it follows that

(α1 ⊗ β1) ◦ (α2 ⊗ β2) = (α1 ◦ α2)⊗ (β1 ◦ β2).

In particular, for any α ∈ Hom(V, V ) and β ∈ Hom(W,W ), we have

(4.2) (α⊗ 1W ) ◦ (1V ⊗ β) = α⊗ β = (1V ⊗ β) ◦ (α⊗ 1W ),

and hence the map τ(α, β) = α⊗ β gives the required action of GL(V )×GL(W ) on V ⊗W .

7Note that the minus sign is crucial to ensure this is a Lie algebra homomorphism – concretely this amounts to noticing that
A 7→ −At preserves the commutator bracket on n× n matrices.
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Suppose now that g is a Lie algebra and (V, ρ) and (W,σ) are g-representations. We proceed in
the same manner as for the group case: The map ρ ⊕ σ : g → gl(V ) ⊕ gl(W ) given by (ρ ⊕ σ)(x) =
(ρ(x), σ(x)) is a Lie algebra homomorphism, and the representations V and W are obtained from ρ⊕ σ
by composition with the obvious projection maps from gl(V )⊕ gl(W ) to gl(V ) and gl(W ) respectively,
thus the question of whether, for an arbitrary Lie algebra g, the tensor product of two representations
V ⊗W is naturally a g-representation, it suffices to determine whether V ⊗W carries the structure of
a representation of gl(V )⊕ gl(W ) in some natural way.

As with the group case, we first consider what it means to give a representation of a direct sum of
Lie algebra g1 ⊕ g2:

Lemma 4.5. Let g1, g2 be Lie algebras and suppose that αi : gi → gl(U) are Lie algebra homomorphisms. Then
β : g1 ⊕ g2 → gl(U) given by β(x1, x2) = α1(x1) + α2(x2) is a Lie algebra homomorphism if and only if
[α1(g1), α2(g2)] = 0.

Proof. This is a direct calculation. For all (x1, x2), (y1, y2) ∈ g1 ⊕ g2 we have

[β(x1, x2), β(y1, y2)] = [α1(x1) + α2(x2), α1(y1) + α2(y2)]

= [α1(x1), α1(y1)] + [α1(x1), α2(y2)] + [α2(x2), α1(y1)] + [α2(x2), α2(y2)]

= [α1(x1), α1(y1)] + [α2(x2), α2(y2)]

= α1([x1, y1]) + α2([x2, y2])

= β(([x1, y1], [x2, y2])

= β([(x1, x2), (y1, y2)])

where in passing from the second to the third equality we use the assumption that [α1(g1), α2(g2)] =
[α2(g2), α1(g1)] = 0. The converse follows similarly. �

Equipped with this observation, it follows that we again simply need, for α ∈ gl(V ) and β ∈ gl(W ),
to give action maps τV and τW on V ⊗W which commute with each other. But by (4.2), we have

(α⊗ 1) ◦ (1⊗ β)− (1⊗ β) ◦ (α⊗ 1) = (α⊗ β)− (α⊗ β) = 0.

It therefore follows from Lemma 4.5 that ηV (α) = α ⊗ 1 and ηW (β) = 1 ⊗ β give representations of
gl(V ) and gl(W ) on V ⊗ W which commute with each other, and hence induce a representation of
gl(V )⊕ gl(W ) on V ⊗W as required.

Now returning to the general setting.

Definition 4.6. If (V, ρ) and (W,σ) are g-representations for an arbitrary Lie algebra g then V ⊗ W
becomes a g representation via the composition

g
ρ⊕σ // gl(V )⊕ gl(W )

τV ⊕τW// gl(V ⊗W )

More explicitly (and this is the only formula you really need to remember from this section!) V ⊗W
becomes a g-representation via the map ρ⊗ σ : g→ gl(V ⊗W ) where

(4.3) (ρ⊗ σ)(x)(v ⊗ w) = ρ(x)(v)⊗ w + v ⊗ σ(x)(w), ∀v ∈ V,w ∈W.

Remark 4.7. The discussion in the section is an attempt to explain how one might discover the action of
a Lie algebra g on a tensor product. On the other hand, if one simply guessed the formula in Equation
(4.3), it is straight-forward to check directly that it does indeed give a Lie algebra homomorphism from
g to gl(V ⊗W ). It is a good exercise to do this computation for oneself.

Remark 4.8. An immediate consequence of the above definition is that, just as for group representations,
if V and W are g-representations, then the isomorphism σ : V ⊗W → W ⊗ V given by σ(v ⊗ w) =
w ⊗ v, (v ∈ V,w ∈ W ) is compatible with the action of g and hence induces an isomorphism of g-
representations.

It is also easy to check from the definitions that the natural map θ : V ∗ ⊗W → Hom(V,W ) defined
in Lemma 4.3 is also a map of g-representations, as is the contraction map ι : V ∗ ⊗ V → k, where we
view k as the trivial representation of g. For example, for ι we have:

ι(x(f ⊗ v)) = ι
(
x(f)⊗ v + f ⊗ x(v)

)
= −f(x(v)) + f(x(v)) = 0, ∀x ∈ g, v ∈ V, f ∈ V ∗.

Thus all the maps between tensor products of vector spaces discuss in Appendix 22.1 yield maps of
g-representations.
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5. NILPOTENT LIE ALGEBRAS

We now begin to study particular classes of Lie algebra. The first class we study are nilpotent Lie
algebras, which are somewhat analogous to nilpotent groups. We need a few more definitions.

Definition 5.1. If V,W are subspaces of a Lie algebra g, then write [V,W ] for the linear span of the
elements {[v, w] : v ∈ V,w ∈W}. Notice that if I, J are ideals in g then so is [I, J ]. Indeed to check this,
note that if i ∈ I, j ∈ J, x ∈ g we have:

[x, [i, j]] = −[i, [j, x]]− [j, [x, i]] = [i, [x, j]] + [[x, i], j] ∈ [I, J ]

using the Jacobi identity in the first equality and skew-symmetry in the second.

Definition 5.2. For g a Lie algebra, let C0(g) = g, and Ci(g) = [g, Ci−1(g)] for i ≥ 1. This sequence of
ideals of g is called the lower central series of g, and we say g is nilpotent if CN (g) = 0 for some N > 0. If
N is the smallest integer such that CN (g) = 0 then we say that g is an N -step nilpotent Lie algebra.

For example, a Lie algebra is 1-step nilpotent if and only if it is abelian. The definition can be
rephrased as follows: there is an N > 0 such that for any N elements x1, x2, . . . , xN of g the iterated Lie
bracket

[x1, [x2, [. . . , [xN−1, xN ]] . . .] = adx1(adx2(. . . adxN−1(xN )) . . .) = 0.

In particular, all the elements ad(x) ∈ gl(g) for x ∈ g are nilpotent.

Remark 5.3. The ideal C1(g) = [g, g] is known as the derived subalgebra8 of g and is also denoted9 D(g)
and sometimes g′.

Lemma 5.4. Let g be a Lie algebra. Then
(1) If g is nilpotent, so is any subalgebra or quotient of g.
(2) If g/z(g) is nilpotent, then g is nilpotent.

Proof. The first part is immediate from the definition. Indeed if h ⊆ g is a subalgebra of g then clearly
we have Ci(h) ⊆ Ci(g), so that if CN (g) = 0 we also have CN (h) = 0. Similarly, an easy induction say
shows that if h is an ideal, then Ci(g/h) = (Ci(g) + h)/h, and so again if CN (g) = 0 we must also have
CN (g/h) = 0.

For the second claim, taking h = z(g), an ideal of g, we see from the first part that if g/z(g) is nilpotent,
then there is some N with (CN (g) + z(g))/z(g) = CN (g/z(g)) = 0, and so CN (g) ⊆ z(g). But then it is
clear that CN+1(g) = 0, and so g is nilpotent as required. �

Remark 5.5. Notice that if I is an arbitrary ideal in g, and I and g/I are nilpotent it does not follow that
g is nilpotent. Indeed recall that if g is the non-abelian 2-dimensional Lie algebra, then g can be given a
basis x, y with [x, y] = y. Hence k.y is a 1-dimensional ideal in g (which is thus abelian and so nilpotent)
and the quotient is again 1-dimensional and so nilpotent. However, ad(x) has y as an eigenvector with
eigenvalue 1, so g cannot be nilpotent, and indeed Ci(g) = k.y for all i ≥ 1.

Example 5.6. Let V be a vector space, and

F = (0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn = V )

a sequence of subspaces with dim(Fi) = i (such a sequence is known as a flag or complete flag in V ). Let
n = nF be the subalgebra of gl(V ) consisting of linear maps X ∈ gl(V ) such that X(Fi) ⊆ Fi−1 for all
i ≥ 1. We claim the Lie algebra n is nilpotent. To see this we show something more precise. Indeed for
each positive integer k, consider the subspace

nk = {x ∈ gl(V ) : x(Fi) ⊂ Fi−k}
(where we let 0 = Fl for all l ≤ 0). Then clearly nk ⊂ n, and nk = 0 for any k ≥ n. We claim that
Ck(n) ⊆ nk+1, which will therefore prove n is nilpotent. The claim is immediate for k = 0, so suppose
we know by induction that Ck(n) ⊆ nk+1. Then if x ∈ n and y ∈ nk+1, we have xy(Fi) ⊂ x(Fi−k−1) ⊂
Fi−k−2, and similarly yx(Fi) ⊂ Fi−k−2, thus certainly [x, y] ∈ nk+2 and so Ck+1(n) ⊆ nk+2 as required.

In fact you can check that Ck(n) = nk+1, so that n is (n − 1)-step nilpotent i.e. Cn−2(n) 6= 0, and
Cn−1(n) = 0 (note that if dim(V ) = 1 then n = 0). If we pick a basis {e1, e2, . . . , en} of V such that
Fi = span(e1, e2, . . . , ei} then the matrix A representing an element x ∈ n with respect to this basis is
strictly upper triangular, that is, aij = 0 for all i ≥ j. It follows that dim(n) =

(
n
2

)
, so when n = 2 we

8Oddly, not as the derived ideal even though it is an ideal.
9Partly just to cause confusion, but also because it comes up a lot, playing slightly different roles, which leads to the different

notation. We’ll see it again shortly in a slightly different guise.
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just get the 1-dimensional Lie algebra, thus the first nontrivial case is when n = 3 and in that case we
get a 3-dimensional 2-step nilpotent Lie algebra.

Note that the subalgebra t ⊂ gln of diagonal matrices is nilpotent, since it is abelian, so a nilpotent
linear Lie algebra need not consist of nilpotent endomorphisms. Nevertheless we will show there is a
close connection between the two notions.

Lemma 5.7. If x ∈ gl(V ) be a nilpotent endomorphism then ad(x) ∈ End(gl(V )) is also nilpotent.

Proof. The map λx : gl(V ) → gl(V ) given by y 7→ xy is clearly nilpotent if x is nilpotent, and similarly
for the map ρx : gl(V )→ gl(V ) given by y 7→ yx. Moreover, λx and ρx clearly commute with each other,
so since ad(x) = λx − ρx, it is also nilpotent. Indeed for m ≥ 0 we have

(λx − ρx)m =

m∑
i=0

(−1)i
(
m

i

)
λm−ix ρix

and so if xn = 0, so that λnx = ρnx = 0, then if m ≥ 2n, every term on the right-hand side must be zero,
and so ad(x)m = 0 as required. �

For the next proposition we need the notion of the normaliser of a subalgebra.

Definition 5.8. Let g be a Lie algebra and let a be a subalgebra. The subspace

Ng(a) = {x ∈ g : [x, a] ∈ a,∀a ∈ a}

is a subalgebra of g (check this using the Jacobi identity) which is called the normaliser of a. It is the
largest subalgebra of g in which a is an ideal.

Definition 5.9. If g is any Lie algebra and (V, ρ) is a representation of g, then define

V g = {v ∈ V : ρ(x)(v) = 0,∀x ∈ g}.

It is called the (possibly zero in general) subrepresentation of invariants in V .

Proposition 5.10. Let n be a Lie algebra, and (V, ρ) a representation of n such that for every x ∈ n, the linear
map ρ(x) is nilpotent. Then the invariant subspace

V n = {v ∈ V : ρ(x)(v) = 0,∀x ∈ n}

is non-zero.

Proof. We use induction on d = dim(n), the case d = 1 being clear. Clearly the statement of the propos-
ition is unchanged if we replace n by its image in gl(V ), so we may assume that n is a subalgebra of
gl(V ).

Now consider a ( n a proper subalgebra. Since the elements a ∈ a are nilpotent endomorphisms,
the previous lemma shows that ad(a) ∈ gl(n) is also nilpotent, hence ad(a) also acts nilpotently on the
quotient10 n/a. Since dim(a) < dim(n), by induction (applied with V = n/a and a) we can find x /∈ a
such that ad(a)(x) = [a, x] ∈ a for all a ∈ a. It follows that for any proper subalgebra a, its normaliser

Nn(a) = {x ∈ n : [x, a] ∈ a,∀a ∈ a}

strictly contains a.
Thus if a is a proper subalgebra of n of maximal dimension, we must have Nn(a) = n, or in other

words, a must actually be an ideal of n.
Now if n/a is not one-dimensional, the preimage of a one-dimensional subalgebra in n/a would be

a proper subalgebra of n strictly containing a, which again contradicts the maximality of a. Thus n/a is
one-dimensional, and we may find z ∈ n so that k.z ⊕ a = n.

By induction, we know that V a = {v ∈ V : a(v) = 0,∀a ∈ a} is a nonzero subspace of V . We claim
that z preserves V a. Indeed

a(z(v)) = [a, z](v) + z(a(v)) = 0, ∀a ∈ a, v ∈ V a,

since [a, z] ∈ a. But the restriction of z to V a is nilpotent, so the subspace U = {v ∈ V a : z(v) = 0} is
nonzero. Since U = V n we are done. �

10The notation here can be a bit confusing: the Lie algebra n is an a-representation by the restriction of the adjoint represent-
ation of g to a. Since a is a sub-a-representation of g, the quotient g/a is an a-representation. Note however that it is not itself a
Lie algebra unless a is an ideal of g.
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Definition 5.11. If g is a Lie algebra and x ∈ g, we say that an element x is ad-nilpotent if ad(x) ∈ gl(g)

is a nilpotent endomorphism. For convenience11 we say that g is ad-nilpotent if all of its elements are.

Theorem 5.12. (Engel’s theorem) A Lie algebra g is nilpotent if and only if ad(x) is nilpotent for every x ∈ g.

Proof. In the terminology of the above definition, the theorem states that a Lie algebra is nilpotent if
and only if it is ad-nilpotent. As we already noted, it is immediate from the definition that a nilpotent
Lie algebra is ad-nilpotent, so our task is to show the converse. For this, note that it is clear that if g is
ad-nilpotent, then any quotient of it is also ad-nilpotent. Hence using induction on dimension along
with Lemma 5.4 (2), it will be enough to show that z(g) is a non-zero. Now

z(g) = {z ∈ g : [z, x] = 0,∀x ∈ g}
= {z ∈ g : −ad(x)(z) = 0,∀x ∈ g}

= gad(g),

hence applying Proposition 5.10 to the adjoint representation of g, it follows immediately that z(g) 6= 0
and we are done.

�

The following is an important consequence of the Proposition 5.10.

Corollary 5.13. Let g be a Lie algebra and (V, ρ) a representation of g such that ρ(x) is a nilpotent endomorphism
for all x ∈ g. Then there is a complete flag F = (0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = V ) such that ρ(g) ⊆ nF .

Proof. Let us say that g respects a flag F if ρ(g) ⊆ nF . Use induction on dim(V ). By Proposition 5.10,
we see that the space V g 6= 0. Thus by induction we may find a flag F ′ in V/V g which g respects.
Taking its preimage and extending arbitrarily (by picking any complete flag in V g), we get a complete
flag in V that g clearly respects as required. �

6. SOLVABLE LIE ALGEBRAS

We now consider another class of Lie algebras which is slightly larger than the class of nilpotent
algebras. For a Lie algebra g, let D0g = g, and Di+1g = [Dig, Dig]. Dig is the i-th derived ideal of g.
Note that C1(g) = D1g is Dg the derived subalgebra of g.

Definition 6.1. A Lie algebra g is said to be solvable if DNg = 0 for some N > 0.

Since it is clear from the definition that Dig ⊂ Ci(g), any nilpotent Lie algebra is solvable, but as
one can see by considering the non-abelian 2-dimensional Lie algebra, there are solvable Lie algebras
which are not nilpotent.

Example 6.2. Let V be a finite dimensional vector space and F = (0 = F0 < F1 < . . . < Fn = V ) a
complete flag in V . Let

bF = {x ∈ gl(V ) : x(Fi) ⊆ Fi},
that is, bF is the subspace of endomorphisms which preserve the complete flag F . We claim that bF is
solvable. Since any nilpotent Lie algebra is solvable, and clearly bF is solvable if and only if D1bF is,
the solvability of g will follow if we can show that D1bF ⊆ nF . To see this, suppose first that x, y ∈ bF
and consider [x, y]. We need to show that [x, y](Fi) ⊂ Fi−1 for each i, 1 ≤ i ≤ n. Since x, y ∈ bF ,
certainly we have [x, y](Fi) ⊆ Fi for all i, 1 ≤ i ≤ n, thus it is enough to show that the map [x, y]
induced by [x, y] on Fi/Fi−1 is zero. But this map is the commutator of the maps induced by x and y
in End(Fi/Fi−1), which since Fi/Fi−1 is one-dimensional, is abelian, so that all commutators are zero.

If we pick a basis {e1, e2, . . . , en} of V such that Fi = span(e1, . . . , ei), then gl(V ) gets identified with
gln and bF corresponds to the subalgebra bn of upper triangular matrices. It is straight-forward to
show by considering the subalgebra tn of diagonal matrices that bn is not nilpotent.

We will see shortly that, in characteristic zero, any solvable linear Lie algebra g ⊂ gl(V ), where V is
finite dimensional, is a subalgebra of bF for some complete flag F . We next note some basic properties
of solvable Lie algebras.

Lemma 6.3. Let g be a Lie algebra, φ : g→ h a homomorphism of Lie algebras.
(1) We have φ(Dkg) = Dk(φ(g)). In particular φ(g) is solvable if g is, thus any quotient of a solvable Lie

algebra is solvable.
(2) If g is solvable then so are all subalgebras of g.

11Though because of the following theorem this terminology won’t be used much.
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(3) If im(φ) and ker(φ) are solvable then so is g. Thus if I is an ideal and I and g/I are solvable, so is g.

Proof. The first two statements are immediate from the definitions. For the third, note that if im(φ) is
solvable, then for some N we have DN im(φ) = {0}, so that by part (1) we have DN (g) ⊂ ker(φ), hence
if DMker(φ) = {0}we must have DN+Mg = {0} as required. �

Note that, as mentioned above, the part 3) of the above Lemma is false for nilpotent Lie algebras.
For the rest of this section we will assume that our field k is algebraically closed of characteristic

zero.

Lemma 6.4. (Lie’s Lemma) Let g be a Lie algebra and let I ⊂ g be an ideal, and V a finite dimensional represent-
ation. Suppose v ∈ V is a vector such that x(v) = λ(x).v for all x ∈ I , where λ : I → gl1(k). Then λ vanishes
on [g, I] ⊂ I .

Proof. Let x ∈ g. For each m ∈ N, let Wm = span{v, x(v), . . . , xm(v)}. The Wm form a nested sequence
of subspaces of V . We claim that hxm(v) ∈ λ(h)xmv +Wm−1 for all h ∈ I and m ≥ 0. Using induction
on m, the claim being immediate for m = 0, note that

hxm(v) = [h, x]xm−1(v) + xhxm−1(v)

∈ (λ([h, x])xm−1v +Wm−2) + x(λ(h)xm−1(v) +Wm−2)

∈ λ(h)xm(v) +Wm−1,

where in the second equality we use induction on m for both h, [h, x] ∈ I .
Now since V is finite dimensional, there is a maximal n such that the vectors {v, x(v), . . . , xn(v)} are

linearly independent, and so Wm = Wn for all m ≥ n. It then follows that Wn is preserved by x, and
from the claim it follows that Wn is also preserved by every h ∈ I . Moreover, the claim also shows that
for any h ∈ I the matrix of [x, h] with respect to the basis {v, x(v) . . . , xn(v)} of Wn is upper triangular
with diagonal entries all equal to λ([x, h]). It follows that tr([x, h]) = (n+ 1)λ([x, h]). Since the trace of
a commutator is zero12, it follows that (n + 1)λ([x, h]) = 0, and so since char(k) = 0 we conclude that
λ([x, h]) = 0. �

Theorem 6.5. (Lie’s theorem) Let g be a solvable Lie algebra and V is a g-representation. Then there is a
homomorphism λ : g→ gl1(k) and a nonzero vector v ∈ V such that x(v) = λ(x).v for all x ∈ g.

Proof. We use induction on dim(g). If dim(g) = 1, then g = k.x for any nonzero x ∈ g, and since k is
algebraically closed, x has an eigenvector in V and we are done. For dim(g) > 1, consider the derived
subalgebraD1g. Since g is solvable,D1g is a proper ideal of g. The quotient g/D1g is abelian, and taking
the preimage of any codimension one subspace of it gives a codimension 1 ideal I of g. By induction we
may pick a homomorphism λ : I → gl1(k) such that the subspace U = {w ∈ V : h(w) = λ(h).w,∀h ∈ I}
is nonzero. Now if x ∈ g, then

h(x(w)) = [h, x](w) + xh(w)

= λ([h, x])(w) + λ(h).x(w)

= λ(h).x(w).

where in the second equality we used Lie’s Lemma. Thus g preserves U . Now since I is codimension
one in g, we may write g = kx ⊕ I for some x ∈ g. Taking an eigenvector v ∈ U of x completes the
proof. �

The analogue of Corollary 5.13 for solvable Lie algebras is the following:

Corollary 6.6. Let b ⊂ gl(V ) be a solvable subalgebra of gl(V ). Then there is a complete flag F of V such that
b ⊆ bF .

Proof. By induction on dim(V ), where Lie’s theorem provides the induction step. �

Note that this theorem shows that if g is a solvable Lie algebra, then any irreducible representation of
g is one-dimensional. Since conversely any one-dimensional representation of g is clearly irreducible,
we can rephrase Lie’s theorem as the statement that any irreducible representation of a solvable Lie
algebra is one-dimensional.

More generally, it is natural to note the following simple Lemma.

12It is important here that ρ([x, h]) is the commutator of ρ(x) and ρ(h) both of which preserve Wn – by the claim in the case of
ρ(h), and by our choice of n in the case of ρ(x) – in order to conclude the trace is zero.
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Lemma 6.7. Let g be a Lie algebra. The one-dimensional representations of g are parametrized by the vector
space (g/Dg)∗ as follows: if (V, ρ) is a a representation of g and dim(V ) = 1, then ρ : g → End(V ) ∼= k, and
ρ(Dg) = 0, so that ρ induces a linear functional α : g/Dg→ k.

Proof. If ρ : g → gl(V ), then since dim(V ) = 1, the associative algebra End(V ) is commutative, so that
gl(V ) is abelian. Thus

ρ([x, y]) = ρ(x)ρ(y)− ρ(y)ρ(x) = 0, (∀x, y ∈ g),

hence ρ(Dg) = 0, and ρ induces α ∈ (g/Dg)∗ as claimed. Conversely, given α : (g/Dg)∗, the map
ρ : g→ gl1(k) given by x 7→ α(x+Dg) is a Lie algebra homomorphism, because

ρ([x, y]) = 0 = α(x+Dg)α(y +Dg)− α(y +Dg)α(x+Dg).

�

An isomorphism classes of one-dimensional representations of g are thus given by the space of linear
functionals (g/Dg)∗. We will refer to an element α ∈ (g/Dg)∗ as a weight of g. They should be thought
of as the generalization of the notion of an eigenvalue of a linear map. Lie’s theorem shows that if g
is a solvable Lie algebra (hence in particular if g is nilpotent), then any irreducible representation is
one-dimensional, so that (g/Dg)∗ parametrizes the irreducible representations of g. For α ∈ (g/Dg)∗

let us write kα for the representation (k, α) of g on the field k given by α.

7. REPRESENTATIONS OF NILPOTENT LIE ALGEBRAS

In this section we assume that k is an algebraically closed field of characteristic zero.
A representation (ρ, V ) of the one-dimensional Lie algebra gl1(k) on a k-vector space V is given,

once we chose a basis vector e of gl1(k), by a single linear map φ : V → V via the correspondence
φ = ρ(e). Thus the classification of representations of gl1(k) is equivalent to the classification of linear
endomorphisms.13 This classification is of course given by the Jordan normal form (at least over an al-
gebraically closed field). In this section we will see that a (slightly weaker) version of this classification
holds for representations of any nilpotent Lie algebra.

We begin by reviewing some linear algebra. Let x : V → V be a linear map. Let Vλ be the generalized
eigenspaces for x with eigenvalue λ:

Vλ = {v ∈ V : ∃N > 0, (x− λ)N (v) = 0}.
(thus Vλ is zero unless λ is an eigenvalue of x).

Lemma 7.1. Let x : V → V be a linear map. There is a canonical direct sum decomposition

V =
⊕
λ∈k

Vλ,

of V into the generalized eigenspaces of x. Moreover, for each λ, the projection to aλ : V → Vλ (with kernel the
remaining generalized eigenspace of x) can be written as a polynomial in x.

Proof. Let mx ∈ k[t] be the minimal polynomial of x. Then if φ : k[t]→ End(V ) given by t 7→ x denotes
the natural map, we have k[t]/(mx) ∼= im(φ) ⊆ End(V ). If mx =

∏k
i=1(t − λi)ni where the λi are the

distinct eigenvalues of x, then the Chinese Remainder Theorem and the first isomorphism theorem
shows that

im(φ) ∼= k[t]/(mx) ∼=
k⊕
i=1

k[t]/(t− λi)ni ,

It follows that we may write 1 ∈ k[t]/(mx) as 1 = e1 + . . . + ek according to the above decomposition.
Now clearly eiej = 0 if i 6= j and e2

i = ei, so that if Ui = im(ei), then we have V =
⊕

1≤i≤k Ui.
Moreover, each ei can be written as polynomials in x by picking any representative in k[t] of ei (thought
of as an element of k[t]/(mx)). Note in particular this means that each Ui is invariant under im(φ).

It thus remains to check that Ui = Vλi . Since (t − λi)niei = 0 ∈ k[t]/(mx), it is clear that Ui ⊆ Vλi .
To see the reverse inclusion, suppose that v ∈ Vλi so that, say, (x − λi)n(v) = 0 for some n > 0. Write
v = v1 + . . . + vk, where vj ∈ Uj . Now since (x − λi)n(v) = 0, and each Uj is stable under im(φ) it
follows that (x − λi)n(vj) = 0 for each j, (1 ≤ j ≤ k). If 1 ≤ l ≤ k and l 6= i, then since (t − λi)n and
(t− λl)nl are coprime, we may find a, b ∈ k[t] such that a.(t− λi)n + b.(t− λl)nl = 1.

Setting t = x in this equation, and applying the result to the vector vl we find:

13Essentially the same is true for representations of the abelian group Z.
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vl = 1.vl =
(
a(x).(x− λi)n + b(x).(x− λl)nl

)
(vl)

= a(x)(t− λi)n(vl) + b(x)(t− λl)nl(vl)
= 0,

(7.1)

where the first term is zero by the above, and the second term is zero since vl ∈ Ul. It follows that
v = vi ∈ Ui and so Vλi ⊆ Ui as required.

�

Lemma 7.2. i) Let V be a vector space and write A = Homk(V, V ) for the associative algebra of linear
maps from V to itself. Then we have:

(x− λ− µ)ny =

n∑
i=0

(
n

i

)
(ad(x)− λ)i(y)(x− µ)n−i, (∀x, y ∈ A),

where as usual ad(x)(y) = [x, y] = xy − yx.
ii) Let g be a Lie algebra and (V, ρ) a representation of g. Then for all x, y ∈ g we have

(7.2) (ρ(x)− λ− µ)nρ(y) =

n∑
i=0

(
n

i

)
ρ((ad(x)− λ)i(y))(ρ(x)− µ)n−i.

Proof. Note first that in any associative algebra A, if a, b ∈ A commute, i.e. ab = ba, then the binomial
theorem shows that (a+ b)n =

∑n
i=0

(
n
i

)
aibn−i.

Let rx : A→ A be the map given by rx(y) = yx, right-multiplication by x, and similarly let lx : A→ A
be the map lx(y) = xy be the map given by left-multiplication by x. The ad(x) = lx − rx. Then clearly
lx, rx, λ.idV , µ.idV all commute, and we have:

(x− λ− µ)ny = (lx − λ− µ)n(y)

= (ad(x) + rx − λ− µ)(y)

= ((ad(x)− λ) + (rx − µ))(y)

=

n∑
i=0

(
n

i

)
(ad(x)− λ)i(rx − µ)n−i(y)

=

n∑
i=0

(
n

i

)
(ad(x)− λ)i(y)(x− µ)n−i.

where we apply the binomial theorem to the (commuting) pair (ad(x) − λ, rx − µ) to the fourth line.
For the second part, simply apply the first part to ρ(x), ρ(y), using the fact that ad(ρ(x))(ρ(y)) =
ρ(ad(x)(y)). �

Theorem 7.3. Let h be a nilpotent Lie algebra and (V, ρ) a finite dimensional representation of h. For each
λ ∈ (h/Dh)∗, set

Vλ = {v ∈ V : for all x ∈ h,∃n > 0 such that (ρ(x)− λ(x))n(v) = 0}.
Then each Vλ is a subrepresentation and

V =
⊕
λ

Vλ

that is, V is the direct sum of subrepresentations indexed by the one-dimensional representations occuring in V .

Proof. We use induction on dim(V ). If dim(V ) = 1 the result is trivial. Next note that if V = U ⊕W is a
direct sum of proper subrepresentations, then applying induction we know the result holds for U and
W respectively, and clearly Vλ = Uλ ⊕Wλ, so that we may conclude the result holds for V .

Now suppose that x ∈ h and let V =
⊕
Vλ(x) denote the generalised eigenspace decomposition of

V for ρ(x). We claim each subspace Vλ(x) is a subrepresentation of h. Indeed since h is a nilpotent Lie
algebra, the map ad(x) is nilpotent, hence if k > dim(h) then ad(x)k(y) = 0 for all y ∈ h. It follows
that if v ∈ Vλ(x), so that (ρ(x) − λ(x))k(v) = 0 for all k ≥ N say, then if k ≥ N + dim(h), we see from
equation (7.2) (with µ = 0) that (ρ(x) − λ(x))k(ρ(y)(v)) = 0, since we must have either i ≥ dim(h) or
k − i ≥ N if k ≥ N + dim(h), and so ρ(y)(v) ∈ Vλ(x) as required.

It follows that if there is some x ∈ h which has more than one eigenvalue, then the decomposition
V =

⊕
Vλ(x) shows that V is a direct sum of proper subrepresentations, and we are done by induction.

Thus we are reduced to the case where for all x ∈ h the linear map ρ(x) has a single eigenvalue λ(x)
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say. But then x 7→ λ(x) must be an element of (h/Dh)∗ by Lie’s theorem: Pick a one-dimensional
subrepresentation L of V , then ρ(x) acts by a scalar µ(x) on L, where µ ∈ (h/Dh)∗ and since λ(x) is the
only eigenvalue of ρ(x) by assumption we must have λ(x) = µ(x). Now clearly V = Vλ and we are
done.

�

Remark 7.4. The (nonzero) subrepresentations Vλ are known as the weight spaces of V , and the set Ψ(V ),
sometimes written simply Ψ, of λ ∈ (h/Dh)∗ for which Vλ 6= 0 are known as the weights of V .

8. CARTAN SUBALGEBRAS

In this section we work over an algebraically closed field k. In particular, k is infinite.
Let g be a Lie algebra. Recall that if h is a subalgebra of g then the normalizer Ng(h) of g is

Ng(h) = {x ∈ g : [x, h] ∈ h,∀h ∈ h}.

It follows immediately from the Jacobi identity that Ng(h) is a subalgebra, and clearly Ng(h) is the
largest subalgebra of g in which h is an ideal.

Definition 8.1. We say that a subalgebra h is a Cartan subalgebra if it is nilpotent and self-normalizing,
that is, Ng(h) = h.

It is not clear from this definition whether a Lie algebra necessarily has a Cartan subalgebra. To
show this, we need a few more definitions.

Definition 8.2. If x ∈ g, let g0,x be the generalized 0-eigenspace of ad(x), that is

g0,x = {y ∈ g : ∃N > 0 such that ad(x)N (y) = 0}

Note that we always have x ∈ g0,x. We say that x ∈ g is regular if g0,x is of minimal dimension.

Lemma 8.3. (1) If x ∈ g is a any element, then g0,x is a self-normalizing subalgebra of g.
(2) If x ∈ g is a regular element, then g0,x is a nilpotent and so a Cartan subalgebra of g.

Proof. To see that h = g0,x is a subalgebra of g, use the formula

(8.1) ad(x)n[y, z] =

n∑
k=0

(
n

i

)
[ad(x)k(y), ad(x)n−k(z)].

The formula can be established, for example, by an easy induction, or by applying (7.2) with λ = µ = 0
to the adjoint representation.

Next we show that h is a self-normalizing in g. Indeed if z ∈ Ng(h) then [x, z] ∈ h (since certainly
x ∈ h), so that for some n we have ad(x)n([x, z]) = 0, and hence ad(x)n+1(z) = 0 and z ∈ h as required.

Assume now that x is regular. To show that the corresponding h is nilpotent, we use Engel’s theorem:
we will show that for each y ∈ h the map ad(y) is nilpotent as an endomorphism of h. To show ad(y) is
nilpotent on h, we consider the characteristic polynomial of ad(y) on g and h. Since h is a subalgebra of
g, the characteristic polynomial χy(t) ∈ k[t] of ad(y) on g is the product of the characteristic polynomials
of ad(y) on h and g/h, which we will write as χy1(t) and χy2(t) respectively.

We may write χy(t) =
∑n
k=0 ck(y)tk (where n = dim(g)). Pick {h1, h2, . . . , hr} a basis of h, so that

we may write y =
∑r
i=1 xihi. Then we may view the coefficients ck as polynomials in the coordinates

{xi : 1 ≤ i ≤ r}. Similarly, we have χy1 =
∑r
k=0 dk(y)tkand χy2 =

∑n−r
i=0 ei(y)ti where the di, ej are

polynomials in the {xi : 1 ≤ i ≤ r}. Now we know that if y = x then ad(x) is invertible on g/h, since it
has no 0-eigenspace there, so that χx2 has e0(x) 6= 0, and thus the polynomial e0 is nonzero.

Now for each y ∈ h the number min{i : ci(y) 6= 0} is clearly dim(g0,y). However, suppose we write
χy1(t) = ts

∑r−s
k=0 dk+st

k, where ds 6= 0 is a nonzero polynomial in the {xi : 1 ≤ i ≤ r}. Then we would
have

χy(t) = ts(ds + ds+1t+ . . .)(e0 + e1.t+ . . .) = tsdse0 + . . . ,

hence if we pick z ∈ h such that ds(z)e0(z) is nonzero, then g0,z has dimension s, so by the assumption
that x is regular, we must have s ≥ r. On the other hand s ≤ r since χ1 has degree r, thus we conclude
that s = r and χy1(t) = tr for all y ∈ h. Hence every ad(y) is nilpotent on h, so that h is a Cartan
subalgebra as required.

�
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In the course of the proof of the above Proposition we used the following fact about the coefficients
of the characteristic polynomial. It was crucial because, whereas the product of two arbitrary nonzero
functions may well be zero, the product of two nonzero polynomials (over a field) is never zero. For
completeness we give a proof14. (To apply it to the above, take V = g, A = h and ϕ = ad).

Lemma 8.4. Suppose that V and A are finite dimensional vector spaces, ϕ : A → End(V ) is a linear map, and
{a1, a2, . . . , ak} is a basis of A. Let

χa(t) =

d∑
i=0

ci(a)ti ∈ k[t]

be the characteristic polynomial of ϕ(a) ∈ A. Then if we write a =
∑k
i=1 xiai, the coefficients ci(a) (1 ≤ i ≤ d)

are polynomials in k[x1, x2, . . . , xk].

Proof. Pick a basis of V so that we may identify End(V ) with Matn(k) the space of n×n matrices. Then
each ϕ(ai) is a matrix (ajki )1≤j,k≤n, and if a =

∑k
i=1 xiai, we have

χa(t) = det(tIn −
k∑
i=1

xiϕ(ai)),

which from the formula for the determinant clearly expands to give a polynomial in the xi and t, which
yields the result. �

Remark 8.5. As an aside, there’s no reason one needs to pick a basis of a vector space V in order to talk
about the space k[V ] of k-valued polynomial functions on it. For example, one can define k[V ] to be the
subalgebra of all k-valued functions on V which is generated by V ∗ the space of functionals on V . (This
is fine if k is algebraically closed at least, if that is not the case then one should be a bit more careful,
e.g. recall if k is finite, then an element of k[t] is not a function on k).

Remark 8.6. Although we will not prove it in this course, any two Cartan subalgebras of g are conjugate
by an automorphism15 of g, that is, given any two Cartan subalgebras h1, h2 there is an isomorphism
α : g→ g such that α(h1) = h2.

9. THE CARTAN DECOMPOSITION

In this section we work over an algebraically closed field k of characteristic zero.
Our study of the representation theory of nilpotent Lie algebras can now be used to study the struc-

ture of an arbitrary Lie algebra. Indeed, if g is any Lie algebra, we have shown that it contains a Cartan
subalgebra h, and the restriction of the adjoint action makes g into an h-representation. As such it
decomposes into a direct sum

g =
⊕

λ∈(h/Dh)∗

gλ.

The next Lemma establishes some basic properties of this decomposition.

Lemma 9.1. Let g, h be as above. Then h = g0. Moreover, if λ, µ are one-dimensional representations, then

[gλ, gµ] ⊆ gλ+µ.

Proof. Clearly h ⊆ g0, since h is nilpotent. Consider g0/h as an h-representation. If nonzero, then
by Lie’s theorem it contains a one-dimensional submodule L, and since h acts nilpotently on g0 be
definition, h acts as zero on L. But then the preimage of L in g0 normalizes h which contradicts the
assumption that h is a Cartan subalgebra.

Applying (7.2) with ρ = ad we see that:

(ad(x)− (λ(x) + µ(x))1)n[y, z] =

n∑
i=0

(
n

i

)
[(ad(x)− λ(x).1)i(y), (ad(x)− µ(x).1)n−i(z)].

The containment [gλ, gµ] ⊆ gλ+µ then follows using the same argument as in the first paragraph of
Theorem 7.3. �

14If this all seems overly pedantic then feel free to ignore it.
15In fact, they are even conjugate by what is known as an inner automorphism.
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Definition 9.2. By the previous Lemma, if h is a Cartan subalgebra of g then g decomposes into a direct
sum

g = h⊕
⊕
λ6=0

gλ.

This is known as the Cartan decomposition of g. The set Φ of non-zero λ ∈ (h/Dh)∗ for which the
subspace gλ is non-zero is called the set of roots of g, and the subspaces gλ are known16 as the root spaces
of g. Thus finally the Cartan decomposition becomes

g = h⊕
⊕
λ∈Φ

gλ.

By Remark 8.6 above, the Cartan decomposition of g is unique up to automorphism.

More generally, using Equation 7.2 in the same way as in the proof of Lemma 9.1 we can show:

Lemma 9.3. Let g, h be as above, and let V be a g-representation. As an h-representation, it then decomposes

V =
⊕
µ∈Ψ

Vµ

into generalised h-weight spaces as in Theorem 7.3, for a subset Ψ ⊂ (h/Dh)∗. Then for α ∈ Φ a root, we have

[gα, Vµ] ⊆ Vα+µ.

10. TRACE FORMS AND THE KILLING FORM

In this section we introduce certain symmetric bilinear forms, which will play an important role
in the rest of the course. A brief review of the basic theory of symmetric bilinear forms17 is given in
Appendix 1 of these notes.

10.1. Bilinear forms. Let Bil(V ) be the space of bilinear forms on V , that is,

Bil(V ) = {B : V × V → k : B bilinear}.

From the definition of tensor products it follows that Bil(V ) can be identified with (V ⊗ V )∗. If V is a
g-representation, this means Bil(V ) also has the structure of g-representation: explicitly, if B ∈ Bil(V ),
then it yields a linear map b : V ⊗ V → k by the universal property of tensor products, and if y ∈ g, it
acts on B as follows:

y(B)(v, w) = y(b)(v ⊗ w)

= −b(y(v ⊗ w))

= −b(y(v)⊗ w + v ⊗ y(w))

= −B(y(v), w)−B(v, y(w)).

That is, B is invariant if B(y(v), w) = −B(v, y(w)) for all v, w ∈ V and y ∈ g.
If we apply this to (V, ρ) = (g, ad), then the condition that B ∈ Bil(g)g is just that, for all x, y, z ∈ g,

0 = y(B)(x, z)

= −B(ad(y)(x), z)−B(x, ad(y)(z)),

= −B([y, x], z)−B(x, [y, z])

= B([x, y], z)−B(x, [y, z]),

that is, B([x, y], z) = B(x, [y, z]).

Definition 10.1. We say that a bilinear form B is invariant if it is an invariant vector for the action of g
on Bil(g) ∼= (g⊗ g)∗, that is, if

B([x, y], z) = B(x, [y, z]), ∀x, y, z ∈ g.

16i.e. in the terminology for representations of nilpotent Lie algebras discussed above, the roots of g are the weights of g as
an h-representation.

17Part A Algebra focused more on positive definite and Hermitian forms, but there is a perfectly good theory of general
symmetric bilinear forms.
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If α : g1 → g2 is a homomorphism of Lie algebras, and B is a bilinear form on g2, then we may
“pull-back” B using α to obtain a bilinear form on g1. Indeed viewing B as an element of (g2 ⊗ g2)∗,
we obtain an element α∗(B) of (g1 ⊗ g1)∗ given by α∗(B)(x, y) = B(α(x), α(y)). It is immediate from
the definitions that if B is an invariant form for g2, then α∗(B) is an invariant form for g1.

It follows that if we can find an invariant form bV on a general linear Lie algebra gl(V ), then any
representation ρ : g → gl(V ) of a Lie algebra g on V will yield an invariant bilinear form tV = ρ∗(bV )
on g. The next Lemma shows that there is in fact a very natural invariant bilinear form, indeed an
invariant symmetric bilinear form, on a general linear Lie algebra gl(V ):

Lemma 10.2. Let V be a k-vector space. The trace form bV : gl(V ) ⊗ gl(V ) → k given by bV (a.b) = tr(a ◦ b)
(a, b ∈ gl(V )) is an invariant symmetric bilinear form on gl(V ).

Proof. It is clear that bV is bilinear and it is symmetric because tr(a.b) = tr(b.a). To see that it is invariant,
note that, for a, b, c ∈ gl(V ) we have

tr([a, b].c) = tr((ab− ba).c) = tr(a.(bc))− tr(b.(ac))

= tr(a.(bc))− tr((ac).b)

= tr(a.(bc− cb)
= tr(a, [b, c]).

where going from the first to the second line we used the symmetry property of tr to replace tr(b.(ac))
with tr((ac).b). �

Remark 10.3. The invariance of the form bV is just the condition that the map bV : gl(V )⊗gl(V )→ k is a
map of gl(V )-representations, where k is viewed as the trivial representation of gl(V ). Using this, one
can also prove the previous Lemma using the identification of gl(V ) ∼= V ∗ ⊗ V as a g-representation,
along with the description of the trace map in terms of the contraction map ι. Let d : V ∗⊗V → (V ∗⊗V )∗

be the map given by m ◦σ ◦ (1⊗ eV ), where eV : V → V ∗∗ is the natural map, σ : V ∗⊗V ∗∗ → V ∗∗⊗V ∗
is the natural isomorphism, and m is the multiplication map (see § 22.1). Then, writing ιU : U ⊗U∗ → k
for the contraction map we have

tr(a.b) = ιV ∗⊗V (a⊗ d(b))

Since all of the maps m, σ, eV and ι are maps of gl(V )-representations, it follows that tr is also.

Definition 10.4. If g is a Lie algebra, and let (V, ρ) be a representation of g. we may define a bilinear
form tV : g× g→ k on g, known as a trace form of the representation (V, ρ), to be ρ∗(bV ). Explicitly, we
have

tV (x, y) = trV (ρ(x)ρ(y)), ∀x, y ∈ g.

Definition 10.5. The Killing form κ : g×g→ k is the trace form given by the adjoint representation, that
is:

κ(x, y) = tr(ad(x)ad(y)).

Note that if a ⊆ g is a subalgebra, the Killing form of a is not necessarily equal to the restriction of
that of g. We will write κg when it is not clear from context which Lie algebra is concerned.

If a is an ideal in g, then in fact the Killing form is unambiguous, as the following Lemma shows.

Lemma 10.6. Let a be an ideal of g. The Killing form κa of a is given by the restriction of the Killing form κg

on g, that is:
κg|a = κa.

Proof. If a ∈ a we have ad(a)(g) ⊆ a, thus the same will be true for the composition ad(a1)ad(a2) for
any a1, a2 ∈ a. Thus if we pick a vector space complement W to a in g, the matrix of ad(a1)ad(a2) with
respect to a basis compatible with the subspaces a and W will be of the form(

A B
0 0.

)
where A ∈ End(a) and B ∈ Homk(a,W ). Then clearly tr(ad(a1)ad(a2)) = tr(A). Since A is clearly
given by ad(a1)|aad(a2)|a, we are done. �

The Killing form also allows us to produce ideals: If a denotes a subspace of g, then we will write
a⊥ for the subspace

{x ∈ g : κ(x, y) = 0,∀y ∈ a}.
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Lemma 10.7. Let g be Lie algebra and let a be an ideal of g. Then a⊥ is also an ideal of g.

Proof. Suppose that x ∈ g and z ∈ a⊥. We need to show that [x, z] ∈ a⊥. But if y ∈ a we have

κ([x, z], y) = −κ([z, x], y) = −κ(z, [x, y]) = 0,

since [x, y] ∈ a since a is an ideal. Hence [x, z] ∈ a⊥ as required. �

11. CARTAN CRITERIA FOR SOLVABLE LIE ALGEBRAS

In this section k is an algebraically closed field of characteristic zero.
We now wish to show how the Killing form yields a criterion for determining whether a Lie algebra

is solvable or not. For this we need a couple of technical preliminaries.

Lemma 11.1. Let g be a Lie algebra and let h be a Cartan subalgebra with associated Cartan decomposition
g = h⊕

⊕
λ∈Φ gλ. Let (V, ρ) be a finite dimensional representation of g and let V =

⊕
µ∈Ψ Vµ be the generalised

weight-space decomposition of V as an h-representation. Let λ ∈ Ψ and α ∈ Φ. Then there is an r ∈ Q such
that the restriction of λ to [gα, g−α] is equal to rα.

Proof. The set of weights Ψ is finite, thus there are positive integers p, q such that Vλ+tα 6= 0 only for
integers twith−p ≤ t ≤ q; in particular, λ−(p+1)α /∈ Ψ and λ+(q+1)α /∈ Ψ. LetM =

⊕
−p≤t≤q Vλ+tα.

If z ∈ [gα, g−α] is of the form [x, y] where x ∈ gα, y ∈ g−α then, using also Lemma 9.3, since

ρ(x)(Vλ+qα) ⊆ Vλ+(q+1)α = {0}, ρ(y)(Vλ−pα) ⊆ Vλ−(p+1)α = {0}

we see that ρ(x) and ρ(y) preserve M . Thus the action of ρ(z) on M is the commutator of the action of
ρ(x) and ρ(y) on M , and so tr(ρ(z),M) = 0. On the other hand, we may also compute the trace of ρ(z)
on M directly:

0 = tr(ρ(z),M)

=
∑
−p≤t≤q

tr(ρ(z), Vλ+tα)

=
∑
−p≤t≤q

(λ(z) + tα(z)) dim(Vλ+tα).

since any h ∈ h acts on a generalised weight-space Vµ with unique eigenvalue µ(h). Rearranging the
above equation gives λ(z) = rα(z) for some r ∈ Q as required (where the denominator is a sum of
dimensions of subspaces which are not all zero, and hence is nonzero, and clearly r does not depend
on z). �

Proposition 11.2. Let g be a Lie algebra. If g = Dg then there is an x ∈ g such that κ(x, x) 6= 0.

Proof. Pick h a Cartan subalgebra of g and let g = h ⊕αinΦ gαgα, where Φ denotes the roots of g and
h = g0. Now if g = h, then g is nilpotent, hence solvable, which is impossible since g = Dg implies the
derived series of g has Dkg = g for all k. Thus Φ is non-empty.

Next observe that

g = Dg = [g, g] =
[ ⊕
α∈Φ∪{0}

gλ,
⊕

β∈Φ∪{0}

gβ
]

=
∑
λ,µ

[gλ, gµ].

Since [g,α , gβ ] ⊆ gα+β , and h = g0, we must have

h = [h, h] +
∑
β∈Φ±

[gβ , g−β ] = Dh +
∑
β∈Φ±

[gβ , g−β ]

where Φ± is set of all β ∈ Φ for which {±β} ⊆ Φ. Now by definition, each γ ∈ Φ has γ(Dh) = 0, it
follows that if α ∈ Φ, as α 6= 0 there must be some β0 ∈ Φ± on which α([gβ0 , g−β0 ]) 6= {0} (in particular,
Φ± 6= ∅). Then

κ(x, x) = tr(ad(x)2) = trh(ad(x)2) +
∑
β∈Φ

trgβ (ad(x)2).

Now since h is nilpotent, ad(x) is nilpotent on h and so trh(ad(x)2) = 0. On each gβ , we can choose a
basis such that the matrix associated to ad(x) acting gβ is upper triangular with β(x) on the diagonal.
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It follows that trgβ (ad(x)2) = dim(gβ).β(x)2. Now by Lemma 11.1, the restriction of β to [gβ0
, g−β0

] is
equal to rβ .β0 for some rational number rβ ∈ Q. But then it follows that

(11.1) κ(x, x) =

∑
β∈Φ

dim(gβ)r2
β

β0(x)2

Since by assumption, 0 6= α(x) = rα.β0(x), so that both rα and β0(x) are nonzero. Now every term
in the sum on the right-hand side of (11.1) is a non-negative rational number, and r2

α > 0 (as we are
working over a field of characteristic zero, it contains Q) and hence κ(x, x) 6= 0 as required. �

Applying the previous Proposition to the Killing form we can give a criterion for a Lie algebra to be
solvable.

Theorem 11.3 (Cartan’s criterion for solvability). A Lie algebra g is solvable if and only if the Killing form
restricted to Dg is identically zero.

Proof. Consider the derived series Dkg, (k ≥ 1). If there is some k with Dkg = Dk+1g = D(Dkg) 6= {0},
then by Lemma 10.6 and Proposition 11.2 applied to Dk(g),, there is an x ∈ Dkg with

κg(x, x) = κD
kg(x, x) 6= 0,

and hence κ is not identically zero. Thus we conclude Dk+1g is a proper subspace of Dkg whenever
Dkg is nonzero, and hence since g is finite dimensional, it must be solvable as required.

For the converse, if g is solvable, then by Lie’s theorem we can find a filtration 0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂
Fn = g of ad-stable subspaces with dim(Fi) = i. Now if x, y ∈ g the maps induced by ad(x)ad(y)
and ad(y)ad(x) on Fi/Fi−1 are equal, since gl1 is commutative. Thus it follows that if z = [x, y] ∈ Dg,
then ad(z) = [ad(x), ad(y)] maps Fi into Fi−1 and hence for all z ∈ Dg we have ad(z)(Fi) ⊂ Fi−1.
But now if z1, z2 ∈ Dg, then ad(z1)ad(z2)(Fi) ⊆ Fi−2, and hence ad(z1)ad(z2) is nilpotent, and so
κ(z1, z2) = tr(ad(z1)ad(z2)) = 0 as required.

�

12. SEMISIMPLE LIE ALGEBRAS AND SEMI-DIRECT PRODUCTS

Suppose that g is a Lie algebra, and a and b are solvable Lie ideals of g. It is easy to see that a + b is
again solvable (for example, because 0 ⊆ a ⊆ a + b, and a and (a + b)/a ∼= b/(a ∩ b) are both solvable).
It follows that if g is finite dimensional, then it has a largest solvable ideal r (in the strong sense: every
solvable ideal of g is a subalgebra of r).

Definition 12.1. Let g be a finite dimensional Lie algebra. The largest solvable ideal r of g is known as
the radical of g, and will be denoted rad(g). We say that g is semisimple if rad(g) = 0, that is, if g contains
no non-zero solvable ideals.

Lemma 12.2. The Lie algebra g/rad(g) is semisimple, that is, it has zero radical.

Proof. Suppose that s is a solvable ideal in g/rad(g). Then if s′ denotes the preimage of s in g, we see
that s′ is an ideal of g, and moreover it is solvable since rad(g) and s = s′/rad(g) as both solvable. But
then by definition we have s′ ⊆ rad(g) so that s′ = rad(g) and s = 0 as required. �

Thus we have shown that any Lie algebra g contains a canonical solvable ideal rad(g) such that
g/rad(g) is a semisimple Lie algebra. So, in some sense at least, every finite dimensional Lie algebra is
“built up” out of a semisimple Lie algebra and a solvable one.

Definition 12.3. Suppose that g, h are Lie algebras, and we have a homomorphism φ : g → Derk(h),
the Lie algebra of derivations18 on h. Then it is straight-forward to check that we can form a new Lie
algebra h o g, the semi-direct product19 of g and h by φ which as a vector space is just h ⊕ g, and where
the Lie bracket is given by:

[(x1, y1), (x2, y2)] = ([x1, x2] + φ(y1)(x2)− φ(y2)(x1), [y1, y2]),

where x1, x2 ∈ h, y1, y2 ∈ g. The Lie algebra h, viewed as the subspace {(x, 0) : x ∈ h} of hog, is clearly
an ideal of ho g.

18Recall that the derivations of a Lie algebra are the linear maps α : h→ h such that α([x, y]) = [α(x), y] + [x, α(y)].
19This is the Lie algebra analogue of the semidirect product of groups, where you build a group H oG via a map from G to

the automorphisms (rather than derivations) of H .
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In fact, semidirect products correspond to a relatively simple kind of extension; see Appendix 3.
In characteristic zero, every Lie algebra g is built out of rad(g) and g/rad(g) as a semidirect product.

Theorem 12.4. (Levi’s theorem) Let g be a finite dimensional Lie algebra over a field k of characteristic zero, and
let r be its radical. Then there exists a semisimple subalgebra s of g such that g ∼= ro s.

Note that in particular s is isomorphic to g/rad(g). We will not prove this theorem in this course.

13. CARTAN’S CRITERION FOR SEMISIMPLICITY

The Killing form gives us a way of detecting when a Lie algebra is semisimple. Recall that a bilinear
form B : V × V → k is said to be nondegenerate if {v ∈ V : ∀w ∈ V,B(v, w) = 0} = {0}. We first note
the following simple result.

Lemma 13.1. A finite dimensional Lie algebra g is semisimple if and only if it does not contain any non-zero
abelian ideals.

Proof. Clearly if g contains an abelian ideal, it contains a solvable ideal, so that rad(g) 6= 0. Conversely,
if s is a non-zero solvable ideal in g, then the last term in the derived series of s will be an abelian ideal
of g (check this!). �

We have the following simple characterisation of semisimple Lie algebras.

Theorem 13.2. A Lie algebra g is semisimple if and only if the Killing form is nondegenerate.

Proof. Let g⊥ = {x ∈ g : κ(x, y) = 0,∀y ∈ g}. Then by Lemma 10.7 g⊥ is an ideal in g, and clearly
the restriction of κ to g⊥ is zero, so by Cartan’s Criterion, and Lemma 10.6 the ideal g⊥ is solvable. It
follows that if g is semisimple we must have g⊥ = {0} and hence κ is non-degenerate.

Conversely, suppose that κ is non-degenerate. To show that g is semisimple it is enough to show
that any abelian ideal of g is trivial, thus suppose that a is an abelian ideal. Then if x ∈ a and y ∈ g
is arbitrary, the composition ad(x)ad(y)ad(x) must be zero, since ad(y)ad(x)(z) ∈ a for any z ∈ g, as
a is an ideal, and since a is abelian ad(a)(b) = 0 for all a, b ∈ a. But then clearly (ad(y)ad(x))2 = 0,
so that ad(y)ad(x) is nilpotent and κ(x, y) = 0 for all y ∈ g. But then a ⊆ g⊥ = {0} and a = {0} as
required. �

14. SIMPLE AND SEMISIMPLE LIE ALGEBRAS

Definition 14.1. We say that a Lie algebra is simple if it is non-Abelian and has no nontrivial proper
ideal. We now show that this notion is closed related to our notion of a semisimple Lie algebra.

Proposition 14.2. Let g be a semisimple Lie algebra, and let I be an ideal of g. Then g = I ⊕ I⊥.

Proof. Since g is semisimple, the Killing form is nondegenerate, hence by Lemma 22.11 in Appendix 1,
we have

(14.1) dim(I) + dim(I⊥) = dim(g).

Now consider I ∩ I⊥. The Killing form of g vanishes identically on I ∩ I⊥ by definition, and since it is
an ideal, the Killing form of I∩I⊥ is just the restriction of the Killing form of g. It follows from Cartan’s
Criterion that I ∩ I⊥ is solvable, and hence since g is semisimple we must have I ∩ I⊥ = 0. But then
by Equation (14.1) we must have g = I ⊕ I⊥ as required (note that this is a direct sum of Lie algebras,
since [I, I⊥] ⊂ I ∩ I⊥). �

Proposition 14.3. Let g be a semisimple Lie algebra.
(1) Any ideal and any quotient of g is semisimple.
(2) Then there exist ideals g1, g2, . . . gk ⊆ g which are simple Lie algebras and for which the natural map:

g1 ⊕ g2 ⊕ . . .⊕ gk → g,

is an isomorphism. Moreover, any simple ideal a ∈ g is equal to some gi (1 ≤ i ≤ k). In particular the
decomposition above is unique up to reordering, and g = Dg.

Proof. For the first part, if I is an ideal of g, by the previous Proposition we have g = I ⊕ I⊥, so that
the Killing form of g restricted to I is nondegenerate. Since this is just the Killing form of I , Cartan’s
criterion shows that I is semisimple. Moreover, clearly g/I ∼= I⊥ so that any quotient of g is isomorphic
to an ideal of g and hence is also semisimple.
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For the second part we use induction on the dimension of g. Let a be a minimal non-zero ideal in g.
If a = g then g is simple, so we are done. Otherwise, we have dim(a) < dim(g). Then g = a ⊕ a⊥, and
by induction a⊥ is a direct sum of simple ideals, and hence clearly g is also.

To show the moreover part, suppose that g = g1 ⊕ g2 ⊕ . . . ⊕ gk is a decomposition as above and a
is a simple ideal of g. Now as z(g) = {0}, we must have 0 6= [g, a] ⊂ a, and hence by simplicity of a it
follows that [g, a] = a. But then we have

a = [g, a] = [

k⊕
i=1

gi, a] = [g1, a]⊕ [g2, a]⊕ . . .⊕ [gk, a],

(the ideals [gi, a] are contained in gi so the last sum remains direct). But a is simple, so direct sum
decomposition must have exactly one nonzero summand and we have a = [gi, a] for some i (1 ≤ i ≤ k).
Finally, using the simplicity of gi we see that a = [gi, a] = gi as required. To see that g = Dg note that it
is now enough to check it for simple Lie algebras, where it is clear20.

�

15. WEYL’S THEOREM

In this section we assume that our field is algebraically closed of characteristic zero.
In this section we study the representations of a semisimple Lie algebra. Recall from Section 4 the

definition of an irreducible representation. Appendix 1 in Section 23 reviews the other basic represent-
ation theory that we will need in this section. Our goal is to show, just as for representations of a finite
group over C, that every representation is a direct sum of irreducibles.

If (V, ρ) and (W,σ) are representations of g, then a linear map φ : V → W is a homomorphism of
representations if

φ(ρ(x)(v)) = σ(x)(φ(v)) ∀x ∈ g, v ∈ V.
We will write Homg(V,W ) for the space of homomorphisms from V to W . To make the notation less
cluttered, where there is no danger for confusion we will often suppress the notation for the map
ρ : g → gl(V ), so that, for example, the condition for φ to be a homomorphism will be written simply
as φ(x(v)) = x(φ(v)).

The following Lemma was on a problem sheet, and is proved in Appendix 1 (the proof is identical
to the corresponding results for representations of groups). For it we suppose that our field k is algeb-
raically closed (but not necessarily of characteristic zero).

Lemma 15.1. (Schur’s Lemma). Let (V, ρ) and (W,σ) be irreducible representations of g. Then if φ : V →W is
a homomorphism of g-representations, φ is either zero or an isomorphism. Moreover, if k is algebraically closed,
then Homg(V,W ) is one-dimensional.

Definition 15.2. We say that a representation V of a Lie algebra is semisimple if any subrepresentation
has a complement, that is, if U is a subrepresentation of V then there is a subrepresentation W such
that V = U ⊕W .

Lemma 15.3. Let V be a representation of g.
i) V is semisimple if any surjection of representations q : V →W has a right inverse.

ii) If the representations of g are semisimple then they are completely reducible.

Proof. For the first part, if U is a subrepresentation of V , then consider the quotient map q : V → V/U .
If s is a right inverse for q, then we claim T = im(s) is a complement to U . Certainly if w ∈ U ∩ T the
q(w) = 0, since U is the kernel of q. But then as w ∈ T we have w = s(u) for some u ∈ V/U , and hence
u = q(s(u)) = q(w) = 0, so that w = s(0) = 0. Hence U and T form a direct sum, and since s is clearly
injective, by dimension it U ⊕ T = V as required.

For the second part, use induction on dim(V ). If V is irreducible then we are clearly done, otherwise
V has a proper subrepresentation U . But then U has a complement in V , say V = U ⊕ T . But since
dim(U),dim(T ) < dim(V ), they are completely reducible, hence V is completely reducible as required.

�

Remark 15.4. In the problem sets it is checked that if a representation is semisimple then any subrepres-
entation and any quotient representation of it is also semisimple. Knowing this, the above proof shows
that if a representation is semisimple then it is completely reducible (whereas in the above we showed
that if all representations of a Lie algebra g are semisimple, then they are all completely reducible.)

20This is one reason for insisting simple Lie algebras are nonabelian.
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Remark 15.5. Given a surjective map of g-representations q : V →W , then a right inverse s : W → V as
above is also often called a section of q, and we say that s splits the map q.

Recall from Section 10 the definition of the trace form tV associated to a representation (V, ρ).

Lemma 15.6. Suppose that g is semisimple and (V, ρ) is a representation of g. Then the radical of tV is precisely
the kernel of ρ. In particular if (V, ρ) is faithful then tV is nondegenerate.

Proof. The image ρ(g) ⊆ gl(V ) of g is a semisimple Lie algebra (since g is) and the statement of the
Lemma is exactly that tV is nondegenerate on ρ(g). But the radical r = rad(tV ) is an ideal of ρ(g). Now
Proposition 11.2 shows that if we let (Dkr)k≥0 be the derived series of r, we must have Dk+1r ( Dkr
whenever Dkr 6= {0}, thus r must be solvable. Since ρ(g) is semisimple, this forces the radical to be
zero as required. �

15.1. Casimir elements. In this section we construct, for representations V of a Lie algebra g whose
trace form is nondegenerate, a non-zero g-homomorphism from V to itself. We then show that if g is
semisimple, this construction can be applied whenever ker(ρ) 6= g. We being with a basic fact which
we essentially saw in our examples of Lie algebras at the start of the course.

Lemma 15.7. If V is a vector space then the map ad : gl(V ) → gl(gl(V )) given by ad(a)(x) = ax − xa
has image in Derk(Endk(V )), that is ad(a)(x.y) = ad(a).x + x.ad(a)(y). It follows that the composition map
gl(V )× gl(V )→ gl(V ) induces a map of gl(V )-representations

m : gl(V )⊗ gl(V )→ gl(V ), x⊗ y 7→ x ◦ y

Proof. The first statement is an easy calculation:

ad(a)(x).y + x.ad(a)(y) = (ax− xa).y + x(ay − ya)

= a.xy − xay + xay − xy.a
= ad(a)(x.y).

For the second part of the Lemma, one simply notes that for a, x, y ∈ gl(V ) we have

m(a.(x⊗ y)) = m(ad(a)(x)⊗ y + x⊗ ad(a)(y))

= ad(a)(x).y + x.ad(a)(y)

= ad(a)(x.y) = ad(a)(m(x⊗ y)).

so that m is a homomorphism of gl(V )-representations. �

Definition 15.8. Suppose that (V, ρ) is a g-representation and that its trace form β = tV is non-
degenerate. Then β induces an isomorphism τ : g → g∗, and hence we have a sequence of homo-
morphisms of g-representations

Homk(g, g)
θ−1

// g∗ ⊗ g
τ−1⊗1 // g⊗ g

ρ⊗ρ // gl(V )⊗ gl(V )
m // gl(V ).

where the first map is the inverse of the map θ from Lemma 22.4, and the mapm : gl(V )⊗gl(V )→ gl(V )
is given by the composition of the map of the previous Lemma. (Note that the first two maps are
isomorphisms.)

As the identity element idg is clearly an invariant vector in Homk(g, g), applying to it the above se-
quence of g-homomorphisms yields an invariant vector CV in Homk(V, V ), that is, a g-homomorphism
from V to itself. We call this the Casimir operator.

We can make the Casimir operator explicit as follows: Pick a basis {x1), . . . , xn)} of g. The nonde-
generacy of the form tV on g implies that there is a unique basis {y1, . . . , yn} which is dual to the basis
{x1, . . . , xn} in the sense that tV (xi), yj)) = 1 if i = j and is 0 otherwise. If τ : g→ g∗ the it is clear that
y) = τ−1(δi), where {δi : 1 ≤ i ≤ n} denotes the basis of g∗ dual to the basis {x1, . . . , xn}.

Now the identity element of Homk(g), g) corresponds to the element
∑n
i=1 δi ⊗ xi, where {δi : 1 ≤

i ≤ n} is the dual basis to {x1, . . . , xn}, as can be checked by computing on the basis {x1, . . . , xn}. Then
it follows immediately from the definitions that

CV =

n∑
i=1

ρ(yi)ρ(xi),

Lemma 15.9. Let (V, ρ) be a representation of a Lie algebra g such that tV is non-degenerate on g. Then the
Casimir operator CV satisfies tr(CV ) = dim(g). In particular it is non-zero.
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Proof. This is immediate from the above formula for CV .

tr(CV ) = tr(
n∑
i=1

ρ(yi), ρ(xi)) =

n∑
i=1

tr(ρ(yi)ρ(xi)) =

n∑
i=1

tV (yi, xi) =

n∑
i=1

1 = dim(g).

�

Now suppose that g is semisimple, and (V, ρ) an arbitrary representation of g. While it is not the
case that the trace form tV must be non-degenerate, the following Lemma identifies its radical:

Lemma 15.10. Suppose that g is semisimple and (V, ρ) is a representation of g. Then the radical of tV is precisely
the kernel of ρ. In particular if (V, ρ) is faithful then tV is nondegenerate.

Proof. The image ρ(g) ⊆ gl(V ) of g is a semisimple Lie algebra (since g is) and the statement of the
Lemma is exactly that tV is nondegenerate on ρ(g). But the radical r = rad(tV ) is an ideal of ρ(g). Now
Proposition 11.2 shows that if we let (Dkr)k≥0 be the derived series of r, we must have Dk+1r ( Dkr
whenever Dkr 6= {0}, thus r must be solvable. Since ρ(g) is semisimple, this forces the radical to be
zero as required. �

Definition 15.11. If g is a semisimple Lie algebra and (V, ρ) is a g-representation on which g acts non-
trivially (so that ρ(g) 6= {0}) then, by Lemma 15.10, the above construction can be applied to V as
a representation21 of the semisimple Lie algebra ρ(g), yielding a g-endomorphism22 of V , with trace
tr(CV ) = dim(ρ(g)). Thus for any representation (V, ρ) of a semisimple Lie algebra g with ρ(g) 6= {0}
we obtain a non-zero g-endomorphism CV of V which we will call the Casimir of V .

Remark 15.12. If g is simple, rather than just semisimple, then by Schur’s Lemma Homk(g, g)g =
Homg(g, g) is one-dimensional (the scalar multiples of the identity). Since Homk(g, g) ∼= g ⊗ g as g-
representations, the invariants (g ⊗ g)g in g ⊗ g must also be one-dimensional (the image of the scalar
multiples of the identity under any isomorphism). If we pick a non-zero element C ∈ (g ⊗ g)g, then,
for any representation on which g acts non-trivially, there is a non-zero scalar λV such that

CV = λV .m ◦ (ρ⊗ ρ)(C)

Thus the Casimir operators CV , up to scaling, all come from the same element of g⊗ g.

Example 15.13. Let us take g = sl2. Then the trace form t(x, y) = tr(x.y) is non-degenerate and
invariant, with

t(e, f) = t(e, h) = 1, t(h, h) = 2, t(e, e) = t(f, f) = t(e, h) = t(f, h) = 0

Thus the corresponding isomorphism τ : sl2 → sl∗2 gives

(τ−1 ⊗ 1)(θ−1(id) = f ⊗ e+
1

2
h⊗ h+ e⊗ f.

For any sl2-representation (V, ρ) we thus get a g-endomorphism of V by applying m ◦ (ρ ⊗ ρ) to this
element, namely ρ(e)ρ(f)+ 1

2ρ(h)2+ρ(f)ρ(e). This is exactly the operator used in Sheet 3 of the problem
set.

Recall that if (V, ρ) is a representation of g, then V g = {v ∈ V : ρ(x)(v) = 0,∀x ∈ g} is the subrep-
resentation of invariants in V . We also will need g.V = span{ρ(x)(v) : x ∈ g, v ∈ V }. It is clearly a
subrepresentation of V .

Lemma 15.14. Let (V, ρ) be representation of a semisimple Lie algebra g. Then V = V g ⊕ g.V . Moreover, if
q : V →W is a surjective homomorphism, then q(V g) = W g.

Proof. We prove the statement by induction on dim(V ) (the case dim(V ) = 0 being trivial). If V = V g

the certainly g.V = {0} and the statement holds. Thus we may assume that V 6= V g, so that ρ(g) 6= {0}.
Let CV be the Casimir operator of V . Since it is a g-endomorphism, if V =

⊕
Vλ is the decomposition

of V into the generalised eigenspaces of CV , each Vλ is a subrepresentations of V . Since if the statement
of the Lemma holds for representations U and W it certainly holds for their direct sum U ⊕W , we are
done by induction unless CV has exactly one generalised eigenspace, i.e. V = Vλ. But then dim(V ).λ =

tr(CV ) = dim(ρ(g)), so that λ 6= 023, and hence CV is invertible. Since it is clear from the definition

21with action map the inclusion map from ρ(g) into gl(V ).
22Since by construction CV commutes with every element of ρ(g).
23This is where we use that the characteristic of the field is 0.



LIE ALGEBRAS 23

of CV that V g ⊆ ker(CV ) we see that V g = {0}, and moreover V = CV (V ) ⊆ ρ(g)(ρ(g)(V )), so that
V = g.V , and we are done.

For the last part, note that if q : V → W is a homomorphism of representations, it is clear that
q(V g) ⊆W g and q(g.V ) ⊆ g.W . It follows that if q is surjective we must have both containments being
equalities. �

Corollary 15.15. Let g be a semisimple Lie algebra, and let q : V → W be a surjective g-homomorphism. Then
q has a right inverse.

Proof. Consider the natural map of vector spaces

q∗ : Hom(W,V )→ Hom(W,W ),

given by s 7→ q ◦ s. It is easy to see that q∗ is a surjective map of representations of g. Now clearly
Hom(W,W ) contains a copy of the trivial representation of g, given by the scalar multiples of the
identity. It follows from Lemma 15.14 that Hom(W,V ) must have a copy of the trivial representation
mapping to this subrepresentation. But this means there is a g-invariant linear map s : W → V such
that q∗(s) = q ◦ s = idW , i.e. the map q has a splitting. The fact that V is semisimple now follows from
Lemma 15.3. �

Theorem 15.16. (Weyl’s theorem) Let V be a finite dimensional representation of a semisimple Lie algebra over
an algebraically closed field k of characteristic zero. Then V is semisimple, and hence completely reducible.

Proof. Lemma 15.3 shows that it is enough to show that if q : V →W is a surjective map of g-represen-
tations, then q has a right inverse s : W → V . Corollary 15.15 produces the required right inverse. �

16. THE JORDAN DECOMPOSITION

Unless explicitly stated to the contrary, in this section we work over a field k which is algebraically closed of
characteristic zero.

If V is a vector space and x ∈ End(V ), then we have the natural direct sum decomposition of V into
the generalized eigenspaces of x. This can be viewed as giving a decomposition of the endomorphism
x in a semisimple (or diagonalisable) and nilpotent part, as the next Lemmas show.

Lemma 16.1. If x, y ∈ End(V ) are commuting linear maps then if both are nilpotent, so is x+ y, and similarly
if both are semisimple, so is x+ y.

Proof. For semisimple linear maps this follows from the fact that if s is a semisimple linear map, its
restriction to any invariant subspace is again semisimple. For nilpotent linear maps it follows because

(x+ y)n =

n∑
k=0

(
n

i

)
xkyn−k,

so that if n is large enough, e.g. n ≥ 2 dim(V ), each of these terms will be zero (since x and y are
nilpotent). �

Proposition 16.2. Let V be a finite dimensional vector space x ∈ End(V ). Then we may write x = xs + xn
where xs where xs is semisimple and xn is nilpotent, and xs and xn commute, i.e. [xs, xn] = 0. Moreover, this
decomposition is unique, and if U is a subspace of V preserved by x, it is also preserved by xs, xn

Proof. Let V =
⊕

λ∈k Vλ be the generalised eigenspace decomposition of V , and let pλ : V → Vλ be the
projection with with kernel

⊕
µ6=λ Vµ. If we set xs to be

∑
λ λ.pλ, clearly xs and x commute, and their

difference xn = x− xs is nilpotent. This establishes the existence of the Jordan decomposition.
To see the uniqueness, suppose that x = s+n is another such decomposition. Now since s commutes

with x, it must preserve the generalised eigenspaces of x, and so, since xs is just a scalar on each Vλ,
clearly s commutes with xs. It follows s and n both commute with xs and xn. But then by Lemma 16.1
xs − s and n− xn are semisimple and nilpotent respectively. Since s+ n = xs + xn they are equal, and
the only endomorphism which is both semisimple and nilpotent is zero, thus s = xs and n = xn as
required.

Finally, to see that xs and xn preserve any subspace U which is preserved by x, note that if U =⊕
λ∈k Uλ is the decomposition of U into generalised eigenspaces of x, then clearly Uλ ⊆ Vλ, (∀λ ∈ k)

and since xs is a scalar on Vλ it certainly preserves Uλ, and hence all of U . As xn = x − xs clearly xn
also preserves U .

�
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Lemma 16.3. Let V be a vector space and x ∈ End(V ). If x is semisimple then

ad(x) : End(V )→ End(V )

is also semisimple, and similarly if x is nilpotent. In particular, if x = xs + xn is the Jordan decomposition of
x, then ad(x) = ad(xs) + ad(xn) is the Jordan decomposition of ad(x). In other words, ad(x)s = ad(xs) and
ad(x)n = ad(xn).

Proof. Suppose first that x ∈ End(V ) be semisimple. Then there is a basis {ei : 1 ≤ i ≤ n} of V and
scalars {λi ∈ k : 1 ≤ i ≤ n} such that x(ei) = λiei, that is, ei is an eigenvector of x with eigenvalue λi.
(Note the λi are thus not necessarily distinct). Let {δ1 . . . , δn} be the basis of V ∗ dual to {e1, . . . , en}.
Then for any i, j ∈ {1, . . . , n}, x(δj)(ei) = −δj(x(ei)) = −λiδj(ei), so that x(δj) = −λjδj .

Now if α ∈ End(V ) is arbitrary, the matrix A = (aij) ∈ Matn(k) associated to it is given by α(ej) =∑n
i=1 aijei, (∀j, 1 ≤ j ≤ n). It follows that α =

∑
i,j aij(δj .ei), that is, under the identification α 7→ A =

(aij), the elementary matrices Eij correspond to δj .ei. But then by the previous paragraph,

ad(x)(δj .ei) = x ◦ (δj .ei)− (δj .ei) ◦ x = δjx(ei) + x(δj).ei = (λi − λj)(δj .ei)
so that {δj .ei, 1 ≤ i, j ≤ n} is a basis of eigenvectors for ad(x) and hence ad(x) is semisimple.

If x is nilpotent, then ad(x) = λx − ρx where λx and ρx denote left and right multiplication by x.
Since λx and−ρx clearly commute and are both nilpotent if x is, it follows from Lemma 16.1 that ad(x)
is nilpotent.

Since 0 = ad([xs, xn]) = [ad(xs), ad(xn)], it follows that the decomposition ad(x) = ad(xs) + ad(xn)
satisfies the properties characterizing ad(x)s, ad(x)n and so the final sentence follows from the unique-
ness of the decomposition in Proposition 16.2. �

We now return to Lie algebras. The above linear algebra allows us to define an “abstract” Jordan
decomposition for the elements of any Lie algebra (over an algebraically closed field).

Definition 16.4. Suppose that g is a Lie algebra and x ∈ g. The endomorphism ad(x) ∈ gl(g) has a
unique Jordan decomposition ad(x) = ad(x)s + ad(x)n in gl(g). Then if s, n ∈ g are such that ad(s) =
ad(x)s and ad(n) = ad(x)n, we say the Lie algebra elements s, n are an abstract Jordan decomposition of
x.

Note that that if g = gl(V ) for some vector space V , then Lemma 16.3 shows that the abstract Jordan
decomposition for an element x ∈ gl(V ) is just the naive one (i.e. the one for x thought of as a linear
map from V to itself).

For a Lie algebra g, the space Derk(g) of k-derivations of g is a Lie algebra, which we may view as
a subalgebra of the Lie algebra gl(g). The map ad : g → gl(g) is in fact a Lie algebra homomorphism
from g into Derk(g). Its image is denoted Innk(g).

Lemma 16.5. Let a be a semisimple Lie algebra.
(1) Suppose that a is an ideal of a Lie algebra g. Then there is a unique ideal I in g such that g is the direct

sum of ideals a⊕ I .
(2) All derivations of a are inner, that is, Derk(a) = Innk(a).

Proof. For the first part, let κ be the Killing form of g and let a⊥ = {x ∈ g : κ(x, a) = 0,∀a ∈ a}, then
a⊥ is an ideal in g. Now a ∩ a⊥ is an ideal of g on which the Killing form vanishes, so that by Cartan’s
Criterion24 it is solvable. But since it is also an ideal of the semisimple Lie algebra a, it follows that
a ∩ a⊥ = {0}. Now since κ is nondegenerate on a, we also have dim(a) + dim(a⊥) = dim(g) so that
g = a⊕ a⊥ as required25. For uniqueness, note that if g = a⊕ I , is a direct sum of ideals, then [a, I] = 0
and so clearly I ⊆ a⊥.

For the second part, note that the Lie algebra of derivations D = Derk(a) is a subalgebra of gl(a)
containing the image I of ad as the subalgebra of “inner derivations” which, since it is isomorphic to
a, is semisimple. We first claim that this subalgebra is an ideal: indeed if ad(x) is any inner derivation,
and δ ∈ D, then

[δ, ad(x)](y) = δ[x, y]− [x, δ(y)]

= [δ(x), y]

= ad(δ(x))(y).

24Again we use the fact that the Killing form on an ideal is the restriction of the Killing form for the whole Lie algebra.
25To see the claim about dimensions, note that κ gives a map θ : g → a∗, where θ(x)(a) = κ(x, a) for x ∈ g, a ∈ a. Clearly

ker(θ) = a⊥. Since κ is non-degenerate on a, the map θ is injective when restricted to a, and hence it is surjective. But then it’s
kernel has the required dimension.
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thus [δ, ad(x)] ∈ I , and hence I is an ideal in D. Now since I is semisimple, by the first part we see
that D = I ⊕ I⊥, thus it is enough to prove that I⊥ = {0}. Thus suppose that δ ∈ I⊥. Then since
[I, I⊥] ⊂ I ∩ I⊥ = {0}we see that

[δ, ad(x)] = ad(δ(x)) = 0,∀x ∈ a,

so that, again by the injectivity of ad, we have δ = 0 and so I⊥ = {0} as required. �

Lemma 16.6. Let a be a Lie algebra and Derk(a) ⊂ gl(a) the Lie algebra of k-derivations on a. Let δ ∈ Derk(a).
If δ = s+ n is the Jordan decomposition of δ as an element of gl(a), then s, n ∈ Derk(a).

Proof. We may decompose a =
⊕

λ aλ where aλ is the generalized eigenspace of δ with eigenvalue
λ ∈ k say. If x ∈ aλ and y ∈ aµ, then an easy induction shows that

(δ − (λ+ µ))n([x, y]) =

n∑
r=0

(
n

r

)
[(δ − λ)r(x), (δ − µ)n−r(y)]

hence [x, y] ∈ aλ+µ. It follows immediately that s is a derivation on a, and since n = δ − s we see that
n is also. �

Theorem 16.7. Let g be a semisimple Lie algebra. Then given any x ∈ g has an abstract Jordan decomposition:
that is, there exist unique elements s, n ∈ g such that x = s + n and [s, n] = 0, and ad(s) is semisimple, while
ad(n) is nilpotent.

Proof. As noted above, since g is semisimple, ad : g → gl(g) is an embedding, and the conditions on s
and n show that if they exist, they must satisfy ad(s) = ad(x)s and ad(n) = ad(x)n, where ad(x) =
ad(x)s + ad(x)n is the Jordan decomposition of ad(x) ∈ gl(g). Thus it remains to show that ad(x)s
and ad(x)n lie in the image of ad. But ad(x) acts as a derivation on I = im(ad), so by Lemma 16.6
so do ad(x)s and ad(x)n. But then by Lemma 16.5, we see that ad(x)s = ad(s) for some s ∈ g and
ad(x)n = ad(n) for some n ∈ g. The conditions on s, n ∈ g then follow from the injectivity of ad, and
we are done. �

Remark 16.8. One can show that the Jordan decomposition is compatible with representations, in the
sense that if (V, ρ) is a representation of a semsimple Lie algebra g and x = s + n is the Jordan de-
composition of x ∈ g, then ρ(x) = ρ(s) + ρ(n) is the (naive) Jordan decomposition of ρ(x) ∈ gl(V ).
The main point, of course, is to show that ρ(s) and ρ(n) are, respectively, semisimple and nilpotent
endomorphisms of V . The proof, which we shall not give here, is similar to the proof of the existence
of the abstract Jordan form, except that one also needs to use Weyl’s theorem.

17. THE CARTAN DECOMPOSITION OF A SEMISIMPLE LIE ALGEBRA

In this section we work over an algebraically closed field k of characteristic zero.
Although the Cartan decomposition makes sense in any Lie algebra, we will now restrict attention

to semisimple Lie algebras g, where we can give much more precise information about the structure of
the root spaces than in the general case.

Proposition 17.1. Suppose that g is a semisimple Lie algebra and h is a Cartan subalgebra.
(1) Let κ be the Killing form. Then κ(gλ, gµ) = 0 unless λ+ µ = 0.
(2) If α ∈ Φ, then −α ∈ Φ.
(3) The restriction of κ to h is nondegenerate.

Proof. For the first part, from Lemma 9.1 we know that [gλ, gµ] ⊆ gλ+µ. Thus if x ∈ gλ, y ∈ gµ, we see
that ad(x)ad(y)(gν) ⊆ gλ+µ+ν . But then picking a basis of g compatible with the Cartan decomposition
it is clear the matrix of ad(x)ad(y) will have no non-zero diagonal entry unless λ + µ = 0, hence
κ(x, y) = 0 unless λ+ µ = 0 as required.

For the second part, recall that if α is a root, then α 6= 0 and gα 6= 0. If −α /∈ Φ then g−α = 0 and so
g⊥α = g, which is impossible since κ is nondegenerate.

For the third part note that h⊥ contains all the gα for α ∈ Φ by part (1). Since κ is nondegenerate, by
dimension counting this must be equal to h⊥. It follows that κ|h must be nondegenerate as claimed. �

Lemma 17.2. Let g be a semisimple Lie algebra and h a Cartan subalgebra. Then h is abelian. Moreover, all the
elements of h are semisimple.
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Proof. We show that [h, h] = Dh = 0. By part (3) of Proposition 17.1 it is enough to show that Dh lies in
the radical of κ|h. Suppose that x, y ∈ h. Then we claim that:

(17.1) κ(x, y) = tr(ad(x)ad(y)) =
∑
λ∈Φ

dim(gλ)λ(x)λ(y).

Indeed each gλ (for λ ∈ Φ∪ {0}) is an h-subrepresentation, so we may compute the trace of ad(x)ad(y)
on each in turn and then add the resulting expressions. Now h is solvable, so we may find a basis for
gλ with respect to which each ad(x) has an upper triangular matrix, and since ad(x) has the unique
eigenvalue λ(x) on gλ, the diagonal entries of the matrix must all equal λ(x). It follows that the matrix
of ad(x)ad(y) is upper triangular with diagonal entries λ(x)λ(y), and so summing over λ ∈ Φ∪{0}we
obtain Equation (17.1). Now λ is a one-dimensional representation of h, so it vanishes on Dh. It is then
immediate from Equation (17.1) that κ(x, y) = 0 for any x ∈ Dh and all y ∈ h, and so if x ∈ Dh then
x ∈ rad(κ|h) = {0} as claimed.

Next suppose that x ∈ h has Jordan decomposition x = s+ n in g. Now ad(s), ad(n) must preserve
h since ad(x) does, and thus since h is self-normalising, we see that s, n ∈ h. Thus it is enough to show
that h contains no nilpotent elements. But if n ∈ h is nilpotent, then ad(n) is nilpotent on g, and hence
on each gλ. But then 0 = tr(ad(n)|gλ) = dim(gλ)λ(n), so that λ(n) = 0. But then we see from Equation
(17.1) that n is in the radical of κ|h, so n = 0 as required. �

Remark 17.3. Since the restriction of κ to h is non-degenerate, it yields an isomorphism from h∗ to h,
indeed if λ ∈ h∗ then there is a unique tλ ∈ h such that κ(tλ, y) = λ(y) for all y ∈ h, and the assignment
λ→ tλ is clearly linear. (See the notes on bilinear forms for more details.)

Remark 17.4. Some textbooks study semisimple Lie algebras g via maximal toral subalgebras. These are
subalgebras of g consisting entirely of semisimple elements, maximal with this property. It follows
readily from the above Lemma and the Cartan decomposition that Cartan subalgebras of semisimple
Lie algebras are maximal toral subalgebras, though we will not use this fact.

Proposition 17.5. Let g be a semisimple Lie algebra and let h be a Cartan subalgebra, and g = h
⊕

α∈Φ gα the
associated Cartan decomposition.

(1) If x ∈ gα, y ∈ g and h ∈ h then

κ(h, [x, y]) = α(h)κ(x, y).

(2) The roots α ∈ Φ span h∗.
(3) The subspace hα = [gα, g−α] ⊂ h is one-dimensional and α(hα) 6= 0.
(4) If α ∈ Φ, we may find eα ∈ gα, fα ∈ g−α and hα ∈ hα so that the map e 7→ eα, f 7→ fα and h 7→ hα

gives an embedding sl2 → gα ⊕ hα ⊕ g−α.

Proof. For (1) we have

κ(h, [x, y]) = κ([h, x], y) = κ(α(h)x, y) = α(h)κ(x, y),

as required.
For (2), suppose that W = span{Φ}. If W is a proper subspace of h∗, then we may find an h ∈ h

such that α(h) = 0 for all α ∈ Φ. But then it follows from (17.1) that κ(h, x) = 0 for all x ∈ h, which
contradicts the nondegeneracy of the form κ|h.

For (3), as in the remark above, since κ|h is nondegenerate it yields an isomorphism h∗ → h, given by
λ 7→ tλ where κ(tλ, h) = λ(h) for all h ∈ h. Since we know that Φ spans h∗, it follows that {tα : α ∈ Φ}
spans h. Suppose that x ∈ gα, y ∈ g−α. Then by (1) we see that [x, y] = κ(x, y)tα, so that hα ⊆ span{tα}.
Since κ is nondegenerate on gα ⊕ g−α we may find x ∈ gα, y ∈ g−α such that κ(x, y) 6= 0, hence
hα = span{tα} as required.

Next we wish to show that α(hα) 6= 0. For this note that if α(hα) = 0 then pick x ∈ gα, y ∈ g−α so
that z = [x, y] ∈ hα is nonzero. Then [z, x] = α(z)x = 0 = −α(z)y = [z, y], so that a = k-span{x, y, z}
is a solvable subalgebra of g. In particular, by Lie’s theorem we may find a basis of g with respect to
which the matrices of ad(a) act by upper triangular matrices, and so ad(z) = ad([x, y]) acts by a strictly
upper triangular matrix, and hence is nilpotent. Since we also know z ∈ h we have ad(z) is semisimple,
hence ad(z) is both semisimple and nilpotent, which implies it is zero, contradicting z 6= 0.

Given α(hα) 6= 0, it is clear that there is a unique hα ∈ hα such that α(hα) = 2. Next if eα ∈ gα is
nonzero, then using the nondegeneracy of κ and part (1) we can pick fα ∈ g−α so that [eα, fα] = hα It
is easy to check that {eα, fα, hα} span an copy of sl2 in g which establishes (4).

�
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Remark 17.6. A triple of elements {e, f, h} in a Lie algebra g which obey the relations of the standard
generators of sl2 (that is, [e, f ] = h, [h, e] = 2e, [h, f ] = 2f ) is called an sl2-triple. Given α ∈ Φ, the copy
of sl2 attached to α in the previous proposition will be denoted slα.

Lemma 17.7. Let g be a semisimple Lie algebra and h a Cartan subalgebra with Cartan decomposition g =
h
⊕

α∈Φ gα. Then
• The root spaces gα are one-dimensional.
• If α ∈ Φ and cα ∈ Φ for some c ∈ Z then c = ±1.

Proof. Choose a nonzero vector eα ∈ gα. Then as above we may find an element e−α ∈ g−α such that
[eα, e−α] = hα ∈ h (since κ restricted to gα ⊕ g−α is nondegenerate). We can then choose e−α so that
α(hα) = 2. Consider the subspace

M = k.eα ⊕ k.hα ⊕
⊕
p<0

gpα

of g; this is a finite direct sum as g is finite-dimensional. Then since ad(eα)(eα) = 0, and [gα, g−α] =
k.hα, and [eα, hα] = 2eα, it is easy to see that M is stable under eα, e−α and hα. We compute the trace
of hα on M in two ways: on the one hand, it is a commutator and so has trace zero. On the other hand
it acts semisimply on each of the direct sums defining M , so that

0 = tr(hα) = α(hα) +
∑
p<0

dim(gpα).pα(hα)

= α(hα)

(
1−

∑
p>0

p. dim(g−pα)

)
.

Since we know that α(hα) 6= 0, the only way the above equality can hold is if dim(g−pα) = 0 for p > 1
and dim(g−α) = 1. Since −α ∈ Φ if and only if α ∈ Φ, this completes the proof. �

17.1. Some refinements. We can refine somewhat the structure of the Cartan decomposition we have
already obtained, using the same techniques. Suppose that α, β are two roots in g such that β 6= kα
for k ∈ Z. Then we may consider the roots which have the form β + kα. Clearly, since g is finite
dimensional, there are integers p, q > 0 such that β + kα ∈ Φ for each k with −p ≤ k ≤ q, but neither
β − (p+ 1)α nor β + (q + 1)α are in Φ. This set of roots is called the α-string through β.

Proposition 17.8. Let β − pα, . . . , β + qα be the α-string through β. Then we have

β(hα) = κ(hα, tβ) =
2κ(tα, tβ)

κ(tα, tα)
= p− q.

In particular β − β(hα).α ∈ Φ. Moreover, if α ∈ Φ and c ∈ k has cα ∈ Φ then c ∈ {±1}.

Proof. We consider the subspace M =
⊕
−p≤k≤q gβ+kα. Pick eα ∈ gα and e−α ∈ g−α such that 0 6=

[eα, e−α] = hα and so that {eα, e−α, hα} form the standard generators of sl2 as above. It is clear that
eα, hα, e−α preserve M , so we tr|M (hα) = 0, and so, using the fact root spaces are 1-dimensional, we
have the identity: ∑

−p≤k≤q

(β + kα)(hα) = 0,

and so (
q(q + 1)/2− p(p+ 1)/2)α(hα) + (p+ q + 1)β(hα) = 0,

and so since p+ q + 1 6= 0 and α(hα) = 2, we obtain:

β(hα) = p− q.

as required. Since β − (p− q)α is certainly in the α-string through β it follows that β − β(hα).α ∈ Φ.
For the second part, taking β = cα we see that 2c = p− q ∈ Z, and so c = 1

2 (p− q). But now if p− q
is even we can immediately conclude as before that c = ±1. On the other hand, if p − q is odd, the
α-string through β = (p−q)

2 α has the form:

−(p+ q)

2
α, . . . ,

(p− q)
2

α, . . . ,
(p+ q)

2
α,

which clearly then contains 1
2α so that 1

2α ∈ Φ. But then we get a contradiction as α = 2( 1
2α). �
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18. h AND INNER PRODUCT SPACES

In this section we work over an algebraically closed field k of characteristic zero. Results of this section were only
sketched in the lectures and the proofs are non-examinable.

Recall that since κ|h is non-degenerate, it gives an isomorphism θ : h∗ → h. For λ ∈ h∗, we write tλ for
θ(λ), so that κ(tλ, h) = λ(h), (∀λ ∈ h∗, h ∈ h). Given a root α ∈ Φ, we have seen that gα⊕g−α⊕ [gα, g−α]
span a subalgebra isomorphic to sl2. We will denote this subalgebra as slα. We note the following
simple lemma.

Lemma 18.1. Let α ∈ Φ. Then if {eα, fα, hα} are a standard basis for slα then we have

(1)

tα =
hα

κ(eα, fα)
, hα =

2tα
κ(tα, tα)

.

Moreover κ(tα, tα).κ(hα, hα) = 4.
(2) If α, β ∈ Φ then κ(hα, hβ) ∈ Z and κ(tα, tβ) ∈ Q.

Proof. The first equality follows immediately from the results of the previous lecture. For the second,
note that

2 = α(hα) = κ(tα, hα) = κ(tα, κ(eα, fα)tα) = κ(tα, tα)κ(eα, fα),

and substitute into the first expression. The last expression follows from calculating κ(hα, hα) using
the second expression.

Using the Cartan decomposition to compute κ(x, y) for x, y ∈ h we see that (since we now know
that root spaces are one-dimensional) by Proposition 17.8:

κ(hα, hβ) =
∑
γ∈Φ

γ(hα)γ(hβ) ∈ Z.

Finally, the first part of the Lemma now immediately gives κ(tα, tβ) ∈ Q. �

Let (−,−) denote the bilinear form on h∗ which is obtained by identifying h∗ with h: that is

(λ, µ) = κ(tλ, tµ).

Clearly it is a nondegenerate symmetric bilinear form, and via the previous Lemma, (α, β) = κ(tα, tβ) ∈
Q for all α, β ∈ Φ.

Lemma 18.2. The Q-span of the roots Φ is a Q-vector space of dimension dimk(h
∗).

Proof. We know that Φ spans h∗, so we may pick a subset {α1, α2, . . . , αl} which forms a k-basis of h∗.
To prove the Lemma it is enough to show that every β ∈ Φ lies in the Q-span of the {αi : 1 ≤ i ≤ l}.
But now if we write β =

∑l
j=1 cjαj for cj ∈ k, then we see that (αi, β) =

∑l
i=1(αi, αj)cj . But the matrix

C = (αi, αj)i,j is invertible since (−,−) is nondegenerate, and its entries are in Q hence so are those of
C−1. But then we have (ci) = C−1((αi, β)), and the objects on the right-hand side all have Q-entries,
so we are done. �

Let h∗Q denote the Q-span of the roots. Although you are perhaps more used to inner product spaces
over R or C, the definition of a positive definite symmetric bilinear form makes perfectly good sense
over Q. We now show that (−,−) is such an inner product on h∗Q.

Proposition 18.3. The form (−,−) is positive definite on h∗Q.

Proof. Using the root space decomposition to compute κ we have

(λ, λ) = κ(tλ, tλ) =
∑
α∈Φ

α(tλ)2 =
∑
α∈Φ

(α, λ)2 ≥ 0,

and since we may have equality if and only if (α, λ) = 0 for all α ∈ Φ, and the elements of Φ span h∗ it
follows that the form is definite as required. �



LIE ALGEBRAS 29

19. BASES FOR ROOT SYSTEMS

In this section we study the geometry which we are led to by the configuration of roots associated to
a Cartan decomposition of a semisimple Lie algebra. These configurations will turn out to have a very
special, highly symmetric, form which allows them to be completely classified.

We will work with an inner product space26, that is a vector space equipped with a positive definite
symmetric bilinear form (−,−). Such a form makes sense over any field which has a notion of positive
elements, and so in particular over R and Q. Since the roots Φ associated to a Cartan decomposition
of a semisimple Lie algebra naturally live in the Q-inner product space h∗Q, we will assume our field is
Q unless otherwise stated. We let O(V ) denote the group of orthogonal linear transformations of V ,
that is the linear transformations which preserve the inner product, so that g ∈ O(V ) precisely when
v, w ∈ V then (v, w) = (g(v), g(w)) for all v, w ∈ V .

Definition 19.1. A reflection is a nontrivial element of O(V ) which fixes a subspace of codimension 1
(i.e. dimension dim(V )− 1). If s ∈ O(V ) is a reflection and W < V is the +1-eigenspace, then L = W⊥

is a line preserved by s, hence the restriction s|L of s to L is an element of O(L) = {±1}, which since s
is nontrivial must be −1. In particular s has order 2. If v is any nonzero element of L then it is easy to
check that s is given by

s(u) = u− 2(u, v)

(v, v)
v.

Given v 6= 0 we will write sv for the reflection given by the above formula, and refer to it as the
“reflection in the hyperplane perpendicular to v”.

We now give the definition which captures the geometry of the root of a semisimple Lie algebra.

Definition 19.2. Let V be a Q-vector space equipped with an inner product (−,−). A finite subset
Φ ⊂ V \{0} is called a root system if it satisfies the following properties.

(1) Φ spans V ;
(2) If α ∈ Φ then cα ∈ Φ if and only if c = ±1;
(3) If α ∈ Φ then sα : V → V preserves Φ;
(4) If α, β ∈ Φ then 2(β, α)/(α, α) ∈ Z.

Remark 19.3. If (−,−) denotes the inner product on h∗Q, then results above show that the roots in h∗

form a root system in the above sense: one simply has to translate the information about the elements
tα ∈ h obtained in our analysis of the Cartan decomposition. The crucial fact is that, for the roots
arising from a semisimple Lie algebra we have

2(β, α)

(α, α)
= κ

(
tβ ,

2tα
κ(tα, tα)

)
= β(hα) ∈ Z,

which is proved in Proposition 17.8. That Proposition also showed that sα(β) = β − β(hα).α ∈ Φ, and
that the only possible rational multiple of a root which is also a root is its negative; hence properties
2) − 4) hold. 1) follows from Lemma 18.2. So we see that the roots Φ in h∗Q do indeed form a root
system.

Remarkably, the finite set of vectors given by a root system has both a rich enough structure that
it captures the isomorphism type of a semisimple Lie algebra, but is also explicit enough that we can
completely classify them, and hence classify semisimple Lie algebras.

Definition 19.4. Let (V,Φ) be a root system. Then the Weyl group of the root system is the group
W = 〈sα : α ∈ Φ〉. Since its generators preserve the finite set Φ and these vectors span V , it follows
that it is a finite subgroup of O(V ).

Example 19.5. Let g = sln, Then let dn denote the diagonal matrices in gln and h the (traceless) diagonal
matrices in sln. As you saw in the problem sets, h forms a Cartan subalgebra in sln. Let {εi : 1 ≤ i ≤ n}
be the basis of d∗n dual to the basis {Eii : 1 ≤ i ≤ n} of dn in gln. Then h∗Q is the quotient space

h∗Q =

{
n∑
i=1

ciεi : ci ∈ Q

}/
{Q.(ε1 + . . .+ εn)},

26That is, one with a notion of distance and angle. Apart from working over Q rather than R, this is pretty much the vector
geometry of Geometry I.
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the roots in h∗Q are the (images of the) vectors {εi − εj : 1 ≤ i, j ≤ n, i 6= j}. The Weyl group W in this
case is the group generated by the reflections sα which, for α = εi − εj interchange the basis vectors εi
and εj , so it is easy to see that W is just the symmetric group on n letters.

A key step in the classification process is to find a good basis for V : we assume that Φ spans V , so
certainly we may find a subset of Φ which is a basis, but it turns out we can find a class of particularly
well adapted bases.

Definition 19.6. Let (V,Φ) be a root system, and let ∆ be a subset of Φ. We say that ∆ is a base for Φ if
(1) ∆ is a basis for V .
(2) Every β ∈ Φ can be written as

∑
α∈∆ cαα where cα ∈ Z and the non-zero cαs all have the same

sign.
Given a base of Φ we may declare a root positive or negative according to the sign of the nonzero
coefficients which occur when we write it in terms of the base. We write Φ+ for the set of positive roots
and Φ− for the set of negative roots.

The first crucial point is that the angles between roots are very constrained. For convenience we will
write

(19.1) 〈α, β〉 =
2(α, β)

(α, α)
,

which we call a Cartan integer.

Lemma 19.7. Let (V,Φ) be a root system and let α, β ∈ Φ be such that α 6= ±β. Then 〈α, β〉〈β, α〉 ∈
{0, 1, 2, 3}. It follows that the angle between two such roots α, β lies in the set

{π/2, π/3, 2π/3, π/4, 3π/4, π/6, 5π/6}.

Moreover, the ratios of root lengths which are not perpendicular must be 1, 2, 1/2, 3 or 1/3.

Proof. By assumption, we know that both 〈α, β〉 and 〈β, α〉 are integers. On the other hand, by the
cosine formula (i.e. by Cauchy-Schwarz) we see that if θ denotes the angle between α and β, then:

(19.2) 〈α, β〉〈β, α〉 = 4 cos(θ)2 < 4.

Since cos(θ)2 determines the angle between the two vectors (or rather the one which is less than π)
and 〈β, α〉/〈α, β〉 = ||α||2/||β||2 (where we write ||v||2 = (v, v)), the rest of the Lemma follows by a
case-by-case check as we see from the following table:

〈α, β〉 〈β, α〉 θ ||α||2/||β||2
0 0 π/2 undetermined
1 1 π/3 1
−1 −1 2π/3 1
1 2 π/4 2
−1 −2 3π/4 2
1 3 π/6 3
−1 −3 5π/6 3

�

19.1. Existence of bases. In fact, root systems have bases, and there is in fact a remarkable relationship
between bases and elements of the Weyl group.

Theorem 19.8. Given a root system (V,Φ), it has at least one base ∆. Suppose that ∆ and ∆1 are bases of
(V,Φ). Then there is a w ∈W such that w(∆) = ∆1.

If v ∈ V , we say that v is regular if (v, α) 6= 0 for all α ∈ Φ. Since V is not a finite union of proper
subspaces, regular vectors certainly exist. Given such a v, write Φ+(v) = {α ∈ Φ : (v, α) > 0}, and
Φ−(v) = −Φ+(v). Clearly Φ = Φ+(v)

⊔
Φ−(v). We say a root α ∈ Φ+(v) is decomposable if we can find

roots αi ∈ Φ+(v) and nonnegative integers ni, (1 ≤ i ≤ s, s ≥ 2), such that α =
∑s
i=1 niαi. Let ∆(v) be

the set of indecomposable roots, i.e. the roots which are not decomposable, in Φ+(v).

Proposition 19.9. Let (V,Φ) be a root system, and let v ∈ V be a regular vector. Then ∆(v) is a base for (V,Φ)
and every base is of this form.
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Proof. Let ∆(v) be the indecomposable roots in Φ+(v) as above. We first show that every root in Φ+(v)
is a nonnegative integer combination of indecomposable roots. Indeed let m = min{(v, α) : α ∈ Φ+}.
If γ ∈ Φ+(v), and we have γ =

∑s
i=1 niαi where ni ∈ Z>0 and αi ∈ Φ+(v), then clearly (v, γ) ≥∑s

i=1 ni.m, hence for any such expression the sum
∑s
i=1 ni is bounded above by (v, α)/m. If we write

γ =
∑s
i=1 niαi where

∑s
i=1 ni is maximal possible, then we claim each γi is indecomposable. Indeed

otherwise there is some i such that γi is decomposable, so that we may write γi =
∑t
j=1mjβj for some

t ≥ 2, positive integers mj , and βj ∈ Φ+(v), (1 ≤ j ≤ t). But then γ =
∑
k 6=i niαi +

∑t
j=1mjniβj and∑

k 6=i nk + (
∑t
j=1mj)ni ≥

∑
k 6=i nk + 2ni >

∑s
i=1 ni contradicting our maximality assumption. Since

Φ also spans V , this shows that ∆(f) spans V , hence since Φ = Φ+(v) t −Φ+(v) in order to show that
∆(v) is a base it only remains to show that ∆(f) is linearly independent.

We check this in a number of steps.
Step 1: The angle between any two vectors α, β ∈ ∆(v) is obtuse, that is (α, β) ≤ 0: To see this suppose
that (α, β) > 0. Then one can check27 using the table from the proof of the Lemma from last time on
the angles between roots that if we take (α, α) ≥ (β, β) then 〈β, α〉 = −1. But then sα(β) = β − α ∈ Φ,
so that either β − α or α− β lie in Φ+, and hence either α or β will be decomposable.
Step 2: Linear independence: Suppose that we have

∑
α∈∆(f) cαα = 0 for cα ∈ Q, (α ∈ ∆). Gathering

all the positive and nonpositive coefficients let

z =
∑
cα>0

cαα =
∑
cβ≤0

(−cβ)β

Then we have:
(z, z) =

∑
α,β:cα>0,cβ≤0

cα.(−cβ)(α, β) ≤ 0,

so by positive definiteness we must have z = 0. But since (v, z) =
∑
cα>0 cα(v, α) ≥ 0 with equality

if and only if the sum is empty we conclude that for all β ∈ ∆ we have cβ ≤ 0, but then we have
0 =

∑
cβ≤0(−cβ)β, and pairing with v again we deduce that for all β we have cβ = 0, and so ∆ is a

linearly independent set.
Step 3: Finally we need to show that any base ∆ is of the form ∆(v) for some regular v ∈ V . For α ∈ ∆,
let Pα = {v ∈ V : (v, α) > 0}. This is a half-space in V . It can be checked that

⋂
α∈∆ Pα is non-empty

(indeed this holds for any linearly independent set in V , not just a base28) so we may pick some v ∈ V
in this intersection. Then since any root is a nonpositive or nonnegative combination of the roots in
∆, it follows the vector v is regular, and moreover it is clear that Φ+ ⊆ Φ+(v) the set of positive roots
associated with ∆, and since Φ− = −Φ+, we see similarly that Φ− ⊆ Φ−(v), and since Φ is the disjoint
union of both Φ+ t Φ− and Φ+(v) t Φ−(v) it follows that Φ±(v) = Φ±. Finally, since ∆(v) are the
indecomposable roots in Φ+ = Φ+(v), we must certainly have ∆(v) ⊆ ∆, and since both are bases of V
it follows that ∆ = ∆(v) as required. �

Our proof shows that for a given root system one can always find a base, but it will not be unique:
different choices of regular v can lead to different positive systems Φ+(v) and hence different bases.
This ambiguity is however controlled by the action of the Weyl group, as we will now see. From
now on fix a base ∆ for our root system, and thus have the corresponding positive and negative roots
Φ+,Φ−. Let W0 be the subgroup of W generated by the reflections sα for α ∈ ∆. The elements of ∆ are
called simple roots, and the corresponding reflections sα are called simple reflections.

Lemma 19.10. If α ∈ ∆, then the reflection sα preserves the set Φ+\{α}. Moreover, if ρ = 1
2

∑
α∈Φ+ α, then

(ρ, γ) = (1/2)||γ||2 > 0 for all γ ∈ ∆ and hence Φ+ = Φ+(ρ)

Proof. Let γ ∈ Φ+\{α}. Since ∆ is a base, we may write γ =
∑
β∈∆ cββ where cβ ∈ Z≥0 for all β ∈ ∆,

and so
sα(γ) = (cα − 〈α, γ〉)α+

∑
β∈∆,β 6=α

cββ ∈ Φ.

Now since γ 6= ±α (since it is positive) there must be some β0 ∈ ∆\{α} with cβ0 > 0. But then by
the definition of a base we must have sα(γ) ∈ Φ+, and clearly sα(γ) 6= α since this would imply

27This either follows just inspecting the table, or by noting that by inequality proved there for α, β with β 6= ±α we have
〈α, β〉.〈β, α〉 < 4 and so since 〈α, β〉 and 〈β, α〉 are integers at least one must be ±1.

28Just extend your linearly independent set to a basis, and take the dual basis with respect to the inner product– the inter-
section of half-spaces then become the set of vectors whose coordinates with respect to the appropriate dual basis vectors are
positive.
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γ = sα(α) = −α ∈ Φ−. For the final part, note that if γ ∈ ∆ we must have

sγ(ρ) = sγ(
1

2
γ) + sγ(

1

2

∑
α∈Φ+\{γ}

α)

= −1

2
γ +

1

2

∑
α∈Φ+\{γ}

α

= ρ− γ

now since by definition sγ(ρ) = ρ − 2(ρ,γ)
(γ,γ) γ the result follows immediately. The fact that Φ+ = Φ+(ρ)

(in the notation of Proposition 19.9 then follows immediately from the proof of that proposition. �

Definition 19.11. Given a root system equipped with a base ∆ = {α1, . . . , αr} we may define a height
function ht : V → Q by setting ht(v) =

∑n
i=1 ci where v =

∑r
i=1 ciαi. Note that it follows from the

definition of a base that the height function is integer-valued on Φ, and ht(β) = 1 if and only if β ∈ ∆.

Note that this height function is a special case of the height function used in the proof of Weyl’s
theorem – if {$i : 1 ≤ i ≤ r} denotes the dual basis to the base ∆ with respect to the inner product,
then ht(β) = (δ, β) where δ =

∑r
i=1$i.

Proposition 19.12. Suppose that β ∈ Φ. Then there is a w ∈W0 and an α ∈ ∆ such that w(β) = α.

Proof. First suppose that β ∈ Φ+. We prove the statement by induction on the height of β. The state-
ment being clear if β is of height 1, we may assume h(β) > 0. We claim there is some γ ∈ ∆ such that
(β, γ) > 0. If not then writing β =

∑
γ∈∆ cγγ, we see that

(β, β) =
∑
γ∈∆

cγ(β, γ) ≤ 0,

so by positive definiteness we would have β = 0.
Now taking γ with (β, γ) > 0, we see that sγ(β) ∈ Φ+ using the previous Lemma (since β is certainly

not equal to α as h(β) > 1, and moreover h(sγ(β)) = h(β) − 〈γ, β〉 < h(β). Thus by induction we are
done. Finally we need to consider the case β ∈ Φ−. But then we have −β ∈ Φ+, and so there is a
w ∈W0 such that w(−β) = γ for some γ ∈ ∆. But then clearly (sγw)(β) = γ and we are done. �

Corollary 19.13. The Weyl group W is generated by the reflections {sγ : γ ∈ ∆}, that is W = W0.

Proof. If β ∈ Φ then we have just shown in the previous proposition that there is a w ∈ W0 such that
w(β) = γ for some γ ∈ ∆. But the clearly sβ = w−1sγw ∈ W0, and so since W is generated by the sβs
we have W = W0 as required. �

Proof. (Proof of Theorem 19.8) By Proposition 19.9 we know that bases exist, and any base is determined
by a regular element v ∈ V : given v, the base it yields is the set of indecomposable roots in Φ+(v). Thus
it is enough to show that there is a w in W such that w(Φ+

1 ) = Φ+, where Φ+
1 and Φ+ are the positive

roots corresponding to ∆1 and ∆ respectively.
Suppose v is a regular vector such that Φ+(v) = Φ+

1 . We claim that there is a w ∈ W such that w(v)
satisfies (w(v), α) > 0 for all α ∈ ∆. This immediately implies that (w(v), α) > 0 for all α ∈ Φ+, so that
Φ+ = Φ+(w(v)), and thus w(Φ+

1 ) = Φ, since (w(v), α) > 0 if and only if (v, w−1(α)) > 0.
To prove the claim, first consider ρ = 1

2

∑
α∈Φ α. By the Lemma 19.10 we know that sα(ρ) = ρ − α

for all α ∈ ∆. Now choose w ∈ W such that (ρ, w(v)) is as large as possible. Then if α ∈ ∆, we must
have

(w(v), ρ) ≥ (sα.w(v), ρ) = (w(v), sα(ρ)) = (w(v), ρ− α) = (w(v), ρ)− (w(v), α).

Thus it follows that (w(v), α) ≥ 0 for all α ∈ ∆, and since (v, α) 6= 0 for all α ∈ Φ (as f was assumed to
be generic) the claim follows.

�

Remark 19.14. In fact W acts simply transitively on the bases of (V,Φ), that is if w(∆) = ∆ then w = 1.
The proof (which we will not give) consists of examining the minimal length expression for w in terms
of these generators {sα : α ∈ ∆}.



LIE ALGEBRAS 33

20. CARTAN MATRICES AND DYNKIN DIAGRAMS

In this section we describe the data which is used in the classification of semisimple Lie algebras.

Definition 20.1. Let (V,Φ) be a root system. The Cartan matrix associated to (V,Φ) is the matrix

C = (〈αi, αj〉)li,j=1.

where {α1, α2, . . . , α`} = ∆ is a base of (V,Φ). Since the elements ofW are isometries, andW acts trans-
itively on bases of Φ, the Cartan matrix is independent of the choice of base (though clearly determined
only up to reordering the base ∆).

Definition 20.2. The entries cij of the Cartan matrix are all integer with diagonal entries equal to 2,
and off-diagonal entries cij ∈ {0,−1,−2,−3} (where i 6= j) such that if cij < −1 then cji = −1 so that
the pair {cij , cji} is determined by the product cij .cji and the relative lengths of the two roots (e.g. see
the table in the Lemma about angles between roots). As a result, the matrix can be recorded as a kind
of graph: the vertex set of the graph is labelled by the base {α1, . . . , αl}, and one puts 〈αi, αj〉.〈αj , αi〉
edges between αi and αj , directing the edges so that they go from the larger root to the smaller root.
Thus for example if 〈αi, αj〉 = −2 and 〈αj , αi〉 = −1 so that ||αj ||2 > ||αi||2, that is, αj is longer than αi,
we record this in the graph as:

αi• ks •αj

The resulting graph is called the Dynkin diagram.

For the next theorem we need to formulate what it means to have an isomorphism of root systems.
This is given in the natural way: if (V,Φ) and (V ′,Φ′) are root systems, a linear map φ : V → V ′ is an
isomorphism of root systems if

(1) The map φ is an isomorphism of vector spaces.
(2) φ(Φ) = Φ′, and 〈α, β〉 = 〈φ(α), φ(β)〉 for all α, β ∈ Φ.

Note that φ need not be an isometry (e.g. we could scale V by a nonzero constant c ∈ Q to obtain (V, cΦ)
a distinct, but isomorphic root system to (V,Φ).

Theorem 20.3. Let (V,Φ) be a root system. Then (V,Φ) is determined up to isomorphism by the Cartan matrix,
or Dynkin diagram associated to it.

Proof. Given root systems (V,Φ) and (V ′,Φ′) with the same Cartan matrix, we may certainly pick a
base ∆ = {α1, . . . , α`} of (V,Φ) and a base ∆′ = {β1, . . . , β`} of (V ′,Φ′) such that 〈αi, αj〉 = 〈βi, βj〉 for
all i, j, (1 ≤ i, j ≤ `). We claim the map φ : ∆ → ∆′ given by φ(αi) = βi extends to an isomorphism
of root systems. Clearly, since ∆ and ∆′ are bases of V and V ′ respectively, φ extends uniquely to an
isomorphism of vector spaces φ : V → V ′, so we must show that φ(Φ) = Φ′, and 〈φ(α), φ(β)〉 = 〈α, β〉
for each α, β ∈ Φ.

Let si = sαi ∈ O(V ) and s′i = sβi ∈ O(V ′) be the reflections in the Weyl groups W and W ′ respect-
ively. Then from the formula for the action of si it is clear that φ(si(αj)) = s′i(βj) = s′i(φ(αi)), so since
∆ is a basis it follows φ(si(v)) = s′i(φ(v)) for all v ∈ V . But then since the sis and s′is generate W and
W ′ respectively, φ induces an isomorphism W → W ′, given by w 7→ w′ = φ ◦ w ◦ φ−1. But then given
any α ∈ Φ we know there is a w ∈ W such that α = w(αj) for some j, (1 ≤ j ≤ `). Thus we have
φ(α) = φ(w(αj)) = w′(φ(αj)) = w′(βj) ∈ Φ′, so that φ(Φ) ⊆ Φ′. Clearly the same argument applied to
φ−1 shows that φ−1(Φ′) ⊆ Φ so that φ(Φ) = Φ′.

Next, the linearity of φ and of 〈−,−〉 in the second variable immediately implies that 〈αi, γ〉 =
〈φ(αi), φ(γ)〉 for any αi ∈ ∆, γ ∈ Φ. Finally, as in the previous paragraph, if α ∈ Φ is arbitrary, then we
may find w ∈W such that α = w(αj) for some αj ∈ ∆, and thus φ(α) = w′(βj), whence we have

〈φ(α), φ(γ)〉 = 〈w′(βj), φ(γ)〉 = 〈βj , (w′)−1φ(γ)〉
= 〈αj , w−1(γ)〉 = 〈w(αj), γ〉 = 〈α, γ〉.

as required. �

Thus to classify root systems up to isomorphism it is enough to classify Cartan matrices (or Dynkin
diagrams).

Definition 20.4. We say that a root system (V,Φ) is reducible if there is a partition of the roots into two
non-empty subsets Φ1 t Φ2 such that (α, β) = 0 for all α ∈ Φ1, β ∈ Φ2. Then if we set V1 = span(Φ1)
and V2 = span(Φ2), clearly V = V1 ⊕ V2 and we say (V,Φ) is the sum of the root systems (V1,Φ1) and
(V2,Φ2). This allows one to reduce the classification of root systems to the classification of irreducible



34 KEVIN MCGERTY (WITH MINOR MODIFICATIONS BY BALÁZS SZENDRŐI 2013, DAN CIUBOTARU 2015)

root systems, i,e. root systems which are not reducible. It is straight-forward to check that a root system
is irreducible if and only if its associated Dynkin diagram is connected.

Definition 20.5. (Not examinable.) The notion of a root system makes sense over the real, as well as
rational, numbers. Let (V,Φ) be a real root system, and let ∆ = {α1, α2, . . . , αl} be a base of Φ. If
vi = αi/||αi|| (1 ≤ i ≤ l) are the unit vectors in V corresponding to ∆, then they satisfy the conditions:

(1) (vi, vi) = 1 for all i and (vi, vj) ≤ 0 if i 6= j,
(2) If i 6= j then 4(vi, vj)

2 ∈ {0, 1, 2, 3}. (This is the reason we need to extend scalars to the real
numbers – if you want you could just extend scalars to Q(

√
2,
√

3), but it makes no difference
to the classification problem).

Such a set of vectors is called an admissible set.

It is straightforward to see that classifying Q-vector spaces with a basis which forms an admissible
set is equivalent to classifying Cartan matrices, and using elementary techniques it is possible to show
that that the following are the only possibilities (we list the Dynkin diagram, a description of the roots,
and a choice of a base):

• Type A` (` ≥ 1):
• • · · · • •

V = {v =
∑̀
i=1

ciei ∈ Q` :
∑

ci = 0},Φ = {εi − ej : 1 ≤ i 6= j ≤ `}

∆ = {εi+1 − εi : 1 ≤ i ≤ `− 1}
• Type B` (` ≥ 2):

• • · · · • +3 •
V = Q`,Φ = {±εi ± εj : 1 ≤ i, j ≤ `, i 6= j} ∪ {εi : 1 ≤ i ≤ `},
∆ = {ε1, εi+1 − εi : 1 ≤ i ≤ `− 1}

• Type C` (` ≥ 3):
• • · · · • ks •

V = Q`,Φ = {±εi ± εj : 1 ≤ i, j ≤ `, i 6= j} ∪ {2εi : 1 ≤ i ≤ `},
∆ = {2ε1, εi+1 − εi : 1 ≤ i ≤ `− 1}

• Type D` (` ≥ 4):
•

iiiii
i

• • · · · • •
•

UUUUUU

V = Q`,Φ = {±εi ± εj : 1 ≤ i, j ≤ `, i 6= j},
∆ = {ε1 + ε2, εi+1 − εi : 1 ≤ i ≤ `− 1}

• Type G2.
• _jt •

Let e = ε1 + ε2 + ε3 ∈ Q3, then:

V = {v ∈ Q3 : (v, e) = 0},Φ = {εi − εj : i 6= j} ∪ {±(3εi − e) : 1 ≤ i ≤ 3}
∆ = {ε1 − ε2, e− 3ε1}

• Type F4:
• • +3 • •

V = Q4,

Φ = {±εi : 1 ≤ i ≤ 4} ∪ {±εi ± ej : i 6= j} ∪ {1

2
(±ε1 ± ε2 ± ε3 ± ε4)}

∆ = {ε2 − ε3, ε3 − ε4, ε4,
1

2
(ε1 − ε2 − ε3 − ε4)}.

• Type En (n = 6, 7, 8).

•

• • • • •
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•

• • • • • •
•

• • • • • • •
These can all be constructed inside E8 by taking the span of the appropriate subset of a base,
so we just give the root system for E8.

V = Q8,Φ = {±εi ± εj : i 6= j} ∪ {1

2

8∑
i=1

(−1)aiεi :

8∑
i=1

ai ∈ 2Z},

∆ = {ε1 + ε2, εi+1 − εi,
1

2
(ε1 + ε8 − (ε2 + ε3 + . . .+ ε7)) : 1 ≤ i ≤ 6}.

Note that the Weyl groups of type B` and C` are equal. The reason for the restriction on ` in the
types B,C,D is to avoid repetition, e.g. B2 and C2 are the same up to relabelling the vertices.

Remark 20.6. I certainly don’t expect you to remember the root systems of the exceptional types, but
you should be familiar with the ones for type A, B, C and D. The ones of rank two (i.e. A2, B2 and G2)
are also worth knowing (because for example you can draw them!)

21. THE CLASSIFICATION OF SEMISIMPLE LIE ALGEBRAS

Only the statements of the theorems in this section are examinable, but it is important to know these statements!
Remarkably, the classification of semisimple Lie algebras is identical to the classification of root

systems: each semisimple Lie algebra decomposes into a direct sum of simple Lie algebras, and it is
not hard to show that the root system of a simple Lie algebra is irreducible. Thus to any simple Lie
algebra we may attach an irreducible root system.

A first problem with this as a classification strategy is that we don’t know our association of a root
system to a semisimple Lie algebra is canonical. The difficulty is that, because our procedure for at-
taching a root system to a semisimple Lie algebra involves a choice of Cartan subalgebra, we don’t
currently know it is a bijective correspondence – possibly the same Lie algebra has two different Cartan
subalgebras which lead to different root systems. The theorem which ensures this is not the case is the
following, where the first part is the more substantial result (though both require some work):

Theorem 21.1. Let g be a Lie algebra over any algebraically closed field k.
(1) Let h, h′ be Cartan subalgebras of g. There is an automorphism φ : g→ g such that φ(h) = h′.
(2) Let g1, g2 be semisimple Lie algebras with Cartan subalgebras h1, h2 respectively, and suppose now k is

of characteristic zero. Then if the root systems attached to (g1, h1) and (g2, h2) are isomorphic, there is
an isomorphism φ : g1 → g2 taking h1 to h2.

Once you know that the assignment of a Dynkin diagram captures a simple Lie algebra up to iso-
morphism, we still need to show all the root systems we construct arise as the root system of a simple
Lie algebra. That is exactly the content of the next theorem.

Theorem 21.2. There exists a simple Lie algebra corresponding to each irreducible root system.

There are a number of approaches to this existence theorem. A concrete strategy goes as follows:
one can show that the first four infinite families A,B,C,D correspond to the classical Lie algebras,
sl`+1, so2`+1, sp2`, so2`, whose root systems can be computed directly (indeed you did a number of
these calculations in the problem sets). This of course also requires checking that these Lie algebras are
simple (or at least semisimple) but this is also straight-forward with the theory we have developed. It
then only remains to construct the five ”exceptional” simple Lie algebras. This can be done in a variety
of ways – given a root system where all the roots are of the same length there is an explicit construction
of the associated Lie algebra by forming a basis from the Cartan decomposition (and a choice of base
of the root system) and explicitly constructing the Lie bracket by giving the structure constants with
respect to this basis (which, remarkably, can be chosen for the basis vectors corresponding to the root
subspaces to lie in {0,±1}). This gives in particular a construction of the Lie algebras of type E6, E7, E8

(and also A` and D` though we already had a construction of these). The remaining Lie algebras can
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be found by a technique called “folding” which studies automorphisms of simple Lie algebras, and
realises the Lie algebras G2 and F4 as fixed-points of an automorphism of D4 and E6 respectively.

There is also an alternative, more a posteriori approach to the uniqueness result which avoids show-
ing Cartan subalgebras are all conjugate for a general Lie algebra: one can check that for a classical Lie
algebra g ⊂ gln as above, the Cartan subalgebras are all conjugate by an element of Aut(g) (in fact you
can show the automorphism is induced by conjugating with a matrix in GLn(k)) using the fact that a
Cartan subalgebra of a semisimple Lie algebra is abelian and consists of semisimple elements. This
then shows the assignment of a root system to a classical Lie algebra is unique, so it only remains to
check the exceptional Lie algebras. But these all have different dimensions, and the dimension of the
Lie algebra is captured by the root system, so we are done.29

We conclude by mentioning another, quite different, approach to the existence result, using the
Serre’s presentation: just as one can describe a group by generators and relations, one can also describe
Lie algebras in a similar fashion. If g is a semisimple Lie algebra and ∆ = {α1, . . . , α`} is a base of the
corresponding root system with Cartan matrix C = (aij) then picking bases for the slαi -subalgebras
corresponding to them, it is not too hard to show that g is generated by the set {eα, fα, hα : α ∈ ∆}.

The Serre presentation gives an explicit realisation, given an arbitrary root system, of the relations
which one needs to impose on a set of generators for a Lie algebra labelled {eα, fα, hα : α ∈ Φ} as
above obtain a semisimple Lie algebra whose associated root system is the one we started with. This
approach has the advantage of giving a uniform approach, though it takes some time to develop the
required machinery.

29This is completely rigorous, but feels like cheating (to me).
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22. APPENDIX 1: (MULTI)-LINEAR ALGEBRA

22.1. Tensor Products.

22.1.1. Defintion. Tensor products were studied in Part B Introduction to Representation Theory. We
review their basic properties here.

Definition 22.1. Let V and W be vector spaces over a field k. The tensor product V ⊗W is a k-vector
space V ⊗W equipped with a bilinear map t : V ×W → V ⊗W (where we write v⊗w for t(v, w)) which
has the following universal property: If B : V ×W → U is a bilinear map taking values in a k-vector
space U , then there exists a unique linear map b : V ⊗W → U such that B = b ◦ t.

Remark 22.2. It is possible to construct V ⊗W in various ways. If V and W are finite dimensional, we
may pick a basis {e1, . . . , en} of V and a basis {f1, . . . , fm} of W . Set V ⊗W to be the vector space with
basis {ei ⊗ fj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, and if v =

∑n
i=1 λiei and w =

∑m
j=1 µjfj , we set

t(v.w) =
∑
i,j

(λiµj)ei ⊗ fj ,

GivenB : V ×W → U a bilinear map, we can define b : V ⊗W → U to be the unique linear map with
b(ei ⊗ fj) = B(ei, fj). Provided you are happy with the axiom of choice, so that every vector space has
a basis, the same construction gives the existence of the tensor product of arbitrary vector spaces.

Remark 22.3. Note that there is a natural isomorphism σ : V ⊗W ∼= W ⊗ V given by v ⊗ w 7→ w ⊗ v,
thus at least if V 6= W , we will normally abuse notation and identify these two spaces and thus write
V ⊗W = W ⊗V . If V = W however, σ : V ⊗V → V ⊗V is an involution on V ⊗V , and more generally,
V ⊗n = V ⊗ . . .⊗V , the tensor product of V with itself n times, has an action of Sn the symmetric group,
which permutes the tensor factors: if τ ∈ Sn then τ(v1 ⊗ . . .⊗ vn) := vτ(1) ⊗ . . .⊗ ττ(n).

Lemma 22.4. Let V and W be vector spaces. There is a natural injective map θ : V ∗ ⊗W → Homk(V,W )
which is an isomorphism when V is finite-dimensional. Moreover, if ι : V ∗⊗V → k is the contraction map given
by f ⊗ v 7→ f(v), then if V is finite dimensional, and α ∈ Homk(V, V ), then (ι ◦ θ−1)(α) = tr(α).

Proof. (c.f. the proof that ad(x) is semisimple when x is). The map (α,w) 7→ [v 7→ α(v).w] is bilinear30,
and so induces a linear map θ : V ∗ ⊗W → Homk(V,W ). To see that it is injective, let {δi : i ∈ I} be
a basis of V ∗, and {fk : k ∈ K} be a basis of W . Then if γ ∈ V ∗ ⊗W , by definition we may write
γ =

∑
(i,k)∈S λi,kδi ⊗ fk, where the pairs (i, k) run over a finite subset S of I ×K. Now if we fix k ∈ K

we have ∑
i∈I:(i,k)∈S

λi,kδi ⊗ fk = (
∑

i∈I:(i,k)∈S

λi,kδi)⊗ fk,

thus setting φk =
∑
i∈I:(i,k)∈S λi,kδi it follows γ =

∑
k∈SK φk⊗ fk, where SK = {k ∈ K : ∃i ∈ I, (i, k) ∈

S}. But then for any v ∈ V
0 = θ(γ)(v) =

∑
k∈SK

φk(v).fk,

and so by the linear independence of the fks we must have φk(v) = 0 for each k. Since this is true for
all v ∈ V , it follows that φk = 0, for each k, and hence γ = 0 as required.

To see that θ is an isomorphism when V is finite dimensional, note that in that case we can assume
our basis of V ∗ is dual to a basis {ei : i ∈ I} of V . But then if α ∈ Homk(V,W ) it follows that
α = θ(

∑
i∈I δi ⊗ α(ei)), as the two sides agree on the basis {ei : i ∈ I}.

Finally we consider the contraction map ι : V ∗ × V → k. Since the map V ∗ × V → k given by
(f, v) 7→ k is clearly bilinear, it induces the linear map ι, so ι is certainly well-defined. To compute
ι ◦ θ−1, note that when V = W is finite dimensional, we can chose the basis {δ1, . . . , δn} of V ∗ to
be dual to the basis {e1, . . . , en} of V , and since, as before θ−1(α) =

∑n
i=1 δi.α(ei), it follows that

ι(θ−1(α)) =
∑n
i=1 δi(α(ei)) = tr(α). as required. �

Remark 22.5. Since we only use the cases where V and W are finite dimensional, the reader is welcome
to ignore the generality the result is stated in and assume throughout that all vector spaces are finite
dimensional. Here one can be a bit more concrete: if {e1, . . . , en} is a basis of V and {f1, . . . , fm} is
a basis of W , then taking the dual basis {δ1, . . . , δn} of V ∗ it is easy to see that the images of δi ⊗ fj

30There is a lot of linearity going on here! The map (α,w, v) 7→ α(v).w is linear in all of α, v and w. For fixed α,w, this
shows that the map v 7→ α(v).w is a linear map from V to W , while the linearity in α and w show the map which sends a pair
(α,w) to the corresponding map from V to W is bilinear in α and w.



38 KEVIN MCGERTY (WITH MINOR MODIFICATIONS BY BALÁZS SZENDRŐI 2013, DAN CIUBOTARU 2015)

under θ correspond to the elementary matrices Eij under the identification of Homk(V,W ) given by
the choice of bases for V and W , hence θ is an isomorphism. In general the image of θ is precisely the
linear maps from V to W which have finite rank (as you can readily deduce from the proof of Lemma
22.4). Indeed when V is infinite-dimensional, the trace map on Hom(V, V ) is only defined for linear
maps of finite rank, thus in a sense, then contraction map ι is more natural than the trace map. (We
will return to this point when discussing bilinear forms.)

22.1.2. Linear maps between tensor products. If α : V1 → V2 and β : W1 → W2, then if v ∈ V1, w ∈ W1,
the map (v, w) 7→ α(v) ⊗ β(w) from V1 × W2 → V2 ⊗ W2 is bilinear, and so induces a linear map
Hom(V1⊗W1, V2⊗W2), which we denote by α⊗ β. In fact, the map α, β 7→ α⊗ β is itself bilinear, and
so we even obtain a map

Hom(V1,W1)⊗Hom(V2,W2)→ Hom(V1 ⊗ V2,W1 ⊗W2).

When all the vector spaces V1, V2,W1,W2 are finite dimensional, this map is an isomorphism, indeed
using Lemma 22.4 you can check that

Hom(V1,W1)⊗Hom(V2,W2) ∼= (V ∗1 ⊗W1)⊗ (V ∗2 ⊗W2)

∼= (V ∗1 ⊗ V ∗2 )⊗ (W1 ⊗W2)

∼= Hom(V1 ⊗ V2,W1 ⊗W2),

where the second isomorphism simply permutes the second and third tensor factors.
The contraction map ι defined in Lemma 22.4 allows us to decribe the composition map

Hom(U, V )×Hom(V,W )→ Hom(U,W ).

Since composition is bilinear, it induces a linear map on the corresponding tensor product, thus it is
given by a linear map

Hom(U, V )⊗Hom(V,W ) = (U∗ ⊗ V )⊗ (V ∗ ⊗W )→ Hom(U,W ) = U∗ ⊗W.

But this map is simply 1U ⊗ ι⊗ 1W .

22.1.3. Tensor products and duality. Suppose that V and W are vector spaces. We wish to understand
the relationship between the tensor product of the dual spaces V ∗ ⊗ W ∗ and the dual space of the
tensor product (V ⊗W )∗. Now by definition, the vectors in (V ⊗W )∗ are just the k-valued bilinear
map on V ×W . But if δ ∈ V ∗ and η ∈ W ∗, clearly their product, δ.η gives a bilinear map (v, w) 7→
δ(v).η(w) (v ∈ V,w ∈ W ). Thus mulitplication defines a map m : V ∗ × W ∗ → (V ⊗ W )∗. Since
multiplication is bilinear, it thus induces a linear map which, by abuse of notation, we will again write
as m : V ∗ ⊗W ∗ → (V ⊗W )∗. Arguing in a similar fashion to the proof of Lemma 22.4, you can check
that this map is always injective, and hence when V and W are finite-dimensional, since both spaces
then have dimension dim(V ).dim(W ), the map is an isomorphism.

One can also relate the map m to the contraction map ι: Indeed let c be the composition

(V ⊗ V )⊗ (V ∗ ⊗ V ∗) ∼= (V ⊗ V ∗)⊗ (V ⊗ V ∗)→ k⊗ k ∼= k

where the first isomorphism permutes the middle two factors, the second is the map ι⊗ ι and the final
isomorphism follows from the fact that the map v ⊗ 1→ v gives a natural isomorphism from V ⊗ k to
V for any k-vector space V . Now the linear map c can be views as a k-valued bilinear pairing between
V ⊗ V and V ∗ ⊗ V ∗, which in turn can be viewed as a linear map from d : V ∗ ⊗ V ∗ → (V ⊗ V )∗. To see
that this is just the multiplication map from above, note that

d(δ1 ⊗ δ2)(v1 ⊗ v2) := c((v1 ⊗ v2)⊗ (δ1 ⊗ δ2))

= ι(v1 ⊗ δ1).ι(δ2 ⊗ v2) = δ1(v1).δ2(v2)

= m(δ1 ⊗ δ2)(v1 ⊗ v2).

Remark 22.6. Notice that this means we obtain, for V finite dimensional, we have an isomorphism d
given by (V ⊗ V ∗)∗ ∼= V ∗ ⊗ V ∗∗ ∼= V ∗ ⊗ V where in the second isomorphism we use the inverse of the
natural map from V to V ∗∗. The map d is non-trivial, and you can check that d(ι) = θ−1(IV ), where
IV is the identity map IV ∈ Hom(V, V ) = V ∗ ⊗ V , and θ : V ∗ ⊗ V → Hom(V, V ) is the map in Lemma
22.4.
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22.2. Background on Symmetric bilinear forms. In this section we review the basics of symmetric
bilinear forms over a field k. It is all material that is almost in Part A Algebra, but perhaps not quite
phrased there the way we use it. We shall work to begin with over an arbitrary field k.

Definition 22.7. Let V be a k-vector space. A function B : V × V → k is said to be bilinear if it is linear
in each factor, that is if

B(λ1v2 + λ2v2, w) = λ1B(v1, w) + λ2B(v2, w),

and
B(v, λ1w1 + λ2w2) = λ1B(v, w1) + λ2B(v, w2),

for all v, v1, v2, w, w1, w2 ∈ V , λ1, λ2 ∈ k. We say that it is symmetric if B(v, w) = B(w, v). The radical of
a symmetric bilinear form is the subspace:

rad(B) = {v ∈ V : B(v, w) = 0,∀w ∈ V }.
We say that B is nondegenerate if rad(B) = {0}. Let Bil(V ) denote the vector space of bilinear forms on
V , and31 SBil(V ) for the space of symmetric bilinear forms on V .

Remark 22.8. Note that Bil(V ) is isomorphic to (V ⊗ V )∗, since a bilinear map V ⊗ V → k induces a
linear map V ⊗V → k. When V is finite dimensional, (V ⊗V )∗ is isomorphic to V ∗⊗V ∗. One can thus
use the isomorphism V ∗ ⊗W ∼= Hom(V,W ) to give another proof of the following Lemma.

Lemma 22.9. There is a natural isomorphism Θ: Bil(V )→ Hom(V, V ∗).

Proof. Suppose that B ∈ Bil(V ). Then define Θ(B) = θ ∈ Hom(V, V ∗) as follows: given v ∈ V , let
θ(v) : V → k be the function given by θ(v)(w) = B(v, w). The linearity of B in the second variable then
ensures that θ(v) ∈ V ∗, while the linearity of B in the first variable ensures that the map v 7→ θ(v) is
linear, so that θ is induce a linear map from V to V ∗.

Conversely, given θ : V → V ∗, define Bθ by Bθ(v, w) = θ(v)(w). It is easy to see that Bθ ∈ Bil(V ),
and that θ 7→ Bθ gives a linear map Hom(V, V ∗) → Bil(V ) which is clearly inverse to the map Θ, so
they are both isomorphisms. �

Remark 22.10. The lemma shows that giving a bilinear form on V is equivalent to giving a linear map
from V to V ∗. Note that we made a choice in the above construction, since given B ∈ Bil(V ) we could
have defined θ by θ(v)(w) = B(w, v). For symmetric bilinear forms the two possible choices agree, but
for arbitrary bilinear forms they establish different isomorphisms.

From now on we will only work with symmetric bilinear forms. The kernel of θ = Θ(B) is clearly
the subspace of v ∈ V such that θ(v)(w) = 0 for all w ∈ V , which is exactly the definition of rad(B) as
required.

Now fix B ∈ SBil(V ). Then if U is a subspace of V , we define

U⊥ = {v ∈ V : B(v, w) = 0,∀w ∈ U}.
If θ : V → V ∗ is the associated map from V to V ∗, then clearly U⊥ = θ−1(U0). When B is nondegener-
ate, so that θ is an isomorphism, this shows that dim(U⊥) = dim(V )−dim(U). The next Lemma shows
that this can be refined slightly.

Lemma 22.11. Let V be a finite-dimensional k-vector space equipped with a symmetric bilinear form B. Then
for any subspace U of V we have the following:

(1) dim(U) + dim(U⊥) ≥ dim(V ).
(2) The restriction of B to U is nondegenerate if and only if V = U ⊕ U⊥.

Proof. For the first part, define a map φ : U → V ∗ by φ(u)(v) = B(u, v), (u ∈ U, v ∈ V ). Then U⊥ is by
definition exactly the subspace of (im(φ))0 (i.e. the annihilator of im(φ) under the natural identification
of V with its double dual (V ∗)∗). It follows that dim(U⊥) + dim(im(φ)) = dim(V ), and hence certainly

dim(U⊥) + dim(U) ≥ dim(V ).

For the second part, it is immediate from the definitions that B is nondegenerate when restricted to
U if and only if U ∩U⊥ = {0}, i.e. if and only if the sum of U and U⊥ is direct. But then the equivalence
follows immediately from the dimension inequality in the first part.

�

31This is not standard notation – it would be more normal to write something like Sym2(V ∗) but then I’d have to explain
why...
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22.2.1. Classification of symmetric bilinear forms. This subsection is not needed for the course32 but might
be clarifying. There is a natual linear action of GL(V ) on the space Bil(V ): if g ∈ GL(V ) and B ∈ Bil(V )
then we set g(B) to be the bilinear form given by

g(B)(v, w) = B(g−1(v), g−1(w)), (v, w ∈ V ),

where the inverses ensure that the above equation defines a left action. It is clear the action preserves
the subspace of symmetric bilinear forms.

Since we can find a invertible map taking any basis of a vector space to any other basis, the next
lemma says that over an algebraically closed field there is only one nondegenerate symmetric bilinear
form up to the action of GL(V ), that is, when k is algebraically closed the nondegenerate symmetric
bilinear forms are a single orbit for the action of GL(V ).

Lemma 22.12. Let V be a k-vector space equipped with a nondegenerate symmetric bilinear form B. Then if
char(k) 6= 2, there is an orthonormal basis of V , i.e a basis {v1, . . . , vn} of V such that B(vi, vj) = δij .

Proof. We use induction on dim(V ). The identity33

B(v, w) =
1

2

(
B(v + w, v + w)−B(v, v)−B(w,w)

)
,

shows that if B 6= 0 we may find a vector v ∈ V such that B(v, v) 6= 0. Rescaling by a choice of square
root of B(v, v) (which is possible since k is algebraically closed) we may assume that B(v, v) = 1.
But if L = k.v then since B|L is nondegenerate, the previous lemma shows that V = L ⊕ L⊥, and if
B is nondegenerate on V it must also be so on L⊥. But dim(L⊥) = dim(V ) − 1, and so L⊥ has an
orthonormal basis {v1, . . . , vn−1. Setting v = vn, it then follows {v1, . . . , vn} is an orthonormal basis of
V as required. �

Remark 22.13. Over the real numbers, for example, there is more than one orbit of nondegenerate
symmetric bilinear form, but the above proof can be modified to give a classification and it turns out
that there are dim(V ) + 1 orbits (“Sylvester’s law of inertia”).

23. APPENDIX 2: REPRESENTATION THEORY BACKGROUND

We recall here some basics of representation theory used in the course, all of which is covered (in
much more detail than we need) in the Part B course on Representation theory. Let g be a Lie algebra.
The main body of the notes proves all that is needed in the course, but the material here might help
clarify some arguments. We will always assume our representations are finite dimensional unless we
explicitly say otherwise.

Definition 23.1. A representation is irreducible if it has no proper nonzero subrepresentations. A rep-
resentation (V, ρ) is said to be indecomposable if it cannot be written as a direct sum of two proper
subrepresentations. A representation is said to be completely reducible if is a direct sum of irreducible
representations.

Clearly an irreducible representation is indecomposable, but the converse is not in general true.
For example k2 is naturally a representation for the nilpotent Lie algebra of strictly upper triangular
matrices n2 ⊂ gl2(k) and it is not hard to see that it has a unique 1-dimensional sub representation,
hence it is indecomposable, but not irreducible.

A basic observation about irreducible representations is Schur’s Lemma:

Lemma 23.2. Let g be a Lie algebra and let (V, ρ), (W,σ) be irreducible representations of g. Then any g-
homomorphism φ : V → W is either zero or an isomorphism. Moreover, if k is algebraically closed, then
Homg(V,W ) is one-dimensional.

Proof. The proof is exactly the same as the proof for finite groups. If φ is nonzero, then ker(φ) is a
proper subrepresentation of V , hence as V is irreducible it must be zero. It follows V is isomorphic to
φ(V ), which is thus a nonzero subrepresentation of W . But then since W is irreducible we must have
W = φ(V ) and φ is an isomorphism as claimed.

Thus if Homk(V,W ) is nonzero, we may fix some φ : V → W an isomorphism from V to W . Then
given any g-homomorphism α : V → W , composing with φ−1 gives a g-homomorphism from V to

32So in particular you don’t need to know it for any exam...
33Note that this identity holds unless char(k) = 2. It might be useful to remember this identity when understanding the

Proposition which is the key to the proof of the Cartan Criterion: it claims that if g = Dg then there is an element x ∈ g with
κ(x, x) 6= 0. Noting the above identity, we see this is equivalent to asserting that κ is nonzero.
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V , thus it is enough to assume W = V . But then if α : V → V is a g-endomorphism of V , since k is
algebraically closed, it has an eigenvalue λ and so ker(α − λ) is a nonzero subrepresentation, which
must therefore be all of V , that is α = λ.idV , so that Homg(V, V ) is one-dimensional as claimed. �

Definition 23.3. A representation (V, ρ) is said to be semisimple if any subrepresentation U has a com-
plement, that is, there is a subrepresentation W such that V = U ⊕W . A representation is said to be
completely reducible if it is a direct sum of irreducible representations.

Lemma 23.4. If V is a semisimple representation, then any subrepresentation or quotient representation of V is
semisimple.

Proof. Supose that q : V → W is a surjective map, and that V is semisimple. We claim that W is
semisimple. Indeed if W1 is a subrepresentation of W , the q−1(W1) = V1 is a subrepresentation of V ,
which has a complement V2. Then it follows easily that q(V2) is a complement to W1 in W : indeed it is
clear that W = W1 + q(V2) since V = q−1(V1) ⊕ V2, and if w ∈ q(V2) ∩W1, we may write w = q(v) for
some v ∈ V2, but then v ∈ q−1(W1), hence w ∈ q−1(V1) ∩ V2 = {0}.

Next, if U is a subrepresentation of V , then picking a complement U ′ to U , so that V = U ⊕ U ′, the
corresponding projection map π : V → U with kernel U ′ shows that U is isomorphic to a quotient of V ,
and hence is also semisimple. �

Lemma 23.5. Let (V, ρ) be a representation. Then the following are equivalent:
i) V is semisimple,

ii) V is completely reducible,
iii) V is the sum of its irreducible subrepresentations.

Proof. Once we know that any subrepresentation of a semisimple representation is again semisimple,
the proof of part ii) of Lemma 15.3 shows that i) implies ii). Certainly ii) implies iii) so it is enough
to show that iii) implies i). For this, suppose that V is the sum of its irreducible subrepresentations
and that U is a subrepresentation of V . Let W be a subrepresentation of V which is maximal (with
respect to containment) subject to the condition that U ∩ W = {0}. We claim that V = U ⊕ W . To
see this, suppose that U ⊕ W 6= V . Then by our assumption on V there must be some irreducible
subrepresentation X with X not contained in W ⊕ U , and hence X ∩ (W ⊕ U) = {0}. But then we
certainly have34 (X ⊕W ) ∩ U = {0}, which contradicts the maximality of W , so we are done. �

Lemma 23.6. Let g be a Lie algebra. A representation is semisimple if and only if every surjective map of
representations q : V → W has a right inverse, that is there is a map of representations s : W → V such that
q ◦ s = idW .

Proof. Suppose that V is semisimple. Then given a surjection q : V → W , we may find a complement
U to the subrepresentation ker(q). Clearly then q|U is an isomorphism from U to W , and its inverse
gives the required homomorphism s. For the converse, if U is a subrepresentation, then the quotient
map q : V → V/U has a right inverse s. We claim that V = U ⊕ s(V/U). Suppose that u ∈ V lies in
the intersection. Then u = s(w) for some w ∈ V/U , and hence (since U is the kernel of q) we have
0 = q(u) = q(s(w) = w, so that u = 0. Thus U ∩ s(V/U) = {0}, and thus by dimension counting we see
that V = U ⊕ s(V/U) and s(V/U) is a complement as required. �

Remark 23.7. Our proof of Weyl’s theorem showed any surjective map of representations splits, hence
any representation is semisimple, and hence completely reducible. Thus it only uses the chain of im-
plications:

surjections split =⇒ semisimple =⇒ completely reducible,
while above we have shown that in fact all three statements are equivalent.

As we saw in our study of representations of nilpotent Lie algebras, it is not always the case that
a representation is a direct sum of irreducible representations, i.e. a representation is not always com-
pletely reducible, and for these representations the notion of a composition series is useful: It shows
that, even if a representation is not completely reducible, we may still think of it as being built out of
irreducibles. Indeed using induction on dimension, it is easy to see that any representation may be
filtered by subrepresentations 0 = V0 ( V1 ( . . . ( Vk = V where each successive quotient Vi/Vi−1

is irreducible. We call such a filtration a composition series for V , and the irreducible representations
Vi/Vi−1 (1 ≤ i ≤ k) are called composition factors.

34Since both are just expressing the fact that the sum X +W + U is direct.
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Although we don’t use it in the course, the following result is shows that the composition factors are
actually independent of the filtration: If L is a simple representation then write [L, V ] for the number
of times L occurs in the composition series (i.e. [L, V ] = #{i : 1 ≤ i ≤ k, Vi/Vi−1

∼= L}.

Lemma 23.8. (Jordan-Holder). The numbers [L, V ] are independent of the composition series.

Proof. Use induction on the dimension of V . Clearly if this is 1, then V is irreducible and the result
is clear. Now suppose that (Vi)

k
i=1) and (Wi)

l
i=1 are two composition series for V . There is a smallest

j such that Wj ∩ V1 is nonzero, and then since V1 is irreducible we must have V1 ∩Wj = V1, that is,
V1 ⊆Wj . But then the induced map V1 →Wj/Wj−1 must be an isomorphism by Schur’s Lemma. Thus
setting

W ′i =
{ (Wi ⊕ V1)/V1 if i < j,

Wi+1/V1 if j ≤ i− 1.

we obtain a composition series of V/V1, whose composition factors are those of the composition series
(Wi)

l
i=1 for V , with one fewer copy of the isomorphism class of V1

∼= Wj/Wj−1. By induction it has the
same composition factors as the filtration {Vi/V1 : 1 < i ≤ k}, and we are done. �

Remark 23.9. If we take g = gl1(k), then a representation (V, ρ) of g is completely determined by the lin-
ear map α = ρ(1). Subrepresentations of V correspond to subspaces which are invariant for the linear
map α, and the existence of eigenvalues shows that the irreducible (finite dimensional) representations
of gl1(k) are one-dimensional and hence completely reducible representations are the ones for which
α is diagonalisable (or in the terminology favoured in this course, “semisimple”!) Notice that Lemma
23.4 then shows that if a linear map is diagonalisable, it is diagonalisable on any invariant subspace.

24. APPENDIX 3: EXACT SEQUENCES

The notion of exact sequences and extensions does not play a prominent role in the course, but some
of the results are best expressed in this language.

24.1. Exact sequences of Lie algebras.

Definition 24.1. We say that the sequence of Lie algebras and Lie homomorphisms

g1
i // g

q // g2

is exact at g if im(i) = ker(q). A sequence of maps

0 // g1
i // g

q // g2
// 0

is called a short exact sequence if it is exact at each of g1, g and g2, so that i is injective, q is surjective and
im(i) = ker(q). In this case, we say that g is an extension of g2 by g1.

An extension of Lie algebras

0 // g1
i // g

q // g2
// 0

is said to be split if there is a map s : g2 → g such that q ◦ s = idg2 .

Notice that if an exact sequence

0 // g1
i // g

q // g2
// 0

is split, then the image s(g2) of the splitting map s is a subalgebra of g which is isomorphic to g2 and
is complementary to i(g1), in the sense that g = i(g1) ⊕ s(g2) as vector spaces. In fact we then have
g ∼= i(g1) o s(g2) where s(g2) acts by derivations on i(g1) via the adjoint action (since g1 is an ideal in
g).

In general, there may be many ways to split an exact sequence of Lie algebras (see Problem Sheet 1).

Remark 24.2. Part A Group theory discusses split extensions of groups without using this terminology:
Indeed there is a similar notion of a short exact sequence of groups: namely it is a sequence

1 // G1
i // G

q // G2
// 1

where 1 denotes the trivial group, and exactness at G is the condition that ker(q) = im(i), while ex-
actness at G1 implies i is injective and exactness at G2 implies that q is surjective. Such a sequence is
split if there is a homomorphism p : G2 → G such that q ◦ p = idG2 . In this case you can check that
G = G1 o G2, where G2 acts on G1 by the composition of p and the conjugation action of G (as G1 is
normal in G). You can check that G = G1 ×G2 precisely if p(G2) is normal in G.
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Example 24.3. Lemma 12.2 of the main text says that any Lie algebra g contains a canonical solvable
ideal rad(g) such that g/rad(g) is a semisimple Lie algebra. This translates into the existence of an exact
sequence

0 // rad(g) // g // g/rad(g) // 0,

which in turn says that any Lie algebra is an extension of the semisimple Lie algebra g/rad(g) by the
solvable Lie algebra rad(g). By Levi’s theorem, Theorem 12.4, this extension is split in characteristic
zero.

24.2. Exact sequences of representations. Parallel to the notion for Lie algebras, there is also a notion
for representations. Let g be a Lie algebra.

Definition 24.4. A sequence of maps of g-representations

U
α // V

β // W
is said to be exact at V if im(α) = ker(β). A sequence of maps

0 // U
α // V

β // W // 0
is called a short exact sequence if it is exact at each of U , V and W , so that α is injective and β is surjective
and im(α) = ker(β). If V is the middle term of such a short exact sequence, it contains a subrepresent-
ation isomorphic to U , such that the corresponding quotient representation is isomorphic to W , and
hence, roughly speaking, V is built by gluing together U and W . Once again, an exact sequence

0 // U
α // V

β // W // 0
is called split if β admits a right inverse.

Example 24.5. Let g be a semisimple Lie algebra. Then any short exact sequence of g-representations
splits. This is just a restatement of Corollary 15.15.

Example 24.6. To see a non-split extension, let g = n2 be the one-dimensional Lie algebra, thought of
as the (nilpotent) Lie algebra of 2× 2 strictly upper triangular matrices. Then its natural 2-dimensional
representation on k2 given by the inclusion n2 → gl2(k) gives a non-split extension

0 // k0
i // k2 // k0

// 0

where k0 is the trivial representation, and i : k0 → k2 is the inclusion t 7→ (t, 0). In fact it’s easy to
see using linear algebra that for gl1(k) = n2, an extension of one-dimensional representations kα and
kβ automatically splits if α 6= β while there is, up to isomorphism, one non-split extension of kα with
itself (α, β ∈ (gl1(k))∗). The splitting statement is a special case of the following more general result, a
special case of Theorem 7.3.

Lemma 24.7. Let g be a nilpotent Lie algebra, and let α, β ∈ (g/Dg)∗ be distinct. Any exact sequence of
g-representations

0 // kα // V // kβ // 0

splits, that is, V ∼= kα ⊕ kβ .

Thus non-isomorphic one-dimensional representations U and V of a nilpotent Lie algebra cannot be
“glued together” in any way other than by taking their direct sum.


