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This note gives an account of the representation theory of nilpotent Lie algebras following the presentation used
in the lecture videos which was slightly different to that used in the online lecture notes.

Lie’s theorem shows that if g is a nilpotent Lie algebra, its irreducible representations are all one-
dimensional. For any Lie algebra, the one-dimensional representations are given by (g/Dg)∗, and when
g is nilpotent we will call these weights of g.

Definition 1.1. If g is a Lie algebra and λ ∈ (g/Dg)∗ then we will write kλ for the one dimensional
representation given by λ : g→ gl1.

By the Jordan-Holder theorem, any finite dimensional representation V is built from irreducible
representations in the sense that you can find an increasing sequence 0 = F0 < F1 < . . .Fk = V of sub-
representations such that Fi /Fi−1 is irreducible, and the multiplicity of occurence of the irreducible
representation is independent of the choice of filtration. For solvable Lie algebras, this along with Lie’s
theorem, is as complete a description of a general representation as we will be able to obtain: in more
concrete terms it say that if V is a representation of a solvable Lie algebra g, then there is a basis of V
with respect to which the matrices of the linear maps ρ(x) are all upper triangular (since all irreducible
representations of g are one-dimensional). The irreducibles which occur in a composition series for V
are called the weights of V . For nilpotent Lie algebras however, we will be able to get more information:

Definition 1.2. For any weight λ of a nilpotent Lie algebra g and any g-representation (V ,ρ), we set

Vλ = {v ∈V : (ρ(x)−λ(x))k (v) = 0,for some k ∈Z>0}

Thus Vλ is the intersection of the generalized eigenspaces of ρ(x) with eigenvalue λ(x) over all x ∈ g.

Remark 1.3. We can also rephrase the definition of Vλ more representation-theoretically: by Lie’s the-
orem, we know that all the irreducible representations of g are one-dimensional, and the only one-
dimensional representation which can occur in the space Vλ is (up to isomorphism) kλ, since for each
x ∈ g the linear map ρ(x) can only have the eigenvalue λ(x) on any composition factor1 of Vλ. Thus Vλ

is the largest subrepresentation of V whose composition factors are all isomorphic to kλ. In particular,
if we write [V : kλ] for the multiplicity with which kλ occurs in a composition series of V , then

(1.1) dim(Vλ) ≤ [V : kλ].

The key to our description of representations of a nilpotent Lie algebra is the following:

Lemma 1.4. Let (V ,ρ) be a representation of a nilpotent Lie algebra g and let x ∈ g. The if V = ⊕
λVλ,x is the

generalized eigenspace decomposition of V with respect to ρ(x), each Vλ(x) is a subrepresentation of V .

Proof. Fix λ ∈ k. To see that Vλ,x is a g-subrepresentation we the following equation, established in
Section 7 of the main lecture notes: Writing ρ : g→ gl(V ) for the action of g on V , we have

(ρ(x)−λ)kρ(y)(v) =
k∑

r=0

(
k

r

)
ρ(ad(x)r (y))(ρ(x)−λ)k−r (v), ∀x, y ∈ g, v ∈V.

Now since g is nilpotent ad(x) is nilpotent on g and hence there is some N for which ad(x)N = 0. Simil-
arly if we take v ∈Vλ(x) there is some M for which (ρ(x)−λ)M (v) = 0. Thus if k ≥ N +M either ad(x)r = 0
or (ρ(x)−λ)k−r (v) = 0, thus each term on the right-hand side of the above equation vanishes, and hence
ρ(y)(v) ∈Vλ as required. �

1If φ : W → W is a linear map with λ as its only eigenvalue, φ−λ is nilpotent on W , and hence on U1/U2 for any subspaces
U1 >U2 of W preserved by φ.
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Theorem 1.5. Let g be a nilpotent Lie algebra and suppose that (V ,ρ) is a g-representation of g. Then

V = ⊕
λ∈(g/Dg)∗

Vλ.

The proof in the main online lecture notes is different from the one given in the lecture videos. We
give an account of that second proof here, along with what is essentially the same proof as in the main
lecture notes, but expressed in a more representation theoretic way:

First proof :
We use by induction on dim(V ), the case dim(V ) = 1 being trivial. Thus suppose we have V with

dim(V ) > 1. Then by Lie’s theorem, we may find a one-dimensional subrepresentation L of V . Now if
we set W =V /L then dim(W ) = dim(V )−1, so by induction we know that W =⊕

λ∈ΨWλ, where Ψ is the
finite set of elements of (g/Dg)∗ for which Wλ 6= 0. Set W̃λ = q−1(Wλ) where q : V → W is the quotient
map. Now (L,ρ|L) is isomorphic to kµ for some µ ∈ (g/Dg)∗, hence we obtain a short exact sequence:

0 // kµ
i // W̃λ

q // Wλ
// 0

where i is induced by the isomorphism kλ ∼= L and q , by abuse of notation, is the restriction of q to
W̃λ. We claim it is enough to show that if λ 6=µ then this sequence splits, i.e we can find an s : Wλ → W̃λ

such that q ◦ sλ = idWλ
. Indeed if this is the case then sλ(Wλ)⊕L decomposes W̃λ as a direct sum of

subrepresentations. There are now two cases: either µ ∉ Ψ, in which case V = L ⊕⊕
λ∈{Psi sλ(Wλ), or

µ ∈Ψ in which case V = W̃µ⊕⊕
sλ(Wλ). Now clearly each of the spaces L, W̃µ and sλ(Wλ) have only

one composition factor, (kµ for the first two and kλ for the third, so they lie in Vµ and Vλ respectively.
But by considering, for each of the cases, a composition series for V compatible with the direct sum
decomposition, it is clear that for each η ∈Ψ∪ {µ} the multiplicity [V : kη] is equal to the dimension of
the corresponding summand, hence (see Remark 1.3) the summands are in fact equal to the subspaces
Vλ as required.

It thus remains to show that the short exact sequences split. We do this in the next Lemma.

Lemma 1.6. Let g be a nilpotent Lie algebra, and suppose that we have a short exact sequence of g representations

0 // kµ
i // V

q // W // 0

where W has only one composition factor, kλ, and λ 6=µ. Then the sequence splits, that is, there is a homomorph-
ism of g-representations s : W →V with q ◦ s = idW .

Proof. Since λ 6=µ, we may pick x ∈ g with λ(x) 6=µ(x). Now on W , the action of x has unique eigenvalue
λ(x) while on i (kµ) it has eigenvalue µ(x). It follows that if V =Vλ(x)⊕Vµ(x) is the generalized eigenspace
decomposition of V with respect to the action of x, then Vµ(x) = i (kµ), so since im(i ) = ker(q), the map q
is injective on Vλ(x) and hence gives an isomorphism q|Vλ(x) : Vλ(x) →W . Its inverse s : W →Vλ(x) will give
a splitting map provided Vλ(x) is a subrepresentation2: Indeed as q|Vλ(x) : Vλ(x) →W is a homomorphism
of g-representations, its inverse s is automatically a g-homomorphism, since if q is invertible and for all
x ∈ g we have q◦x = x◦q then pre- and post- composing both sides with s = q−1 we see that (s◦q)◦(x◦s) =
(s ◦x)◦ (q ◦ s) and hence x ◦ s = s ◦x as required.

�

Second proof :
Write Ψ for the set of one-dimensional representations of g which occur a composition series for V .

Then we may find x ∈ g with λ(x) 6= µ(x) whenever λ 6= µ: Indeed the set ∆(Ψ) = {λ−µ : λ,µ ∈Ψ,λ 6= µ} is
finite and thus

⋃
η∈∆(Ψ){x ∈V : η(x) = 0} is a finite union of hyperplanes (i.e. subspaces of codimension 1)

in g/D(g) and hence3 it cannot be all of g/D(g). Any x ∈ g whose coset x +Dg lies in the complement of
this union of hyperplanes will suffice.

Now let V = ⊕
η∈kVη,x be the generalized eigenspace decomposition of V with respect to the action

of ρ(x). Now by taking a composition series of V as a g-representation4 we see the eigenvalues of ρ(x)
are exactly {λ(x) : λ ∈Ψ}, and clearly Vλ ⊆ Vλ(x), so that since the generalized eigenspaces form a direct
sum so must the Vλ. It remains to show that Vλ = Vλ(x). But Vλ(x) is a g-representation, and if kµ is a

2This is a general fact, a short exact sequence 0 // U i // V
q // W // 0 of representations of any Lie algebra

splits if and only if V decomposes as V = i (U )⊕W ′, with the splitting map being given by the inverse of the restriction of q to W ′
– see the appendix of the main online lecture notes on short exact sequences.

3This is true for a vector space over an infinite field, and any algebraically closed field in infinite.
4As each irreducible is one-dimensional, this is a complete flag, so taking a basis of V compatible with the flag the matrices

associated to ρ(g) are upper triangular with the diagonal entries giving the action on the corresponding composition factor.
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composition factor of Vλ(x) then µ(x) is an eigenvalue of ρ(x) on Vλ(x), so that µ(x) = λ(x) and hence by
our choice of x we must have µ= λ. Thus every composition factor of Vλ(x) is isomorphic to kλ and so
Vλ(x) ⊆Vλ and since we already observed Vλ ⊆Vλ(x) we are done.

For completeness, we include a proof of the elementary result about hyperplanes used in the previ-
ous proof.

Lemma 1.7. Suppose that k is an infinite field and V is a k-vector space. The if {Hi : 1 ≤ i ≤ n} is a finite
collection of hyperplanes in V we have

⋃n
i=1 Hi (V .

Proof. Prove this by induction on the number of hyperplanes (the case n = 1 being trivial).
Let {Hi : 1 ≤ i ≤ n} be a collection of n hyperplanes in V . Now if H1 ⊆ Hk for any k > 1, then

⋃n
i=1 Hi =⋃n

i=2 Hi , and so we are done by induction. Thus we may assume that H1 ∩ Hk is a hyperplane in H1

and so again by induction H1 )
⋃n

i=2(H1 ∩Hi ). It follows that there is a vector v1 ∈ H1\(
⋃n

i=2 Hi ). Now
consider wt = v1 + t w where we pick w ∉ H1 (which we can do by the n = 1 case). Now suppose that
there exist s, t ∈ k with s 6= t but ws , wt ∈ Hk for some k. Then ws −wt = (s − t ).w ∈ Hk and so w ∈ Hk , and
hence k ≥ 2. But then v1 = ws − s.w ∈ Hk , which contradicts our choice of v1. Moreover, since w ∉ H1, it
is clear that wt ∈ H1 if and only if t = 0. Thus for each k ≥ 1, Hk contains at most one of the vectors on
the line L = {v1 + t w : t ∈ k}, hence as k is infinite, infinitely many points on the line L lie in none of the
hyperplanes Hk as required. �


