C2.1a Lie algebras

Mathematical Institute, University of Oxford

Problem Sheet 4

Throughout this sheet we assume that all Lie algebras and all representations discussed are finite dimensional unless the contrary is explicitly stated, and we work over a field k which is algebraically closed of characteristic zero.

- 1. i) Show directly that if $\phi: \mathfrak{g}_1 \to \mathfrak{g}_2$ is a surjective homomorphism of semisimple Lie algebras and x = s + n is the Jordan decomposition of $x \in \mathfrak{g}_1$, then $\phi(x) = \phi(s) + \phi(n)$ is the Jordan decomposition of $\phi(x) \in \mathfrak{g}_2$.
 - ii) Show that homomorphisms between semisimple Lie algebras are compatible with the Jordan decomposition, that is, if g₁, g₂ are semisimple Lie algebras, and φ: g₁ → g₂ is a homomorphism, then if x = s + n is the Jordan decomposition of x ∈ g₁, φ(x) = φ(s) + φ(n) is the Jordan decomposition of φ(x) in g₂. (For this part you may assume the fact, stated in lectures, that if x = s + n is the Jordan decomposition of x and ρ: g → gl(V) is a representation, then ρ(s) is semsimple and ρ(n) is nilpotent.)
- 2. i) Show that if V is a (finite dimensional) representation of \mathfrak{sl}_2 and $V = \bigoplus_{k \in \mathbb{Z}} V_k$ is the decomposition of V into (generalised) eigenspaces of h, then the number of irreducible constituents of V is equal to $\dim(V_0) + \dim(V_1)$.
 - ii) Show that if $\mathfrak{g} = \mathfrak{h} \oplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$ is the Cartan decomposition of a semisimple Lie algebra \mathfrak{g} , and α, β and $\alpha + \beta$ are all in Φ , then $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$. (*Hint: Use the representation theory of* \mathfrak{sl}_2 . You may assume all root spaces are 1-dimensional.)

3. Use Weyl's theorem to give an alternative proof of the fact that any derivation of a semisimple Lie algebra \mathfrak{g} is inner. (*Hint*: A derivation lets you construct a semi-direct product.)

4. Suppose that \mathfrak{g} is a Lie algebra and (V, ρ) is a faithful finite-dimensional representation (so that we may think of \mathfrak{g} as a subalgebra of $\mathfrak{gl}(V)$). Show that if V is irreducible and $\operatorname{tr}(\rho(x)) = 0$ for all $x \in \mathfrak{g}$, then \mathfrak{g} is semisimple.

5. Let $\mathfrak{g} = \mathfrak{sp}_{2n}$ be the symplectic Lie algebra. Show that \mathfrak{h} , the space of matrices in \mathfrak{g} which are diagonal, is a Cartan subalgebra, and thus find the roots of \mathfrak{sp}_{2n} . (Optional: Do the same for the Lie algebras \mathfrak{so}_{2n} .)

6. Let \mathfrak{g} be a complex semisimple Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra. If $\Phi \subset \mathfrak{h}^*$ is the corresponding root system find an expression for the dimension of \mathfrak{g} in terms of Φ . (In particular, the dimension of \mathfrak{g} is determined by the root system).

7. ILet V be a \mathbb{Q} -vector space. A *lattice* in V is a discrete subgroup¹ $Q \subset V$ which spans V over \mathbb{Q} . Equivalently, a lattice is a subgroup Q of V of the form

$$\{\sum_i \lambda_i \beta_i : \lambda_i \in \mathbb{Z}\}$$

where $\{\beta_i\}_{i=1}^n$ is a basis of V. (You do not have to prove this).

Assume that V is equipped with an positive definite inner product (-, -). A lattice $Q \subset V$ is called *integral* if $(\alpha, \beta) \in \mathbb{Z}$ for all $\alpha, \beta \in Q$. A lattice Q is called *even* if $(\alpha, \alpha) \in 2\mathbb{Z}$ for all $\alpha \in Q$.

- i) Show that an even lattice is integral.
- ii) Let $Q \subset V$ be an even lattice. Assume that the set $R_Q = \{\alpha \in Q : (\alpha, \alpha) = 2\}$ spans V. Show that R_Q is a root system in V.
- iii) Let $V = \bigoplus_{i=1}^{r} \mathbb{Q}e_i$ equipped with the standard inner product $(e_i, e_j) = \delta_{ij}$. Let

$$\Gamma_r = \{\sum a_i e_i : \sum a_i \in 2\mathbb{Z} \text{ and either all } a_i \in \mathbb{Z} \text{ or all } a_i \in \mathbb{Z} + \frac{1}{2}.\}$$

Show that Γ_r is an even lattice if r is divisible by 8.

¹That is, each element has an open ball around it which contains no other element of Q.

- iv) (Optional) Consider $\Gamma = \Gamma_8 \subset \mathbb{Q}^8$. Show that V is spanned by the vectors $v \in \Gamma$ such that (v, v) = 2, and describe the roots in the resulting root system R_{Γ} .
- v) (*Optional*) Consider the functional $t \in V^*$ given by

$$t = \sum_{i=1}^{7} (i-1)e_i^* + 23e_8^*,$$

where $\{e_i^*\}_{i=1}^8$ is the dual basis to $\{e_i\}_{i=1}^8$. Show that $0 \neq t(\alpha) \in \mathbb{Z}$ for all $\alpha \in R_{\Gamma}$. Calculate the set of roots $\alpha \in R_{\Gamma}$ with $t(\alpha) = 1$ and check it is a basis of V. Compute the matrix of the inner product with respect to this basis. (This step is similar to the proof that a root system has a base.)

- vi) (*Optional*) Let H_7 denote the hyperplane V orthogonal to $e_7 + e_8$. Show that $R_{\Gamma} \cap H_7$ is a root system of and find a basis for H_7 contained in it (*hint: start with the basis in the previous part.*)
- vii) (*Optional*) Let H_6 be the subspace orthogonal to $e_6 + e_7 + 2e_8$ and $e_7 + e_8$. Show that $R_{\Gamma} \cap H_6$ is a root system and calculate a basis for H_6 contained in it.