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Evolution

Dmitry Belyaev

1 Introduction

There are several important lattice models that have a scaling limit as mesh of
the lattice goes to zero. Moreover, these limits are invariant under conformal
transformations. This is known in some cases and conjectured in others.

1.1 Brownian motion

One of motivating examples is the statement that the Random Walk converges
to the Brownian Motion. This example has several important features:

� Discrete model converges to a continuous model when mesh of the lattice
goes to zero.

� The limit is independent of the lattice. This is what is known as uni-
versality. In the case of the random walk this is true under rather mild
assumptions on the regularity of the lattice.

� The limit is more symmetric than the discrete model. For example, the
random walk on the square lattice is only symmetric with respect to verti-
cal and horizontal reflections and rotations by π/2. The two-dimensional
Brownian motion is invariant under all rotation. In fact, it is (up to change
of time) is conformally invariant. This means that a conformal image of
BM has the same law as BM. The precise statement is given below.

To explain the last result we first have to introduce some notations.

Definition 1.1 A complex martingale is a process Mt in C or Cd that is a
vector martingale when C or Cd is regarded as a real vector space.

However there are changes brought on by the complex structure. It is clear
that if M is a complex martingale then so is its complex conjugate M̄t. The
bracket process is a bit more tricky to define in this setting - because there is a
choice! Should it be bilinear or sesquilinear

〈αM, βN〉 =

?αβ 〈M,N〉
?αβ̄ 〈M,N〉 .

There is no canonical correct answer and we adopt the first convention.
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Definition 1.2 Let M and N be two continuous square integrable complex mar-
tingales then 〈M,N〉t is the unique bounded variation, adapted, and continuous
C-valued process with initial value zero so that

MtNt − 〈M,N〉t

is a martingale.

It is easy to see that if Mt = Rt + iSt , M̃t = R̃t + iS̃t where Rt, St etc. are
real valued martingales then

〈M,M〉t =
〈
R, R̃

〉
t
−
〈
S, S̃

〉
t

+ i
(〈
R, S̃

〉
t

+
〈
R̃, S

〉
t

)
.

Definition 1.3 A continuous complex (local) martingale Mt is a conformal
(local) martingale if 〈M,M〉t ≡ 0.

Definition 1.4 Complex Brownian motion is Zt = Xt + iYt where the real and
imaginary parts Xt and Yt are independent real BM.

It is very easy to check that this is a conformal martingale.
Next, we need some standard results adapted to the complex case.

Lemma 1.5 (Levy characterization of BM) Let Zt be a complex valued con-
tinuous adapted process. Then Zt is a complex Brownian motion if and only if

1. Zt is a conformal local martingale.

2. 〈Z, Z̄〉t = 2t.

Lemma 1.6 (Dubins-Schwarz change of time) If Zt is a conformal mar-
tingale with continuous sample paths then

〈
Z, Z̄

〉
t

is positive, increasing and

continuous. Moreover, if
〈
Z, Z̄

〉
t

is strictly increasing1 and

τ (s) := inf
{
t |
〈
Z, Z̄

〉
t
> 2s

}
is finite for all s then Zτ(s) is a complex Brownian motion on

(
Ω,Fτ(s),P

)
.

Theorem 1.7 (Ito’s Lemma - Complex Variable case) 2 Suppose that Z
is a continuous complex martingale and that f is a C2 function then

f (Zt)− f (Z0) =

∫ t

0

∂f (Zs) dZs +

∫ t

0

∂̄f (Zs) dZ̄s

+

(∫ t

0

∂∂f (Zs) d 〈Z,Z〉s +

∫ t

0

∂̄∂̄f (Zs) d
〈
Z̄, Z̄

〉
s

)
+2

∫ t

0

∂∂̄f (Zs) d
〈
Z, Z̄

〉
s

The proof is a matter of checking algebra.

1This extra condition is required in the complex case. Without it 〈X,X〉 might stay
constant while 〈Y, Y 〉 increases, and thus X would be constant while Y varies; we would not
be able to time change this to 2-dimensional Brownian motion.

2Here we use standard notations ∂̄ = ∂z̄ = 1
2

(∂x + i∂y) and ∂ = ∂z = 1
2

(∂x − i∂y).
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Exercise 1.8 Let Zt be a conformal martingale and f be an analytic function.
Show that f (Z) is a martingale and

f (Zt)− f (Z0) =

∫ t

0

f ′ (Zs) dZs.

Verify that 〈
f (Z) , f (Z)

〉
t

=

∫ t

0

f ′ (Zs) f ′ (Zs) d 〈Z,Z〉s

We are now in a position to prove conformal invariance of complex Brownian
motion.

Theorem 1.9 (Lévy) If f is an entire function and Z is a conformal local
martingale with

〈
Z, Z̄

〉
t

strictly increasing, then f (Zt) is a conformal local mar-

tingale. It’s bracket
〈
f (Z) , f (Z)

〉
t

=
∫ t

0
|f ′ (Zs)|2 d

〈
Z, Z̄

〉
s

is positive, strictly

increasing and continuous and if τ (s) := inf
{
t |
〈
f (Z) , f (Z)

〉
t
> 2s

}
then

f (Zτ ) is a complex Brownian motion.

This theorem follows immediately from the Levy characterization and Dubins-
Schwarz change of time. The only non-trivial part is to show that if Z is a
Brownian Motion then the new time runs to infinity. The precise statement is
in the following exercise

Exercise 1.10 Let Zt be a complex Brownian Motion and f be an entire non-
constant function. Show that

∫∞
0
|f(Zt)|2d(2t) = ∞. [ Hint: the Brownian

Motion is recurrent.]

1.2 Other lattice models

There is a whole range of critical lattice models that appear in statistical physics
that are conjectured to exhibit similar behaviour. They have scaling limits, these
scaling limits are independent of the lattice and they are conformally invariant.

The goal of this course is to introduce a one-parameter family of continuous
random curves that are the only possible conformally invariant scaling limits
of these models. These curves are called Schramm-Loewner Evolution (SLE).
They were introduced by Oded Schramm in 1998 and led to a revolution in our
understanding of critical lattice models.

1.3 Prerequisites

Theory of SLE requires tools from different areas of mathematics. The main
ingredients come from stochastic analysis. It is assumed that you should be
familiar with foundations of stochastic analysis, in particular, you should be
comfortable with results like Ito formula and optional stopping theorem. The
other main ingredient is complex analysis. It is assumed that you are familiar
with foundations of complex analysis. We will need several results about con-
formal transformations but they will be briefly introduced in the next section.
You will benefit from attending C4.8 Complex Analysis: Conformal Maps and
Geometry, nut it is not strictly necessary.
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Figure 1: An interface between two clusters in the critical Ising model on the
square lattice.

2 Complex analysis

In this section we will discuss the basic complex analysis results that will be
needed later. In this section all functions will be conformal transformations on
their respective domains. This means that they are complex analytic one-to-one
maps. Alternative term is univalent functions. All domains will be open and
in most cases simply-connected. Proof of the Riemann uniformization theorem
could be found in many advanced complex analysis textbooks. One of the the
standard references is the book by L. Ahlfors [1]. All necessary information
can be found in my book [3]. You can also consult Lawler’s book [6] which
introduces necessary complex analysis using more probabilistic methods.

2.1 Riemann Uniformization Theorem

I will assume that you know some basic facts about Möbius transformations:

1. For every choice of distinct z1, z2, z3 and w1, w2, w3 there is unique Möbius
transformation µ such that µ(zi) = wi.

2. All Möbius transformations that map the unit disc D onto itself are of the
form

µ(z) = eiθ
z − z0

1− zz̄0
,

moreover one can show that all conformal automorphisms of D are of this
form.

3. All Möbius transformations that preserve the upper half-plane H are of
the form

µ(z) =
az + b

ac+ d

where a, b, c, d are real and ad− bc > 0. Moreover all conformal automor-
phisms of H are of this form.
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4. All Möbius transformations of C are of the form az + b

One of the main results is the Riemann uniformization theorem which clas-
sifies all simply connected domains.

Theorem 2.1 (Riemann Uniformization) Let Ω be a simply connected open
domain in the complex sphere Ĉ and let z0 be a point in Ω. There are three cases:
Ĉ\ is empty, contains one point or contains at least three points. In these three
cases there are conformal maps φ which map Ω onto Ĉ, C, and D respectively.
Moreover in all the cases there is a map φ such that φ(z0) = 0 and the argument
of φ′(z0) is zero (we will write this as φ′(z0) > 0). In the last case this map is
unique.

In this statement we normalize the map by its value at one interior point
and by the argument of the derivative at this point. There are other standard
normalizations. If the boundary of domain is sufficiently nice, for example it is
a Jordan curve, then the Riemann map is continuous up to the boundary and
we can normalize so that the the domain is mapped onto the upper half-plane
H in such a way that two fixed boundary points are mapped to 0 and ∞.

2.2 Basic properties

In this section we formulate several standard results about univalent functions
in the unit disc. All these results can be found in C4.8 lecture notes or in many
books on function theory. For example [4, 8, 3].

By S we denote the class of functions that are univalent in the unit disc and
have expansion

f(z) = z + a2z
2 + a3z

2 + . . . .

An important example of a function from the class S is the Koebe function

K(z) = z + 2z2 + 3z3 + . . . .

Theorem 2.2 (Schwarz lemma) Let f be an analytic function in D such that
f(0) = 0 and |f(z)| ≤ 1 for all z ∈ D. Then

|f(z)| ≤ |z|, |f ′(0)| ≤ 1.

Moreover, if |f ′(0)| = 1 or |f(z)| = |z| for some z 6= 0, then f(z) = eiθz all z
for some θ ∈ R.

Theorem 2.3 (Growth Theorem) Let f ∈ S, then for all |z| = r

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
.

Moreover, if the equality happens in one of these inequalities for some z 6= 0,
then f is a rotation of the Koebe function, namely, there is θ ∈ R such that
f(z) = e−iθK(eiθz).

Theorem 2.4 Let f ∈ S, then for all |z| = r

1− r
(1 + r)3

≤ |f ′(z)| ≤ 1 + r

(1− r)3
.

Moreover, if the equality happens in one of these inequalities for some z 6= 0,
then f is a rotation of the Koebe function.
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Theorem 2.5 (Koebe distortion) Let f be a univalent map on a simply con-
nected domain Ω and denote ω′ = f(Ω). Then for every z ∈ Ω

1

4
≤ |f ′(z)| dist(z, ∂Ω)

dist(f(z), ∂Ω′)
≤ 4.

Theorem 2.6 (Beurling distortion) Let Ω be a simply connected domain
and K2 ⊂ K2 be compacts such that Ω \ Ki is simply connected. We assume
that B(z0, r0) ⊂ Ω \K2 and diam(K2 \K1) < ε < r0/10. Let g : Ω \K1 → D be
a conformal transformation such that g(z0) = 0. Denote A = g(K2 \K1. Then
there is a constant which depends on r0 only such that diam(A) ≤

√
ε.

This theorem gives us a uniform bound on the distortion near the boundary.

Definition 2.7 The kernel of a family of simply-connected domains (Ωn) with
respect to w0 is the largest simply connected domain Ω such that w0 ∈ Ω and
every closed subset of Ω belongs to all Ωn for sufficiently large n. If there are
no such domains, then we define the kernel to be {w0}.

We say that Ωn converges to the kernel Ω if Ω is the kernel for every subse-
quence of (Ωn). This convergence is called Carathéodory or kernel convergence.

Theorem 2.8 (Carathéodory) Let (Ωn) be a sequence of simply connected
domains containing w0. Let fn be conformal maps from D onto Ωn normalized
by fn(0) = w0 and f ′(0) > 0. Then the following conditions hold:

1. If fntof uniformly on compact sets, then Ωn → Ω = f(D).

2. If Ωn → Ω in the Carathéodory sense and Ω 6= C, then fn → f uniformly
on compact sets, where f is the univalent map onto Ω normalized by f(0) =
w0 and f ′(0) > 0.

3. In both cases described above, if the limit of domains is not a singleton or,
equivalently, the limiting map f is not a constant, the inverse functions
f−1
n converge to f−1 locally uniformly.

Theorem 2.9 (Poisson formulas) Let u be harmonic in D and continuous
in the closed unit disc, then

u(z) =
1

2π

∫
∂D
u(ζ)PD(ζ, z)|d ζ|,

where

PD(ζ, z) =
1− |z|2

|ζ − z|2
= Re

(
ζ + z

ζ − z

)
.

The function P is called the Poisson kernel in D. It is the real part of the
function which is called the Schwarz kernel.

Let u be a harmonic function in H which is continuous up to the boundary
and decay at infinity sufficiently fast, then

u(z) =

∫
R
u(t)

y

(x− t)2 + y2
d t =

∫
u(t)PH(t, z)d t,

where the Poisson kernel in H is equal to y/(π((x− t)2 + y2)) is the imaginary
part of the Schwarz kernel 1/(π(t− z)).
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Cauchy formula allows to represent an analytic function through its bound-
ary values. These Poisson kernel formulas allow to represent an analytic function
using only real or imaginary values on the boundary.

Theorem 2.10 (Schwarz formulas) Let f be an analytic function in D which
is continuous up to the boundary, then

f(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
Re f(eiθ)d θ + iIm f(0)

=
1

2π

∫
∂D

ζ + z

ζ − z
Re f(ζ)|d ζ|+ iIm f(0).

Similarly, if f is analytic in H, continuous up to the boundary and decays at
infinity at least as |z|−α for some α > 0, then

f(z) =
1

π

∫ ∞
−∞

Im f(t)

t− z
d t.

2.3 Half-plane capacity

Definition 2.11 The subset K of the upper half-plane H is called a compact
H-hull (or a hull for simplicity) if K is bounded, K = H∩K̄ and H\K is simply
connected.

Lemma 2.12 Let K be a compact H-hull, then there is a unique conformal
transformation gK : H \K → H such that

lim
z→∞

gK(z)− z = 0.

This normalization is called the thermodynamic normalization. In the fu-
ture gK will always denote the conformal transformation with thermodynamic
normalization.

Definition 2.13 For a hull K we define its half-plane capacity by

hcap(K) = lim
z→∞

z(gK(z)− z)

From the definition of the capacity one can easily derive that the capacity
is translationaly invariant and satisfies a simple scaling relation

Lemma 2.14 Let K be a hull, then hcap(K + x) = hcap(K) and hcap(λK) =
λ2hcap(K) where x ∈ R and λ ∈ R+.

Example 2.15 Let K = {z = x + iy : y > 0, x2 + y2 < 1} the the upper
half-disc, then hcap(K) = 1.

Joukowsky map z + 1/z maps the unit disc and its complement onto the
complex plane with the slit from −2 to 2. In particular it maps the complement
of K onto H.

Example 2.16 Let K be the interval from 0 to it then hcap(K) = t2/2
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Example 2.17 Suppose 0 < α < 1 and let K be the interval from the origin to
αα(1− α)1−αeiαπ. Then it is possible to show that3

g−1
K (z) = (z + (1− α))α(z − α)1−α = z − α(1− α)

2z
+ . . .

hence hcap(K) = α(1− α)/2.

Lemma 2.18 Let K be a hull, Bt be a complex Brownian motion started from
z = x + iy ∈ H \K and let τ = inf{t > 0 : Bt 6∈ H \K} be the first exit time.
Then

1. Im (z) = Im gK(z) + Ez(ImBτ )

2. hcap(K) = limy→∞ yEiy(ImBτ )

3. If the set K is inside the unit disc, then

hcap(K) =
2

π

∫ π

0

Ee
iθ

(ImBτ ) sin θdθ

Proof is left as an exercise.

Lemma 2.19 Let Ω = H \K, fK : H→ Ω, then

fK(z) = z − hcap(K)

z
+ . . .

and

hcap(K) =
1

π

∫ ∞
−∞

Im fK(x)dx.

Proof. The first part follows immediately from the thermodynamical normal-
ization of gK = f−1

K .
To prove the second part we consider fK(z) − z. This function is analytic

in H and decays as O(z−1) at infinity. By Schwarz formula

f(z)− z =
1

π

∫
Im (fK(t)− t)

t− z
d t =

1

π

∫
Im fK(t)

t− z
d t.

Multiplying by z and passing to the limit as z →∞ we have

z(fK(z)− z) = −hcap(K) +O(z−1).

On the other hand, since K is compact, so Im fK(t) = 0 outside of some compact
set, we have

1

π

∫ (
−1 +

t

t− z

)
Im fK(t)d t→ 1

π

∫
Im fK(t)d t.

The integral formula for capacity immediately implies the following corol-
laries:

3This is a Schwarz–Christoffel map
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Corollary 2.20 The capacity is positive.

Corollary 2.21 Capacity is additive in the following sense: Let A1 and A2 be
two disjoint hulls. Denote by A their union and by Ã2 the image of A2 under
gA1 . Then hcap(A) = hcap(A1) + hcap(Ã2).

Corollary 2.22 Capacity is an increasing function of domain. Namely, let
A1 ⊂ A2 be two hulls, then hcap(A1) ≤ hcap(A2)

2.4 Mapping-out functions

In this section we study properties of mapping-out functions gK . This class of
functions is closely related to the class Σ but there are some important distinc-
tions.

Lemma 2.23 Let K be a half-plane hull and gK be a corresponding mapping.
Suppose that x ∈ R is to the right of K, that is [x,∞) does not intersect the
closure of K, then

gK(x) > x. (1)

For points that are to the left of K the inequality is reversed.

This lemma has a simple geometric interpretation: the mapping out function
pushes the hull down and it pushes the real line away towards infinity. The proof
is a straightforward application of Schwarz integral formula applied to fK and
is left as an exercise.

Exercise 2.24 Use the Schwarz formula for fK(z)− z to prove Lemma 2.23.

Lemma 2.23 could be used to obtain two similar results: one states that
gK(x) is monotone with K and the other gives an upper bound on gK(x) − x
given a bound on K.

Lemma 2.25 Suppose that K1 ⊂ K2 are two hulls and let x be a point to the
right of K2 then

gK1(x) ≤ gK2(x) (2)

where equality happens for some x is and only if K1 = K2.

Proof. Let us define K = gK1(K2\K1) which is a compact hull unless K1 = K2.
Assuming that this is the case we consider the function gK . By uniqueness of
the Riemann map with thermodynamic normalization gK2

(z) = gK(gK1
(z)).

Applying (1) to gK on the right-hand side we get

gK2
(x) > gK1

(x).

Corollary 2.26 Let us assume that a non-trivial compact hull K is inside the
unit disc D and that x > 1, then

x < gK(x) < x+
1

x
. (3)

For x < −1 we have x > gK(x) > x+ 1/x.
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Proof. This result is a combination of the previous lemma applied to K1 = K
and K2 = D ∩H and a simple observation that gD(z) = z + 1/z.

Next we show that a similar result holds in the upper half plane as well,
namely that there is a uniform estimate for |gK(z)− z| given a bound on K.

Lemma 2.27 Let K be a half-plane hull, H = H \ K and gK : H → H the
corresponding conformal map, then

|gK(z)− z| ≤ 3rad(K), (4)

for all z ∈ H.

Proof. We start by assuming that K ⊂ D and consider (x+,∞) = gK((1,∞)).
By Corollary 2.26 x+ ∈ [1, 2]. For all x > 1 we have 0 ≤ gK(x)− x ≤ 1/x ≤ 1,
or, equivalently, |fK(x) − x| ≤ 1 for all x ≥ x+. In a similar way we define
x− by (−∞, x−) = gK((−∞,−1)) and by the same argument |fK(x) − x| ≤ 1
for x < x−. We already know that (x−, x+) ⊂ (−2, 2). Since K ⊂ D the
image fK((x−, x+)) is inside D, this proves that |fK(x) − x| ≤ 3 on (x−, x+).
Combining all these estimates we can see that |fK(x)−x| ≤ 3 and since fK(z)−
z → 0 at infinity, by maximum modulus principle, |fK(z) − z| ≤ 3 everywhere
in H. This is equivalent to |gK(z)− z| ≤ 3 in the complement of K.

Finally, to prove the general case we assume that K ⊂ {z ∈ H : |z − ζ| ≤ r}
for some r > 0 and ζ ∈ R. Let K̃ = (K − ζ)/r be the rescaled and shifted hull.
By basic properties of mapping-out functions

gK(z) = rgK̃ ((z − ζ)/r) + ζ.

Combining this formula with an estimate |gK̃(z)− z| ≤ 3 we prove (4).

With a bit more work we can get the uniform bound for the next term as
well.

Lemma 2.28 Let K be a half-plane hull which is inside |z| ≤ R and z ∈ H
with |z| ≥ 10R. Then∣∣∣∣gK(z)− z − hcap(K)

z

∣∣∣∣ ≤ 10Rhcap(K)

|z|2
. (5)

Constant 10 appearing in this lemma is not sharp, it could be improved, but
the particular value is not really important. Also note that the condition that
K is inside the disc of radius R is very similar to rad(K) ≤ R, but we assume
that the centre of the disc is at the origin. Without this assumption there is
no universal estimate in terms of rad(K). Indeed, let us consider K to be the
half-disc of radius 1 centred at x0. Then gK(z) = z + (z − x0)−1 and

|g(z)− z − 1/z| = |x0|
|z − x0||z|

which is not uniformly bounded.
Proof. The Schwarz formula for fK(z) − z and the integral formula for the
capacity give

gK(z)− z − hcap(K)

z
=

1

π

∫
Im fK(x)

(
1

gK(z)− x
− hcap(K)

z

)
dx.
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Since |z| > 10R and gK(z)− z| ≤ 3R by (4), for |x| ≤ 2R we have∣∣∣∣ 1

gK(z)− x
− hcap(K)

z

∣∣∣∣ ≤ 5R

|z||z − 5R|
≤ 10R

|z|2
.

By comparing K with the half-disc of radius R we see that Im fK(x) = 0 if
|x| > 2R. Combining this with previous estimates we obtain∣∣∣∣gK(z)− z − hcap(K)

z

∣∣∣∣ ≤ 10R

|z|2
1

π

∫
Im fK(x)dx =

10Rhcap(K)

|z|2
.

3 Loewner Evolution

Let γ(t) be a simple curve in the upper half-plane. For simplicity we assume
that it starts at the origin, but it could start at any point on the real line. We
assume γ(t)→∞ as t→∞. Let us fix some time t > 0 and consider the domain
Ht = H \ γ[0, t]. By b(t) we denote the capacity of γ[0, t] and by gt the map
gγ[0,2] – the map from Ht onto H with thermodynamic normalization. By ft we

denote g−1
t and for s < t we define φs,t = gs(ft). Finally, by ut = u(t) we denote

gt(γ(t)). We assume that hcap(γ([0, t])) is a differentiable function of t. This
assumption is not really restrictive, by change of time we can make it any given
monotone function of t, in many cases we will assume that hcap(γ([0, t])) = 2t.
When hcap(γ([0, t])) = 2t we say that γ is parametrized by capacity.

Figure 2: Chordal Loewner Evolution

Our goal is to derive differential equations satisfied by ft and gt.
First, we claim that ut is continuous. The idea is very simple. By continuity,

for any ε if |s − t| is sufficiently small, then diamγ([s, t]) ≤ ε. By Beurling
inequality

diam(ys,t) = diam(gs(γ([s, t]))) ≤ c
√
ε.

By Lemma 2.27
|φs,t(z)− z| ≤ c

√
ε.

Applying this to z = ut and using the previous estimate we have

|ut − us| ≤ c
√
ε.
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Next we claim that gt satisfies a certain differential equation. To derive
this differential equation we apply the half-plane version of Schwarz formula to
φs,t(z)− z to write

φs,t(z)− z =
1

π

∫
1

x− z
Imφs,t(x)dx.

By construction gs = φs,t(gt), so by plugging gt instead of z in the formula
above we obtain

gs(z)− gt(z) =
1

π

∫
1

x− gt(z)
Imφs,t(x)dx.

Since Imφs,t(x) = 0 outside of a shrinking neighbourhood of u(t), dividing by
s− t and passing to the limit as s↗ t we obtain

ġt(z) =
1

u(t)− gt(z)
lim

1

s− t
1

π

∫
Imφs,t(x)dx.

By Lemma 2.19 and additive property of capacity the last integral is equal to
hcap(γ([0, t])) − hcap(γ([0, s])). This implies that the right hand side is equal
to

∂thcap(γ([0, t]))

gt(z)− u(t)
.

Now we can formulate the main result:

Theorem 3.1 Let γ be a curve in H satisfying all assumptions above and let
ft and gt be the corresponding conformal maps and u(t) = gt(γ(t)), then gt
satisfies an ordinary differential equation

ġt(z) =
∂thcap(γ([0, t]))

gt(z)− u(t)
, g0(z) = z (6)

and ft satisfies

ḟt(z) = −f ′t(z)
∂thcap(γ([0, t]))

z − u(t)
, f0(z) = z. (7)

We have already proved the first part of the theorem. To prove (7) we
differentiate the identity ft(gt(z)) = z with respect to t and use (6).

The equations (6) and (7) are known as (chordal) Loewner Evolutions or
(chordal) Loewner Differential Equations.

Sometimes is is useful to consider the so called radial version of this theory.
In this case γ is a simple curve inside D which grows from a boundary points
(the default choice is 1) towards the origin. By gt we denote the conformal map
gt : D \ γ([0, t]) → D normalized by gt(0) = 0 and g′t(0) > 0. We parametrize
γ in such a way that g′t(0) = et. We denote λt = gt(γt). Then, using a very
similar argument, one can show that

ġt(z) = gt(z)
λt + gt(z)

λt − gt(z)
(8)

and

ḟt(z) = −zf ′t(z)
λt + z

λt − z
. (9)
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3.1 Solving Loewner Evolution

In the previous section we have shown that given a nice curve γ we can define
ut and gt and show that the family of maps gt satisfies a differential equation
which depends on ut. Surprisingly this process can be reversed: given some
function ut, one can solve ODE and the solution will be given by a family of
conformal maps.

Theorem 3.2 (Loewner) Let µt be a family of non-negative Borel measures
on R such that t 7→ µt is continuous (in weak topology) and the measures are
uniformly bounded. Namely, for every t there is Mt such that for all 0 ≤ s ≤ t
we have µs(R) ≤Mt and suppµs ⊂ [−Mt,Mt]. Let gt(z) be the solution of

∂tgt(z) = ġt(z) =

∫
R

µt(du)

gt(z)− u
, g0(z) = 0. (10)

For each z ∈ H we define

Tz = inf{t > 0 : gt(z) is defined and gt(z) ∈ H}.

Define
Ht = {z ∈ H : Tz > t}.

Then gt : Ht → H is the Riemann map with thermodynamic normalization

gt(z) = z +
b(t)

z
+O(z−2),

where

b(t) =

∫ t

0

µs(R)ds.

In the future we will be mostly interested in the case µt = 2δut . In this case
we say that ut is the driving function of the Loewner Evolution which now takes
the form

ġt(z) =
2

gt(z)− ut
, g0(z) = z. (11)

Proof. First of all we observe

ġt =

∫
Re (gt − u)− Im (gt − u)

|gt − u|2
µt(du)

This implies that Im gt(z) is strictly decreasing with time. In other words, all
points move towards R.

Let z 6= w and define ∆t(z, w) = gt(z)− gt(w), the equation (10) implies

∆̇t(z, w) =

∫ [
1

gt(z)− u
− 1

gt(w)
− u
]
µt(du)

=−∆t(z, w)

∫
µt(du)

(gt(z)− u)(gt(w)− u)

with the initial condition
∆0(z, w) = z − w.
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This equation could be integrated:

∆t(z, w) = (z − w) exp

(
−
∫ t

0

∫
R

(
(gs(z)− u)−1(gs(w)− u)−1

)
µs(du)ds

)
In particular this implies that if gt(z) and gt(w) are bounded away from R then
∆(z, w)/(z − w) is uniformly bounded.

g′t(z) = limw → w
∆t(z, w)

z − w

= lim
w→z

exp

(
−
∫ t

0

∫
R

(
(gs(z)− u)−1(gs(w)− u)−1

)
µs(du)ds

)
= exp

(
−
∫ t

0

∫
R

(gs(z)− u)−2µs(du)ds

)
This proves that gt(z) is analytic in z. Moreover, the integral formula for ∆t

implies that ∆(z, w) 6= 0 if z 6= w, hence gt is one-to-one on Ht. Therefore gt is
a conformal transformation on Ht and gt(Ht) ⊂ H.

By dominated convergence theorem we can differentiate (10) with respect to
z and obtain a useful formula for evolution of g′t

ġ′t(z) = −g′t(z)
∫
R
(gt(z)− u)−2µt(du), g′0(z) = 1.

Next we have to show that gt is onto, namely that for every w ∈ H there is
a point in Ht such that gt(z) = w. This is done by considering the “backward
flow”. We fix w and t and consider the initial value problem for 0 < s < t

ḣs(w) = −
∫

µt−s(du)

gs(w)− u
, h0(w) = w.

Since the imaginary part of hs is increasing, the solution exists for all 0 ≤ s ≤ t.
However, if hs is a solution with h0(w) = w, then gs := ht−s is the solution of
(10) with gt = w. In other words w = gt(ht(w)).

Finally for large z

ġt(z) =
µt(R)

gt(z)
+ · · · = µt(R)

z
+ . . .

hence

gt(z) = z +

∫ t
0
µs(R)ds

z
+ . . . .

Sometimes it is convenient to consider the sets Kt = H\Ht. It is not difficult
to see that the sets Kt are increasing H-hulls.

Example 3.3 4 If ut = 0, then the Loewner Evolution (11) could be solved
explicitly and the corresponding hulls Kt are vertical intervals from the origin.

4See problem sheet 2
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Example 3.4 5 If ut = c
√
t then the hulls Kt are of the form γ[0, t] where

γ(t) = 2
√
t

(
α

1− α

)α−1/2

eiπ(1−α)

and α is the only solution to

c =
2α(2α− 1)√
α(1− α)

.

In the radial case the result is very similar.

Theorem 3.5 (Radial Loewner Evolution) As before we start with a con-
tinuous uniformly bounded family of measures µt, but now they are on the unit
circle T. For each z we denote by gt(z) the solution of initial value problem

ġt(z) = gt(z)

∫ 2π

0

eiθ + gt(z)

eiθ − gt(z)
µt(dθ), g0(z) = z. (12)

We define Tz as the supremum of all t such that the solution is defined up to
time t and gt(z) ∈ D. Let Dt = {z : Tz > t}. Then gt is the unique conformal
transformation of Dt onto D such that gt(0) = 0 and g′t(0) > 0. Moreover,

ln g′t(0) =

∫ t

0

µs(T)ds.

The proof of this theorem is exactly the same as before, so we will not repeat
it here.

Note: the radial version when the riving measures are δ-measures is the
original equation that was introduced by Loewner in 1923.

3.2 When Kt is a curve

As we can see, when Kt is a simple curve γ([0, t]) then the corresponding mea-
sures are δ-measures, so we have a Loewner evolution driven by a function,
moreover, this function is continuous. Under some additional assumptions, (al-
most) the same is true is γ is not necessarily simple. This raises a natural
question: if a Loewner evolution is driven by a continuous function, is it true
that Kt is given by a curve?

This is not quite true, but there is a simple geometric condition equivalent to
the continuity of the driving function. This result was obtained by Pommerenke
[7] in the radial case. Here we formulate a chordal version of the same result.

Theorem 3.6 Let ft(z) be a Loewner evolution and Kt be the corresponding
family of growing compacts. Let us assume that 0 ≤ t ≤ T ≤ ∞. By Ht we
denote H \Kt. Then the following two conditions are equivalent.

1. There is a continuous function ut such that ft and gt = f−1
t satisfy the

Loewner differential equations driven by ut.

5See problem sheet 3.
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Figure 3: Spiral domain has no trace

2. For every ε > 0 there is δ such that for all 0 ≤ s < t ≤ T with (t− s) ≤ δ
there is a cross-cut of Hs with diameter at most ε which separates Hs \Ht
from infinity.

Definition 3.7 Let Kt be a growing family of half-plane hulls (i.e. compact
sets in H such that H \Kt is simply connected). We say that a curve γ is the
trace of Kt if Ht = H \Kt is the unbounded component of H \ γ([0, t]).

The geometric condition in the theorem above is very close to the condition
that there is a trace. Unfortunately, this is not quite true. Let us consider the
following family: Kt is a solid spiral curve for t < t0 (see Figure 3), Kt0 is the
solid spiral with the limiting disc, for t > t0 we add parts of the dotted spiral. It
is not hard to show that this family of domains satisfy the second condition of
Theorem 3.6, so the corresponding Loewner evolution is driven by a continuous
curve. On the other hand, at time t0 we add the entire disc to Kt, so there is
no trace.

The following theorem gives a sufficient condition for the existence of the
trace.

Theorem 3.8 Let gt be a chordal or radial Loewner evolution driven by a con-
tinuous function u(t) and let Kt be the corresponding growing sets. Let us
assume that Kt have locally connected boundary for every t (which implies that
the conformal maps are continuous up to the boundary).

Let us define
γ(t) = lim

y→0
g−1
t (u(t) + iy). (13)

Then γ(t) is right continuous and the Loewner chain is generated by γ. Namely,
Ht = H \ Kt is the unbounded component of the complement of the closure of
γ([0, t]).

We would like to mention that the curve γ does not have to be continuous.
This could be seen from a simple counterexample shown in Figure 4. In this
example we start with a curve γ(t) which we assume to be parametrized by
capacity. For t < 1/2 this curve behave like this: it starts as an arc of a semi-
circle, then it makes a long excursion inside the unit disc, then it continues along
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Figure 4: An example of a curve which is not locally connected, only right
continuous, but the corresponding Loewner chain is driven by a continuous
driving function and the hulls are locally connected.

the semi-circle, makes an excursion and so on. We can assume that the points
from which the curve makes an excursion accumulate towards 2, for simplicity
me can assume that nth excursion starts from a point which is 2−n away from
2. We also assume that all excursions are of diameter at least 1/2.

By comparing γ([0, t]) with the half-disc and a circular slit, we can see that
hcap(γ([0, t]))↗ 1, and γ([0, t]) converges to the half-disc in the Carathéodory
sense as t → 1/2. This implies that it is indeed possible to parametrise this
curve by capacity for t ∈ [0, 1/2). As t → 1/2, this curve is obviously not
continuous. We define γ(1/2) = 2.

For all s < t < 1/2, the increment γ([s, t]) could be separated from infinity
by a short cross cut (the remaining part of the semi-circle). This shows that
this curve satisfies the condition (2) of Theorem 3.6. This implies that the
corresponding Loewner chain is generated by a continuous function.

Finally, for all t < 1/2, Kt is generated by a very nice continuous curve,
hence it is locally connected. At t = 1/2, the hull is the half-disc and also simply
connected. This shows that the hulls Kt for t ∈ [0, 1/2] satisfy all assumptions
of Theorem 3.8, but the ‘trace’ curve γ is only right continuous, but not left
continuous. Moreover, the trace itself γ([0, 1/2]) is not locally connected, but
the hulls Kt are locally connected.

Finally, we would like to mention the result of Lind which gives a condition
implying that Kt is generated by a simple continuous curve.

Theorem 3.9 Let gt be the chordal Loewner evolution driven by u(t) such that

sup
s6=t

|u(t)− u(s)|
|t− s|1/2

= ‖u‖1/2 < 4,

then Kt is generated by a simple continuous curve γ.

3.3 Basic properties of Loewner Evolution

Markov or semi-group property Let 0 ≤ s ≤ t and define gs,t by

gt(z) = gs,t(gs(z)).

Let us fix s and define g∗t = gs,s+t, then

∂tg
∗
t (z) = ġt(z) =

∫
R

µs+t(du)

g∗t (z)− u
, g0(z) = 0.
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This property is a direct corollary of the semi-group property of ODE. Running
evolution for the time t+ s is the same as running it for the time s, taking the
result as the initial condition and running it for time s.

Scaling property Let gt be LE driven by a function ut and let Kt be the
corresponding hulls.

ġt =
2

gt − ut
.

Let us consider the family of scaled hulls λKt. We know that

gλK(z) = λgK(z/λ) = z +
λ2hcap(K)

z
+ . . .

We use the standard normalization hcap(Kt) = 2t, and hence hcap(λKt) =
2λ2t. Tohave the standard parametrization for the scaled domains we use the
following change of time: K̃t = λKt/λ2 , then hcap(K̃t) = 2t. Define

g̃t(z) = λgt/λ2(z/λ). (14)

By construction g̃t map H \ K̃t onto H and have thermodynamic normaliza-
tion. Simple differentiation shows that

∂tg̃t(z) =
2

g̃t(z)− λut/λ2

.

Hence g̃t is LE drive by ũt = λut/λ2 .
Note: If Kt is a straight interval from the origin (parametrized by capacity),

then K̃t = Kt and hence ũt = ut. In other words the driving function should be
invariant with respect the Brownian scaling. The only deterministic functions
with this property are the multiples of

√
t. Essentially the same argument gives

that the hulls corresponding to ut = c
√
t must be scaling-invariant, and hence

they must be straight intervals.

Lemma 3.10 Let Kt be generated by the chordal Loewner evolution driven by
ut. Suppose that ut ∈ [a, b] for all t, then Kt ⊂ [a, b]× [0, 2

√
t].

Proof. The main idea is quite simple: under the Loewner evolution all points
go down until they hit the real line. The fastest decay happens when the driving
measure is concentrated right below the point. Which means that the fastest
decay correspond to the vertical slit.

Let yt = Im zt = Im gt(z). By considering the imaginary part of the Loewner
evolution we have

ẏt = − 2yt
|zt − ut|2

≥ − 2

yt
.

This differential inequality is easy to integrate

y2
t ≥ y2

0 − 4t.

This means that zt can’t hit the real line before time y2
0/4. Equivalently, all

points in Kt can’t have the imaginary part larger that 2
√
t. So Kt ⊂ R×[0, 2

√
t].
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By considering the real part we have

ẋt =
2(xt − ut)
|zt − ut|2

.

If x0 > b, then ẋt > 0 and xt > b. This proves that zt is never equal to ut, so
the points with the real part larger than b can’t be in Kt. The same argument
works for x < a. This proves that Kt ⊂ [a, b]× R.

4 Schramm-Loewner Evolution

4.1 Schramm’s Principle

It is a common belief in statistical physics, that many lattice models have con-
formally invariant scaling limits. We have seen so far one example: random walk
converges to Brownian motion which is conformally invariant. For most of the
other models that are of interest, this result is very hard to prove. Moreover, it
is not easy to state it properly, it is not clear in what sense they might converge
and what is the limiting object.

Fortunately, for many models one can set up the boundary conditions in
such a way that the model produces a curve connecting two marked points
on the boundary. We will be working with this curve. The general setup for
convergence of random curves is relatively simple. For a given lattice mesh δ
this curve (sometimes it is called interface) is a piecewise linear continuous curve
which connects two points a, b on the boundary of a domain Ω. This curve is
random, which means that its law is a probability measure on the space of all
continuous curves connecting a and b inside Ω. Let us denote this measure by
µδ(Ω, a, b). Convergence means that µδ(Ω, a, b) → µ(Ω, a, a) in the space of all
probability measures on continuous curves (where we do not distinguish between
curves that differ by change of parametrization).

Let us define these measures for all simply connected domains Ω and all
pairs of boundary points a, b. We will assume that the measures µ(Ω, a, b) have
two properties: Domain Markov property and Conformal Invariance. These
assumptions are motivated by physics predictions and computer simulations.

Definition 4.1 We say that measures µ(Ω, a, b) satisfy the Domain Markov
property if for curve γ : R→ Ω that has no self-crossings and such that γ(0) = a
we have

µ(Ω, a, b)|γ[0, 1] = µ(Ω \ γ[0, 1], γ(1), b).

In other words if we condition measure on the event that the curve starts as γ
that its continuation will have the same distribution as our random curve in the
domain Ω with γ removed.

We say that µ(Ω, a, b) is conformally invariant if for every conformal map
φ : Ω→ Ω′ with φ(a) = a′ and φ(b) = b′ we have

φ(µ(Ω, a, b)) = µ(Ω′, a′, b′).

Theorem 4.2 (Schramm’s Principle) Let us consider a family of random
measures on paths µ(Ω, a, b) that satisfy domain Markov and conformal invari-
ance properties. Let γ be the random curve in H given by µ(H, 0,∞). Let us
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parametrize γ by capacity, so that hcap(γ[0, t]) = 2t. We can describe γ by
LE with driving function ut (this function is also random). Then ut must be
equal to cBt where Bt is standard one-dimensional Brownian motion and c is a
constant.

The complete proof is rather technical, but its main idea is simple. If we
reformulate domain Markov property and conformal invariance in terms of the
driving functions, the we get that ut mast be continuous with stationary inde-
pendent increments, hence it is a Brownian motion with constant speed.

4.2 Definition and Basic Properties

The Schramm’s principles motivates the definition of SLE which stands for
Schramm-Loewner Evolution or Stochastic-Loewner Evolution. According to
Schramm’s principle SLE curves are the only possible conformally invariant
scaling limits of lattice models interfaces.6

Definition 4.3 SLEκ = SLE(κ) where parameter κ ∈ [0,∞) is the solution of
the Loewner Evolution driven by ut =

√
κBt, where Bt is Brownian motion

ġt(z) =
2

gt(z)−
√
κBt

, g0(z) = z.

Note: occasionally by SLE we mean not only gt but also Kt = H \Ht.
One of the very important properties of SLE is that it is generated by a

curve. This is a rather difficult and technical theorem, so we state it without
proof.

Theorem 4.4 (Rohde-Schramm, Lawler-Schramm-Werner) Let gt be SLE(κ)
and Ht be the corresponding family of shrinking domains, then with probability
one there is a curve γ(t) such that Ht is the unbounded component of H\γ[0, t].
Alternatively, SLE has a trace with probability one.

Proposition 4.5 SLE curves are scale invariant and invariant with respect to
the transformation (x, y) 7→ (−x, y)

Proof. As we proved for LE, the scaling of the domain corresponds to the
following transformation of the driving function:

ut 7→ ũt = λut/λ2 .

We know that the Brownian motion is invariant under this scaling, hence the
distribution of the scaled SLE is the same as the distribution of the SLE. (In
fact this is just a partial case of conformal invariance of SLE.)

The second property is also simple: one can easily show that this transfor-
mation of the domain corresponds to the change of sign in the driving function.
On the other hand the distribution of Bt is the same as the distribution of −Bt.
(Note that this transformation is not analytic, so we can not use conformal
invariance of SLE.)

Another property which follows immediately from the properties of LE is a
kind of Markov property.

6Domain Markov property is satisfied by all relevant lattice model interfaces, it corresponds
to the fact that the models have only local interactions.
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Proposition 4.6 Let gt be SLE(κ), let us fix some time t and consider g̃s =
gt,t+s which is defined by gt+s = g̃s ◦ gt. Then g̃s is also SLE(κ).

Proof. By semi-group property g̃ is also a solution of LE driven by ũs =
ut+s. By Markov property of Brownian motion it has the same distribution as
Brownian motion started from ut and hence g̃s is SLE started from ut.

4.3 Phase-transitions

SLE curves (traces) have very different behaviour depending on the parameter
κ. For κ ∈ [0, 4], they are simple curves that go to infinity, for κ ∈ (4, 8),
they form ‘loops’ or ‘bubbles’ that cover the entire plane, for κ ≥ 8, they are
space-filling curves.

Theorem 4.7 (SLE phase transition) Let γ be SLE(κ) trace, then

1. If κ ∈ [0, 4] then γ is a simple curve a.s.

2. If κ ∈ (4, 8), then for all z ∈ H, z 6∈ γ a.s. but ∪t>0Kt = H a.s.

3. If κ ≥ 8, then γ([0,∞)) = H̄ a.s.

We will not give the complete proof of this theorem, instead we present the
main computation showing the origin of this phase transition and prove some
simple cases.

We start by investigating the boundary behaviour of SLE.

Lemma 4.8 (Boundary phase transition) Let γ be SLE(κ) trace, then

1. If κ ∈ [0, 4] then γ(0,∞) ∩ R = ∅ a.s.

2. If κ ∈ (4, 8), then for all x, y > 0, γ intersects [x,∞) a.s;

P(γ hits [x, x+ y)) = φ

(
y

x+ y

)
where φ is an explicit explicit functions defined by (18).

3. If κ ≥ 8, then R ⊂ γ([0,∞)) a.s.

In order to prove this lemma we first need a technical statement about Bessel
processes.

Lemma 4.9 Let xt be a process defined by

dxt = d gt(x)−
√
κdBt =

2d t

xt
−
√
κdBt, x0 = x.

For 0 < r < x < y < R < ∞ we denote Tx = inf{s : xt = 0}, τ = inf{s : xs 6∈
[r,R]} and T (R) = inf{s : xx = R}. Then

1. For κ ≤ 4 we have P(Tx =∞) = 1.

2. For κ > 4 we have P(Tx =∞) = 0.
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3. For 4 < κ < 8

P(Tx = Ty) =

∫ x/y
0

(1− s)8/κ−2s−4/κd s∫ 1

0
(1− s)8/κ−2s−4/κd s

,

4. P(Tx = Ty) = 0 for κ ≥ 8.

Proof.
Define F (x) = Px(xτ = r) where Px denotes the law of the process with

x0 = x. By Markov property F (xt∧τ ) is a martingale (it is easy to see that
Px(xτ = r|Ft) = F (xt∧τ )).

Applying Ito formula to F (xt) we get

dF (xt) =

(
2

xt
F ′(xt) +

κ

2
F ′′(xt)

)
d t− F ′(xt)dBt.

Note: a priori we don’t know that F is twice differentiable. We assume it
for now and will justify later.

Since we know that F (xt) is a martingale, its drift must be identically equal
to 0. Together with obvious boundary conditions we have

2

x
F ′(x) +

κ

2
F ′′(x) = 0, F (r) = 1, F (R) = 0.

This equation can be integrated and we find

F (x) =
R1−4/κ − x1−4/κ

R1−4/κ − r1−4/κ
, κ 6= 4, (15)

and for κ = 4

F (x) =
ln(R)− ln(x)

ln(R)− ln(r)
. (16)

Next we are going to justify the use of Ito formula. Let us consider Mt =
F (xt∧τ ) where F is given by (15) or (16). The computation above implies that
Mt is a local martingale, and since it is bounded, it must be a martingale. By
optional stopping theorem

F (x) = F (x0) = E(M∞|F0) = P(xτ = r).

This proves that Mt = Ft and that F (x) is twice differentiable.
Case κ ≤ 4. From explicit formulas we can see that

P(xτ = r)→ 0, r → 0.

This implies that for all R > 0

P(T (R) < Tx) = 0,

where T (R) = inf{s : xx = R} is the first time the process hits R. Since this is
true for all R

P(Tx =∞) = 1.

Note that for κ = 4 if we fix r, then F (x)→ 1 as R→∞. This shows that
although the process does not hit 0 it will come arbitrary close to it.

22



Case κ > 4.
Again, consider the limit r → 0. We get

P(T (R) < Tx) = 1− lim
r→0

F (x) =
( x
R

)1−4/κ

→ 0, R→∞.

This implies that P(Tx =∞) = 0.
Finally, we consider φ(x, y) = P(Tx = Ty). By monotonicity and the above

results we have Tx ≤ Ty < ∞ with probability one. By the same argument
as before φ(xt, yt) is a martingale. Assuming that φ is in C2 and applying Ito
formula we have

dφ(xt, yt) = (
2

xt
d t+

√
κdBt)φx+(

2

yt
d t+

√
κdBt)φy +

κ

2
(φxx+2φxy+φyy)d t.

Drift must be zero and hence φ is a solution of the following PDE

2

x
φx +

2

y
φy +

κ

2
φxx +

κ

2
φyy + κφxy.

By scale invariance of SLE, the function φ depends on x/y only, namely φ(x, y) =
h(x/y). Changing variable to t = x/y ∈ [0, 1] we get

h′′(t)κt(1− t) = h′(t)2(t(κ− 2)− 2).

This equation can be rewritten as

(lnh′)′ =
2

κ

(
−2

t
− 4− κ

1− t

)
.

In this form the equation can be integrated and the general solution is

h(t) = c1

∫ t

0

(1− s)8/κ−2s−4/κ + c2. (17)

Our function must be equal to 0 at the origin and hence c2 = 0. We can also
note that this integral converges near 0 only for κ > 4, which is our assumption.
We also need h(1) = 1 and hence the integral must be convergent near 1. This

happens if κ < 8. In this case we can choose c−1
1 =

∫ 1

0
(1−t)8/κ−2t−4/κ. Finally,

we use the optional stopping theorem to justify out assumption that φ ∈ C2.
This proves that if 4 < κ < 8, then

P(Tx = Ty) =

∫ t
0
(1− s)8/κ−2s−4/κ∫ 1

0
(1− s)8/κ−2s−4/κ

,

where t = x/y.
For κ ≥ 8 the only bounded solution with h(0) = 0 is h(t) = 0. Hence in

this case P(Tx = Ty) = 0.
Note: the integral in (17) is an incomplete beta-function and the constant

c1 could be expressed in terms of gamma function

c−1
1 =

Γ( 8
κ − 1)Γ(κ−4

κ )

Γ( 4
κ )
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Note: up to some irrelevant constant factor the incomplete beta-function
can be written in terms of special functions

c1
κ

κ− 4
t1−4/κ

2F1

(
2− 8

κ
,
κ− 4

κ
, 1 +

κ− 4

κ
, t

)
+ c2,

where 2F1(a, b, c, z) is a hypergeometric function.

Definition 4.10 Hypergeometric function 2F1(a, b, c, z) is defined as

∞∑
n=0

(a)n(b)n
(c)n

zn

n!

where (a)n = a(a+ 1) · · · (a+ n− 1) is a Pochhammer symbol.
Alternatively 2F1 could be defined as the solution of the hypergeometric equa-

tion
z(1− z)f ′′(z) + (c− (a+ b+ 1)z)f ′(z)− abf(z) = 0

which is regular at z = 0 and f(0) = 1.

Note: most of the equations in this course are of this type or very similar,
hence many quantities of interest will be expressed in therms of hypergeometric
functions. These are special functions that can’t be expressed in terms of sim-
pler functions (except in a few special cases), but they are well studied and many
identities and asymptotic formulas are known. Site functions.wolfram.com/

HypergeometricFunctions/Hypergeometric2F1 contains nearly 112 thousands
formulas for these functions. This is by far more than for any other class of func-
tions.
Proof of Lemma 4.8. If γ([0, t])∩ [x,∞) = ∅ then, by compactness, x is not
in the closure of Kt, hence Tx > t. On the other hand, if γ(s) ∈ [x,∞) for some
s ∈ [0, t] then γ(s) ∈ K̄t, hence Tx ≤ Tγ(s) = s ≤ t. Together, this proves that

{γ([0, t]) ∩ [x,∞) 6= ∅} ={Tx ≤ t},
{γ([0,∞]) ∩ [x, y) 6= ∅} ={Tx < Ty}.

If κ ≤ 4, then

P(γ hits R \ {0}) = lim
n→∞

P(γ hits R \ [−1/n, 1/n]) = 0,

Where the last identity follows from the fact that for every x almost surely
Tx =∞.

Next, consider the case κ ≥ 8. Applying the same logic, for every rational x
and y with probability one, there is t such that γ(t) ∈ [x, x + y) (follows from
Tx < Tx+y a.s.). Since Q is countable, the same is true simultaneously for all
rational x and y. By continuity of γ, this is true for all x and y. This implies
that [0,∞) ⊂ γ([0,∞)). By symmetry R ⊂ γ([0,∞)).

Finally, let us consider the case 4 < κ < 8. As before, using Lemma 4.9 we
have

P(γ hits [x, x+ y)) =P(Tx < Tx+y) = 1−
∫ x/(x+y)

0
(1− s)8/κ−2s−4/κd s∫ 1

0
(1− s)8/κ−2s−4/κd s

=

∫ 1

1−y/(x+y)
(1− s)8/κ−2s−4/κd s∫ 1

0
(1− s)8/κ−2s−4/κd s

=: φ

(
y

x+ y

)
.

(18)
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Next. we give some ideas about the proof of Theorem 4.7. This is just a
sketch and does not cover all the cases. Complete proofs can be found in the
original papers.
Sketch of proof of Theorem 4.7. Case κ ≤ 4. We know that in this case
γ does not hit R \ {0} a.s. This also implies that gr(γ((r,∞)), which has the
law of SLE trace, also a.s. does not intersect R for all rational r. Now, let us
assume that γ is not simple, that is there t < s such that γ(t) = γ(s). Then
there is a rational r ∈ (s, t) such that gr(γ((r,∞)) hits the real line.
Case κ < 4. In this case the corresponding Bessel process is transient, in
particular, inf gt(1) −

√
κBt > 0 a.s. It is not hard to show using complex

analysis that this implies that inf |γ(t)− 1| > 0 a.s. From this, one can get that
γ eventually will leave a certain neighbourhood of the origin. By zero-one law
and scaling of SLE this implies that γ eventually leaves any neighbourhood of
the origin. Hence γ →∞.
Case 4 < κ < 8. In this case we consider dist(0,Ht) (recall that Ht is the
unbounded component of H\γ([0, t])). Since γ([0, 1]) will intersect both (−∞, 0)
and (0,∞), there is a neighbourhood of 0 contained in K1. Using scaling we
have P(dist(0,Ht) > 0,∀t) = 1. Using scaling again,

P(dist(0,Ht) ≤ r) = P(dist(0,H1) ≤ r/
√
t)→ 0.

This implies that dist(0, Ht)→∞ a.s., in particular, γ(t)→∞ a.s.
Finally, we already know that for 4 < κ < 8 the trace ‘swallows’ the entire

real line, but does not hit every point on it. For κ ≥ 8 it hits every real point.
It is possible to show that the same is true for all points in H as well, but it is
a more complicated proof and we omit it here.

4.4 Locality

By Schramm’s principle all conformally invariant scaling limits of lattice models
interfaces can be described by SLE(κ) for some κ. To identify the value of κ
we have to compute some parameter or property of the lattice model and find
which SLE has this property. Surprisingly, in some cases this not only identifies
κ but also proves the convergence.

For percolation this characteristic property is called locality. Let Ωi, ai, bi,
i = 1, 2 be two domains with marked point. Let us assume that a = a1 = a2 and
that a is on the boundary of Ω = Ω1 ∩ Ω2, moreover domains Ωi have common
boundary near point a. In other words, our domains Ωi look the same in some
neighbourhood of a. From the definition of the percolation model one can easily
see that the law of exploration process in both domains is the same up to the
first time it leaves Ω or reaches b1 or b2. Sometimes people say that percolation
exploration process “can’t see the boundary or the domain or the target point
until it hit the boundary”.

In this section we are going to show that the only SLE curve with this
property is SLE(6).

We will start by considering the local change of coordinates as on the Figure
5. For x ∈ R we say that an open subset N of H is an H-neighbourhood of x if
B(x, ε) ∩ H ⊂ N for some ε > 0. We say that a univalent function φ : N → H
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Figure 5: Local change of coordinates

is locally real at x0 if for some ε > 0,

φ(z) = a0 + a1(z − x0) + a2(z − x0)2 + . . .

where ai ∈ R.
Let Kt be a growing family of H-hulls given by a Loewner evolution driven

by ut. Let x0 = u0, N be an H-neighbourhood of x0 and Φ be a locally real
conformal transformation of N into H. We define T = sup{t > 0,Kt ⊂ N}. In
this setup K̃t = Φ(Kt) is a growing family of hulls for 0 ≤ t ≤ T . Let g̃t be
the corresponding Loewner evolution and ũt be its driving function. By Nt we
denote gt(N ) and Φt = g̃t ◦ Φ ◦ g−1

t .
First we will need a simple statement about the change of capacity. Since

under scaling the capacity changes by the square of the scale, we have

∂tg̃t(z) =
2(Φ′t(ut))

2

g̃t(z)− ũt
. (19)

Filling in all the details is a part of your home assignment.

Theorem 4.11 Under the above assumptions we have

Φ̇t(z) = 2

(
Φ′t(ut)

Φ′t(ut)

Φt(z)− Φt(ut)
− Φ′t(z)

1

z − ut

)
and

Φ̇t(ut) = lim
z→ut

Φ̇t(z) = −3Φ′′t (u2). (20)

Proof. Let ft = g−1
t be the inverse Loewner evolution, which satisfies the

inverse Loewner equation. We write Φt = g̃t ◦Φ◦ft. To obtain the first formula
we differentiate the formula for Φt with respect to t, use the chain rule and
Loewner equations for g̃t and ft.

To obtain the second formula we have to expand both Φt(z) and Φ′t(z) in
Taylor series around ut.
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Theorem 4.12 (Locality of SLE(6)) Now let us assume that the curve γ is
SLE(κ) (trace) and that ut =

√
κBt. Then the curve γ̃ is a time-changed SLE

curve if and only if κ = 6. In this case the law of γ̃ is the same as the law of
(time-changed) SLE(6).

Proof. We want to find the law of ũt = Φt(ut). By Ito’s formula

dũt = Φ̇t(ut)dt+ Φ′t(ut)
√
κdBt +

1

2
Φ′′t (ut)κdt

using (20) we can rewrite it as((κ
2
− 3
)

Φ′′t (ut)
)
dt+

√
κΦ′t(ut)dBt. (21)

Note that ũt is a local martingale if and only if κ = 6. In this case we have

dũt =
√
κΦ′t(ut)dBt.

Next we want to re-parametrize γ̃t so that it would have the standard capacity
parametrization. The idea is very simple, we know that ∂thcap(γ̃([0, t])) =
2Φ′t(ut)

2 and we want to introduce new time r(t) such that γ̄(t) = γ̃(r(t))
would have capacity parametrization:

2t = hcapγ̄([0, t]) = hcapγ̃([0, r(t)]) =

∫ r(t)

0

2Φ′s(us)
2ds.

This means that the new time should be given by

t =

∫ r(t)

0

Φ′s(us)
2ds.

Note that this is a random change of time. Let us introduce ūt = ũr(t). Plugging
this time change into (21) we have

dūt =
κ− 6

2

Φ′′r(t)(ur(t))

Φ′r(t)(ur(t))
2
dt+

√
κdB̃t,

where

B̃t =

∫ r(t)

0

Φ′t(us)dBS .

We claim that B̃t is a standard Brownian motion. Indeed

< B̃t, B̃t >=

∫ r(t)

0

Φ′s(us)
2ds = t

and by Levy theorem B̃t is a Brownian motion.
We can easily see that for κ = 6 we have

dūt =
√
κdB̃t.

This proves that the curve γ̃ is a reparametrized SLE if and only if κ = 6.
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Corollary 4.13 Let Ω be a simply connected domain with three marked points
on the boundary a, b, c. Then the laws of SLE(6) curve (up to monotone time
change) in Ω from a to b and from a to c are the same up to the first time the
curve separates b and c (i.e. up to the fist time it hits the boundary arc (b, c)).
This statement is also known as the locality of SLE(6).

Proof. By the built-in conformal invariance of SLE it is sufficient to prove this
result in the case Ω = H, a = 0, b = 1, and c = ∞. Let us consider the map
φ(z) = z/(1 + z). This is a conformal automorphism of H with φ(0) = 0 and

By the definition, SLE γ̃ from 0 to 1 is the image of the standard chordal
SLE γ under the map z 7→ z/(z+1) (note that all non-standard SLE curves are
defined up to a time change). Let T = inf{t > 0, γ̃t ∈ [1,∞)}. Note that this is
the same as T1 and we know that it is finite with probability one (since 6 > 4),
moreover we know that γ̃(T ) > 1 (since 6 < 8).

For every t < T , the curve γ([0, t]) is in some H-neighbourhood of 0 and hence
its image is a time-changed chordal SLE(6) from 0 to infinity. This proves that
up to time T the chordal SLE curves from 0 towards 1 and ∞ are the same (up
to reparametrization). For t > T this is not true any more, since neighbourhood
would have to include φ−1(1) =∞.

Note that after time T SLE curves aiming at 1 and ∞ can not be the same,
one should turn to the right and one should turn to the left. At the moment
T , the curve separates two target points, so SLE has to choose its target. But
before this time SLE(6) can not see the target point.

Figure 6: Top figure shows the schematic picture of SLE(6) curve up to the
time T . This part is the same for SLE aiming at infinity and at 1. Bottom left
shows SLE towards infinity, and bottom right shows SLE towards 1.

4.5 Restriction

Another property which is easy to formulate is the restriction property. Let γ
be a simple random curve from 0 to∞ and let A be an H-hull separated from 0.
By VA we denote the event that γ([0,∞))∩A = ∅. We say that γ has restriction
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property if the law of γ conditioned on the event VA is the same as the law of
γ in H \A.

It is conjectured that the scaling limit of self-avoiding random walk satisfies
this property. Indeed, the self-avoiding random walk is the uniform measure on
all simple trajectories. If we condition that the walk avoids some set then we
get the uniform measure on all simple trajectories avoiding this set. (Rigorous
justification of this argument is highly non-trivial.)

In this section we will show that the only SLE curve with restriction property
is SLE(8/3). This supports the conjecture that SLE(8/3) is the scaling limit of
self-avoiding random walk.

A simple curve γ considered modulo time change can be uniquely determined
by specifying all H hulls that do not intersect γ[0,∞). For a random curve it
suffices to give P(γ∩A = ∅) for all hulls A. By symmetry of SLE, it is determined
by P(γ ∩A = ∅) where A are positive hulls, i.e. the hulls such that Ā∩R ⊂ R+.
We denote the collection of all such hulls by Q+.

Lemma 4.14 Let κ ≤ 4 and γ be SLE(κ) curve. For a positive hull A we
denote by ΦA the conformal map H \ A → H such that Φ(0) = 0, at infinity
Φ(z) = z + . . . . If there is α > 0 such that P(VA) = Φ′A(0)α for all A ∈ Q+,
then SLE(κ) satisfies the restriction property.

Proof. Let A and A1 be two hulls, then

P (ΦA(γ[0,∞)) ∩A1 = ∅, γ[0,∞) ∩A = ∅) = P
(
VA∪Φ−1

A (A1)

)
.

On the other hand it is easy to see that ΦA∪Φ−1
A (A1) = ΦA1

◦ ΦA. By the

assumption of the lemma

P
(
VA∪Φ−1

A (A1)

)
=
(

Φ′
A∪Φ−1

A (A1)
(0)
)α

=
(
Φ′A1

(0)
)α

(Φ′A(0))
α
.

We denote by γ̄ the image of γ under ΦA. We have

P (γ̄ ∩A1 = ∅|γ ∩A = ∅) =
P (γ̄ ∩A1 = ∅, γ ∩A = ∅)

P (γ ∩A = ∅)

=

(
Φ′A1

(0)
)α

(Φ′A(0))
α

(Φ′A(0))
α = P(γ ∩A1 = ∅).

This, together with a remark before the lemma, proves that the conditional
distribution of γ̄ is the same as the distribution of γ, i.e. it is SLE(κ). On the
other hand, by conformal invariance, pre-image of this distribution under ΦA is
SLE in H \ A, hence γ conditioned not to hit A has the same distribution as
SLE in H \A. This is exactly the restriction property.

Let A be a positive hull and let us consider the local change of variables
given by ΦA, see Figure 7.

Lemma 4.15 Under the above assumptions

Φ̇′t(ut) =
Φ′′t (ut)

2

2Φ′t(ut)
− 4Φ′′′t (ut)

3
. (22)
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Figure 7: Removing a positive hull

The proof of this lemma is a part of your home assignment.

Theorem 4.16 SLE(8/3) satisfies restriction property.

Proof. Let A be a positive hull and let us define Mt = (Φ′t(ut))
α

1t<TA , where
TA = inf{t > 0, γ[0, t]∩A 6= ∅}. Let us assume that t < TA, then by Ito formula
and (22) we have

dMt

αMt
=

(
(α− 1)κ+ 1

2

Φ′′t (ut)
2

Φ′t(ut)
2

+

(
κ

2
− 4

3

)
Φ′′′t (ut)

Φ′t(ut)

)
dt+

Φ′′t (ut)

Φ′t(ut)

√
κdBt.

If κ = 8/3 and α = 5/8 then Mt is a (local) martingale.
We will use without proof two facts

1. Mt ≤ 1 and hence Mt is a bounded martingale. This is a deterministic
result about boundary derivative of conformal maps.

2. Mt is continuous, i.e. if TA < ∞ then Mt → 0 as t → TA. This implies
that Mt∧TA →M∞. We claim that M∞ = 1VA .

These two facts together with optional stopping theorem give us

P(VA) = EM∞ = Φ′0(u0)5/8.

Lemma 4.14 implies that SLE(8/3) satisfies restriction property.
Finally, let us discuss the nature of these two facts. The argument below is

not a complete proof, in particular, it uses some facts about Brownian excursions
that are not proved in this course.

Informally, a Brownian excursion in H is the Brownian motion conditioned
to stay in H. Moreover. the excursion can be started at the boundary. This
can be rigorously defined by starting a Brownian motion close to the boundary,
stopping when its imaginary part reaches some very high level and conditioning
that this happens before BM hits the real line. After that one passes to the limit
as the high level goes to infinity (this gives an excursion started from inside)
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and then passing to the limit as the starting point goes to the boundary. It is
also possible to show that the excursion can be written as Et = Xt + iYt where
Xt is a real Brownian motion and Yt is an independent 3-dimensional Bessel
process. It is easy to show that the BM started at z reaches the line Im = R
before reaching the real line is Im z/R. Using this, the conformal invariance of
BM and passing to the limit as R→∞ one gets

Pz(Et ∩A = ∅) =
Im ΦAz

Im z
.

(We also use that ΦA({Im = R}) ≈ {Im = R} for large R.
Passing to the limit z → x ∈ R \A we get

Px(Et ∩A = ∅) = Φ′A(x).

In particular, this implies that Φ′A(0) ≤ 1. Similarly, Φ′t(ut) ≤ 1.
For the second fact we use the conformal invariance of the Brownian excur-

sion. We know that Φ′t(ut) = Put(Es ∩ At = ∅). Let us assume that t < TA.
By conformal invariance this is the same as Pγ(t)(Ês ∩ A = ∅) where Ê is the
Brownian excursion in H \ γ([0, t]) started from γ(t). If TA < ∞ and t is just
below TA, then we start a Brownian excursion very close to A, hence (essentially
by the Beurling estimate) it will hit A with probability almost one. So in this
case Mt → 1 as t→ TA. If TA =∞, then, for sufficiently large t, γ(t) is very far
away from A, hence the probability that a Brownian excursion from γ(t) will
hit A is almost 0. So in this case Mt → 0 as t → TA = ∞. This shows that
M∞ = 1VA .

4.6 Standard SLE techniques

The goal of this section is show how some of the standard SLE techniques
work. We will illustrate them by computing several SLE observables. These
particular observables could be useful for various purposes but at the moment
we are mostly interested in techniques that are frequently applicable.

4.6.1 Schramm’s formula

Let us assume that κ < 8 and z = x + iy ∈ H is a fixed point. Since γ a.s. is
a non-self-crossing point which does not go through z, with probability one we
can say that γ passes to the left of z or to the right of z. The main result of
this section is the following theorem due to Schramm.

Theorem 4.17 (Schramm’s formula) In the setting described above

P[γ passes to the left of z] =
1

2
+
x

y

Γ
(

4
κ

)
√
πΓ
(

8−κ
2κ

) 2F1

(
1

2
,

4

κ
,

3

2
,−x

2

y2

)
.

For some values of κ the hypergeometric function simplifies. In particular,
the probability that γ passes to the left of z is

1 +
xy

π|z|2
− arg z

π
, κ = 2

1

2
+

x

2|z|
, κ = 8/3

1− arg z

π
, κ = 4.
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Finally, we note that, although the theorem makes no sense for κ = 8, but the
hypergeometric function does make sense and the right hand side simplifies to
1/2 for every z.

Note: This observable with κ = 6 was used by Schramm in order to prove a
certain result about percolation clusters. Detailes can be found in [9]

To prove this theorem we first need a technical lemma which allows to for-
mulate our event in more tractable terms.

Lemma 4.18 Let gt be the SLE maps and define xt = Re gt(z) −
√
κBt, yt =

Im gt(z). Almost surely γ passes to the left of z if and only if xt/yt → ∞ as
t→ T (z) and it passes to the right if and only if xt/yt → −∞ as t→ T (z).

Proof. First, let us consider the simpler case κ ≤ 4. In this case γ is a simple
transient curve and T (z) =∞ a.s. Consider 2-dimensional Brownian motion Ws

started from z and stopped when it hits γ or R. Obviously, z is to the right of γ
if and only if Ws hits the right side of γ or [0,∞). Let us apply gt for some t. By
conformal invariance, the image of the Brownian motion is also the Brownian
motion started from gt(z). The probability that z is to the right of γ is equal to
the provability that the new one hits the right side of gt(γ([t,∞)) or [ut,∞) (as
usual ut =

√
κBt. This is bounded below by the probability that a Brownian

motion in H started from gt(z) exits H through [ut,∞). This probability can
be computed explicitly:

Pgt(z)(BM exits through [ut,∞)) = Pzt(BM exits through [0,∞) =

1

π

∫ ∞
0

yt
y2
t + (xt − s)2

d s =

1

π

(
π

2
− arctan

(
−xt
yt

))
.

This goes to 1 if and only if xt/yt →∞ as t→∞.
Next, consider the case κ ∈ (4, 8). In this case T (z) is a.s. finite and z is in

a bounded component of H \ γ([0, T (z)]) but is in the unbounded component of
H \ γ([0, t]) for every t < T (z). In other words, γ completes a loop around z at
time T (z). We say that γ is to the left of z if this is a clockwise loop and to the
right if is is a counter-clockwise loop. As t→ T (z), the probability that Ws will
hit the right (respectively left) side of γ([0, t]) goes to 1. The same computation
as above implies that in this case xt/yt will go to ∞ (respectively to −∞).
Proof of Schramm’s formula. By Loewner evolution

dxt =
2xt

x2
t + y2

t

d t−
√
κBt

dyt =− 2yt
x2
t + y2

t

d t.

Define wt = xt/yt. By Ito’s formula

dwt = −
√
κ

yt
dBt +

4wt
x2
t + y2

t

d t.

We perform a time change

s(t) =

∫ t

0

d t

y2
t

,

32



equivalently, d s = d t/y2
t . Define

B̃s =

∫ t

0

dBt
yt

.

This is a Brownian motion. With the new time

dws = −
√
κd B̃s +

4ws
1 + w2

s

d s.

Since yt is a decreasing function of t and it reaches 0 at T (z) we have s(t) <∞
if t < T (z). We know that w → ±∞, hence s(t)→∞ as t→ T (z).

Consider a < w0 < b and define ha,b(w) = h(w) be the probability that the
diffusion ws started from w will hit b before a. Clearly h(ws) is a martingale.

As before, assuming that h is smooth we apply Ito’s formulas to get

κ

2
h′′(w) +

4w

1 + w2
h′(w) = 0, h(a) = 0, h(b) = 1.

This equation has a unique solution

h̃(w) =
f(w)− f(a)

f(b)− f(a)
,

where

f(w) = 2F1

(
1

2
,

4

κ
,

3

2
,−w2

)
.

By the optional stopping theorem this implies that h̃(ws) is the same martingale
as ha,b(ws). This gives a posteriori justification of differentiability of h.

From the behaviour of the hypergeometric functions at infinity we get

lim
w→±∞

f(w) = ±
√
πΓ
(

8−κ
2κ

)
2Γ
(

4
κ

) .

This implies that limb → ∞ha,b(w) > 0 for all w > a. Hence ws is transient
and

P[ lim
s→∞

ws =∞] =
f(w)− f(−∞)

f(∞)− f(−∞)

which is exactly the right hand side of the formula in Theorem 4.17. Recalling
that a.s. ws goes to ±∞ if and only if γ is to the left/right of z we complete
the proof.

Note: This proof is a typical example of a ‘martingale trick’ which is one
of the main tools in SLE computations. Essentially, by conditioning on gt we
construct a martingale which is closely related to the observable that we want to
compute. Then Ito’s formula tells us that this observable must satisfy a certain
second order differential equation with known boundary conditions. Solving
this equation we find the martingale (hence observable) and use the optional
stopping theorem to justify the application of Ito’s formula. Alternatively, the
proof can be written in a different way, we can start with an explicit martingale
and use the optional stopping to compute the observable.
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4.6.2 One-arm exponent

In this section we give a computation of a certain observable which is used
to compute the so called ‘one-arm exponent’. In percolation theory, one-arm
exponent is defined as λ such that the probability that the percolation cluster
containing the origin has radius at least R is R−λ+o(1). In case of percolation
λ = 5/48.

The computation is somewhat similar to the one before but there are im-
portant differences. As before, we use the martingale trick to write a certain
differential equation, but this time, we are interested in the long-time behaviour
of a time-dependent quantity. This adds one more variable and the resulting
equation is a PDE instead of ODE. PDEs are much harder to analyse and they
almost never admit explicit solutions.

Theorem 4.19 Let κ > 4. Let gt and γ be the radial SLE(κ) and its trace. For
r ∈ (0, 1) we define Tr to be the first time |γ(t)| = r. Then there is a constant
c such that

c−1rλ < P[γ([0, Tr]) contains no counter-clockwise loop around 0] < crλ,

where

λ =
κ2 − 14

32κ
.

Proof. First of all, by Koebe 1/4 theorem the distance from the origin to
γ([0, t]) is comparable to exp(−t). This means that it is sufficient to prove that

c−1e−λt < P[γ([0, t]) contains no counterclockwise loop around 0] < ce−λt.

By Aθ we denote the arc {eis : s ∈ [0, θ]} and by Bθ its counter-clockwise
oriented complement. We define the event E(θ, t) to be the event that the
concatenation of Bθ and γ([0, t]) contains no counter-clockwise loops around 0.
By h(θ, t) we denote the probability of E(θ, t).

We make three claims that we are not going to prove

1. Function h is smooth.

2. For every t we have limθ→0 h(θ, t) = 0.

3. For every t > 0 we have ∂θh(2π, t) = 0.

Note that here, unlike our previous computations, we will not be able to
justify a posteriori differentiability of h since we will not be able to find an
explicit formula for h. There are different way around this problem, but they
are beyond the scope of this course.

The second condition is very natural and, in fact, quite easy to prove. It is
possible to show that when θ is very small, the curve γ will separate eiθ from 0
in a very short time with very high probability. When this happens, the event
E(θ, t) happens.

For the last claim the idea behind the proof is this. The difference between
events E(2π, t) and E(θ, t) is the event that the curve γ([0, t]) goes around the
origin and hits the small arc of exp(i[θ, 2π]) and after that it does not form a
counter-clockwise loop around the origin. The probability that the curve will
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hit this short arc is of order 2π− θ. Conditioned on this, there is no loop if the
continuation of the curve after this time does not hit the beginning of the near
1. The probability of this event is o(1). Overall, this gives h(2π, t) − h(θ, t) =
o(2π − θ).

Let T (θ) be the first time exp(iθ) is separated from the origin. Equivalently,
this is the first time exp(iθ) ∈ Kt, where Kt is the corresponding growing hull.
For t < T (θ) we define

Y θt = Yt = −i log gt(e
iθ)−

√
κBt.

This is the arclength of the image under gt of the union of Aθ and the right side
of γ([0, t]). This is also the same as 2π times the harmonic measure from the
origin of the union of Aθ and the right side of γ([0, t]). Note that after T (θ) the
arc A0 is not visible from the origin, so it does not contribute to the harmonic
measure.

We can make one more important observation: at the moment when γ makes
a counter-clockwise loop the harmonic measure of the right side of γ is 0. This
means that E(θ, t) is the same event as infs<t Y

θ
s > 0.

In fact, using the last description, we can extend the definition of Yt beyond
T (θ). It is a diffusion defined on [0, 2π] which instantaneously reflects at 0 and
2π.

Let us fix some s and assume that t < min{s, T (θ)}. Then by the standard
argument (condition on Ft and applying gt) we can see that h(Y θt , s − t) is a
martingale.

Recall that gt satisfies the radial Loewner evolution

∂tgt(z) = −gt(z)
gt(z) + ei

√
κBt

gt(z)− iei
√
κBt

.

From this, by Ito’s formula we get

dYt = cot(Yt/2)d t−
√
κdBt.

Again by Ito’s formula

dh(Yt, s− t) =
(κ

2
∂2
θh(Yt, s− t) + cot(Yt/2)∂θh(Yt, s− t)− ∂sh(Yt, s− t)

)
d t

−
√
κ∂θh(Yt, s− t)dBt.

Since h(Y θt , s− t) is a martingale, the drift must vanish for all t. Taking t = 0
and using that Y θ0 = θ we get that h satisfies the following PDE

κ

2
∂2
θh(θ, s) + cot(θ/2)∂θh(θ, s)− ∂sh(θ, s) = 0.

We also know that h satisfies the Dirichlet-Neumann boundary condition h(0, s) =
∂θh(2π, s) = 0.

This is where this computation deviates from the computations before. We
can not explicitly solve the initial value problem for this PDE. On the other
hand, we only want to know the asymptotic behaviour as s→∞.

There are two different ways to deal with this problem. We will discuss both
of them, but will skip some technicalities.
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PDE approach. Let us consider the function

H(θ, t) =

(
sin

(
θ

4

))q
e−λt,

where

q =
κ− 4

κ
, and λ =

κ2 − 16

32κ
.

The first factor in H is the main eigenfunction of an elliptic operator
κ

2
∂2
θ + cot(θ/2)∂θ

and λ is its main eigenvalue. The main idea is that for a parabolic (heat)
equation we can expand the solution in series

∑
φi(θ) exp(−λt) where φi and

λi are eigenfunctions and eigenvalues of the corresponding elliptic operator. It
is clear that for generic initial condition the series decays like φ0(θ) exp(−λ0t).

This is usually done by application of the Maximum Principle which implies
that since both h and H are positive solutions of the same PDE with the same
boundary condition, there is a constant c > 0 such that

c−1H(θ, t) < h(θ, t) < cH(θ, t).

In this particular case, the situation is a bit more complicated since the coef-
ficients of PDE have singularity at θ = 0. This requires some rather standard
modification of the Maximum Principle. More details can be found in the orig-
inal paper [5].
Diffusion approach Let us consider

Zt =

(
sin

(
Y θt
4

))q
eλt.

An explicit computation (the same as the one showing that sinq is an eigen-
function) shows that Zt is a local martingale. Moreover, it is clearly uniformly
bounded on every bounded time-interval. Using the optional stopping theorem
and total probability formula we obtain(

sin

(
θ

4

))q
= Z0 = EZt = eλtP

[
inf
s<t

Ys > 0

]
E
[(

sin
Y θt
4

)q
| inf
s<t

Ys > 0

]
Recall that E(θ, t) is the same as the event infs<t Y

θ
s > 0.

Let us consider the diffusion Y stopped when it hits 0. We claim that
conditioned on the event infs<t Y

θ
s > 0 it has a uniformly bounded distribution.

General theory of Markov processes implies that this distribution converges to
the stationary distribution. This means that

P
[
Y θt ∈ [π/2, 2π]| inf

s<t
Y θs > 0

]
> c,

where c is some positive universal constant. This implies

E
[(

sin
Y θt
4

)q
| inf
s<t

Ys > 0

]
> c > 0,

where c is some other universal constant. This implies

h(θ, t) = P
[

inf
s<t

Ys > 0

]
�
(

sin

(
θ

4

))q
e−λt.
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5 Convergence to SLE

5.1 General scheme

Let us consider a rectangle with vertices 0, L, iπ ans L + iπ. Let us consider a
curve starting from 0 and aiming at L + iπ. We colour its left side yellow and
right side blue. We have two options: our curve hits the right side or the top
side first. In the first case there is a yellow path connecting left and right sides,
in the second case there is a blue path connecting top to bottom. See Figure 8.

(a) Curve hits the top side and creates
a blue vertical crossing

(b) Curve hits the right side and cre-
ates a yellow horizontal crossing

Figure 8: Two crossing types

If we think in terms of percolation (i.e. our curve is an exploration process
from 0), where the bottom is coloured blue and the left yellow, then these two
types of crossing give us two mutually excluding events: there is a blue cluster
connecting top to bottom or there is a yellow cluster connecting left to right.
The same picture is valid for many other cluster models including Ising model.
Assuming that this curve is SLE(κ) from 0 to L+ iπ we would like to compute
the probabilities of these two events. By Riemann theorem there is a conformal
map from the rectangle onto H. By choosing three parameters we can map
0 7→ 0, iπ 7→ ∞, and L + iπ 7→ 1. After that the image of L is uniquely
determined and we call it 1 − u. There is one-to-one correspondence between
u ∈ (0, 1) and L ∈ (0,∞). In this setup, the probability of horizontal crossing
will be the same as the probability in the half-plane to hit [1 − u, u] before
[1,∞). It is easy to see that this event is the same as T1−u < T1. We have
already computed this probability and it is equal to

P(T1−u < T1) = 1−
Γ
(

8
κ − 1

)
Γ
(
κ−4
κ

)
Γ
(

4
κ

) ∫ 1−u

0

(1− x)8/κ−2x−4/κdx

For percolation J. Cardy predicted that the crossing probability is given by:

F (u) =
Γ
(

2
3

)
Γ
(

1
3

)
Γ
(

4
3

)u1/3
2F1

(
1

3
,

2

3
,

4

3
, u

)
(23)

Locality suggest that percolation corresponds to SLE(6). It also turns out that
for κ = 6 Cardy’s formula is the same as SLE crossing formula. L. Carleson
noticed that the function in (23) is the same as the conformal map from the
half-plane onto the equilateral triangle with side-length 1. Hence in the triangle
the crossing probability is given by very simple formula: Figure 9
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Figure 9: Crossing probability in the equilateral triangle

It is believed that many two-dimensional critical lattice models have con-
formally invariant scaling limits. By Schramm’s principle, these limits must be
SLE curves. This gives not only the description of conjectural limits, but also
gives some tools to prove this convergence. The main strategy follows these
steps:

1. Show that some observable of the model has a conformally invariant scal-
ing limit. Here and later on, by observable we mean a real (or complex)
valued functional of the model. Some examples are: probability that
the interface passes to the left of a given point, probability that there is
some kind of crossing etc. In most cases we first show that the observ-
able is a solution (or an almost solution) to some discrete boundary value
problem. Then we show that as the mesh of the lattice goes to zero, the
discrete problem converges to a continuous boundary problem and the dis-
crete solution converges to the continuous solution. If the boundary value
problem is conformally invariant (many problems involving harmonic or
holomorphic functions are conformally invariant), then the solution is also
conformally invariant.

2. Use some a priori estimates to show that the space of discrete interfaces if
not too wild. In other words we need some pre-compactness or tightness
argument. This shows that there are sub-sequential limits of interfaces.

3. Convergence of an observable will show that all sub-sequential limits are
the same, hence we have a limit.

We start by giving an example showing how to do the last step. This is a
rather general method which works if there is an explicit formula for the scaling
limit of one observable.

5.2 Convergence of an observable implies convergence of
driving function

In this section we sketch how to show the convergence of the driving function
of percolation exploration to the Brownian motion (with speed 6).

Let us assume that the probability that in H there is a crossing connecting
(−∞, 0) with (x, rx) is given by some explicit function F (r) (see (23)). We will
show that this is indeed true later on.

Note that this probability is the same as the probability that the explo-
ration process hits (x, rx) before (rx,∞). Let’s parametrize exploration path
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by capacity and write the corresponding Loewner evolution gt = gt,δ. Fix t and
condition the crossing probability on gt (i.e. on the the initial segment of the
exploration). By Markov property this is the same as the crossing probability
in H \ Kt, and by conformal invariance of the crossing probability this is the
same as the crossing probability from (−∞, ut) to (gt(x), gt(rx)) (see Figure
10). Applying the Mobius transformation and using conformal invariance this
probability is given by

F

(
gt(rx)− ut
gt(x)− ut

)
.

Figure 10: Conformal invariance of crossing probability

Taking expectation with respect to gt we have

EF
(
gt(rx)− ut
gt(x)− ut

)
= F (r).

Assuming that x is large compared to t and ut we have

gt(x) = x+
2t

x
+O(x−2),

gt(rx) = rx+
2t

rx
+O(x−2).

We can expand F using explicit formula for it and obtain

F

(
gt(rx)− ut
gt(x)− ut

)
=F (r) + c1

(
r − 1

r2

)1/3
ut
x

+

c2
(r + 1)(r − 1)1/3

r5/3
(u2
t − 6t)

1

x2
+O(x−2)

Taking the expectation we have Eut = 0 and Eu2
t = 6t. By Markov property

the same is true for all increments. This proves that ut =
√

6Bt where Bt is a
Brownian motion.

5.3 Percolation: Cardy formula

In this section we show that the percolation crossing probability indeed con-
verges to Cardy’s formula. Initially it was proved by S. Smirnov [10]. Later,
his argument was simplified by V. Beffara [2]. We will show an eval simpler
argument by M. Khristoforov and S. Smirnov (unpublished).

5.3.1 Discrete setup

Our first goal is to reformulate the percolation observable in terms of a different
loop model. It is similar to the loop representation of percolation, but we
introduce certain disorders.
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Figure 11: The set E contains 4 half-edges (left). Its boundary is made of 2
mid-edges and two vertices (right).

Let Ω be a simply connected domain made of hexagons belonging a fixed
hexagonal lattice. In the percolation model we consider all possible configura-
tions that are collections of ‘open’ hexagons. We define the uniform measure on
the set of all percolation configurations. The percolation probability measure is
denoted by Pperc. It is easy to see that choosing a percolation configuration is
the same as independently choosing with probability 1/2 whether each hexagon
is ‘open’ or ‘closed’. A percolation model with given boundary condition is de-
fined in the same way, except that we fix which hexagons on the boundary are
open and configurations only involve internal hexagons.

Beyond vertices and edges, we also consider mid-edges and half-edges. For
a set of half-edges E we defined its boundary ∂E as the set of all vertices and
mid-edges that are adjacent to an odd number of half-edges from E (see Figure
11).

Let U = {u1, . . . uk} be a collection of distinct mid-edges or vertices. We
define W (u1, . . . , uk) to be the collection of all sets of half-edges E in a hexagonal
domain Ω such that ∂E = U . Such E is called a configuration with disorders
at marked points ui.

It is clear that all connected components of E are either loops or paths
connecting two distinct ui and uj . The important part of E, denoted IP (E)
is the union of components of E that are not loops. In particular, this implies
that W is non-empty only if k is even. From now on we always assume that
this is the case.

The connectivity pattern of E is the homotopy class of IP (E). The loop
model is defined as the uniform measure on W (U). The corresponding proba-
bility measure is denoted by Ploop.

5.3.2 Loop representation

When all ui are on the boundary, there is a natural connection bijection between
percolation configurations with certain boundary condition and loop configura-
tions.

We will consider only the case k = 4. We also assume that ui are in the
counter-clockwise order and we use cyclic notation, namely uk+4n = uk for every
n.

Let us consider a percolation configuration where we assume that the (counter-
clockwise) boundary arcs [u1, u2] and [u3, u4] are open. This gives rise to a
collection of mid-edges that separate open hexagons from closed ones. It is easy
to see that this is a bijection. Since both loop and percolation measures are
uniform, this is a measure preserving bijection.
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Figure 12: The probability that there is an open (blue) percolation cluster
connecting two boundary arcs is the same as the probability that in the loop
model the important part of E connects u1 to u4 and u2 to u3.

It is easy to see that the event that there is an open percolation cluster
connecting [u1, u2] and [u3, u4] corresponds to the event that in the loop config-
uration u1 is connected to u4 and u2 is connected to u3. This proves our first
result. It’s graphical representation is given by Figure 12.

5.3.3 Discrete holomorphicity

Next, we assume that u1, u2 and u3 are on the boundary and the fourth marked
point, which we now denote by z is an interior mid-edge. There are three
topological types of loop configurations: z is connected to u1 (in this case u2

must be connected to u3), it is connected to u2 or to u3. We denote these events
by [z ! ui].

Let τ = exp(2πi/3) and define the function F on interior mid-edges by

F (z) = EloopH(E) =
∑

τkHk(z),

where
H(z) =

∑
τk1[z!uk]

and
Hk(z) = Ploop[z ! uk].

Our next result is a discrete version of Cauchy-Riemann equations.

Lemma 5.1 Let z1, z2 and z3 be three mid-edges adjacent to the same vertex
v. We assume that they are indexed in the counter-clockwise order. Then∑

τkF (zk) = 0 (24)

Proof. By the definition∑
k=1,2,3

τkF (zk) =
∑

k=1,2,3

τk
∑

j=1,2,3

τ jHj(zk) =
∑
k,j

τk+jP[zk ! uj ].

The probability P[zk ! uj ] is proportional to the number of configurations
where zk ! uj .

We split all configurations in triplets. Let us consider a configuration where
z1 is connected to u1. There are three types of them: the line connecting
u2 to u3 is away from v and there is no loop passing through v (first line in
Figure 13), the line connecting u2 to u3 is away from v and there is a loop
passing through v (second line line in Figure 13) and when the line connecting
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Figure 13: All possible modifications around v of configurations of [z1 ! u1]
type.
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u2 and u3 passes through v. For each configuration, we consider two other
configurations that differ exactly by two half-edges adjacent to v and belong to
one of W (u1, u2, u3, zj). In Figure 13 we list all possibilities.

In each row the number of configurations in each column is the same. hence
their probabilities are equal. In below each type we list its weight in the double
sum above. It is easy to see that in each row the waits are 1, τ and τ2 in some
order. This means that the sum in each row is 0. All rows must be repeated for
configurations of [z1 ! u2] and [z1 ! u3] types. Eventually, all configurations
are split in triplets and the sum in each triplet is 0. Hence the entire sum
vanishes.

As mentioned above, this lemma is a discrete version of the Cauchy-Riemann
equations. So F is discrete holomorphic. Similar to the usual complex analysis
we can show that a contour integral of a discrete holomorphic function vanishes.

Let γ be a closed contour, that is a sequence of hexagons w1, w2, . . . , wn+1

where w1 = wn+1 and for each j hexagons wj and wj+1 share an edge which
we denote ej . The center of ej is denoted zj . Let F be a function defined on
mid-edges. In this case we define the discrete integral∫ #

γ

F (z)d z =

n∑
j=1

F (zj)(w
◦
j+1 − w◦j ),

where wcj irc ∈ C denotes the point in the center of the hexagon wj .

Corollary 5.2 (Discrete Cauchy theorem) Let γ be a closed contour inside
Ω and F be a function satisfying (24), then∫ #

γ

F (z)d z = 0.

Proof. First, we consider the simplest case. Let w1, w2 and w3 be three faces
in counter-clockwise order around a vertex v. Then the integral is∫ #

γ

F (z)d z = F (z1)(−τ) + F (z2)(−τ2) + F (z3)(−1).

By (24) this sum vanishes.
Any closed contour can we written as a sum of simplest triangular contours.

It is easy to see from the definition that the integral along the contour is equal
to the sum of integral along small contours. But all these integrals are equal to
0.

Now we investigate boundary behaviour of F . Let us assume that z is a
mid-edge on the arc [uj+1, uj−1] (this is the arc opposite to uj).

First of all, by topological reasons there are no loop configurations such that
[z ! uj ]. This proves that Hj(z) = 0.

Using the bijection between the percolation and loop configurations we have

F (z) =Pperc[[uj+1, z] is connected to [uj−1, uj ]]τ
j−1+

Pperc[[uj , uj+1] is connected to [z, uj−1]]τ j+1.

In particular, when z ∈ [uj+1, uj−1], F (z) is a convex linear combination of τ j−1

and τ j+1, so F ([uj+1, uj−1]) ⊂ [τ j−1, τ j+1].
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5.3.4 Convergence of F

Let Ω be a simply connected domain with four marked points A, B, C and D.
Let δ > 0 be small enough and Ωδ be an approximation of Ω by a hexagonal
domain with mesh δ. Let Aδ, Bδ, Cδ and Dδ be mid-edges that approximate
A, B, C and D.

We define for each mid-edge we define fδ(z) = F (z), where F is the function
defined above for a loop model on Ωδ with marked points Aδ, Bδ and Cδ. For
each vertex we define fδ(v) to be the average of a values at adjacent mid-edges.
For each center of a face it is also the average of a values at adjacent mid-edges.
Inside each small triangle formed by a vertex, mid-edge and a face center we
define fδ as a linear interpolation of the values at the corners of this triangle.
This allows us to extend the definition of F to the entire domain in the complex
plane.

Standard results from percolation theory (Russo-Seymour-Welsh estimate)
implies that function fδ are uniformly Holder continuous. By Arzela-Ascoli
theorem, there is δ → 0 such that fδn → 0 uniformly on compact subsets of Ω.

It is easy to see that the discrete integral converges to the usual contour
integral. Corollary 5.2 implies that all contour integrals of f vanish. By Morera’s
theorem this implies that f is holomorphic.

The boundary conditions for Fδ imply that f maps the boundary of Ω onto
the boundary of the triangle with vertices 1, τ and τ2. By the standard Argu-
ment Principle argument this implies that f is the unique conformal map from
Ω onto this triangle such that f(A) = τ , f(B) = τ2 and f(C) = 1.

Since the limit of every convergent subsequence is equal to f , the entire
family fδ → f as δ → 0.

The argument in the proceeding subsection shows that

Pperc[[Aδ, Bδ] is connected to [Cδ, Dδ]] =
τ3 − fδ(Dδ)

τ3 − τ
.

Passing to the limit as δ → 0 we get

Pperc[[Aδ, Bδ] is connected to [Cδ, Dδ]] =
f(C)− f(D)

f(C)− f(A)

which is exactly Carleson’s version of Cardy’s formula.
Note, that since the limit of crossing probabilities is defined in terms of

conformal maps, it is conformally invariant by definition.
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