Chernoff bounds:

- 1. If (V_1, V_2) is a fixed partition of the vertices of G(n, 1/2), what is the distribution of the number of edges of G(n, 1/2) joining V_1 to V_2 ?
 - Show that the probability that G(n, 1/2) contains a bipartite subgraph with at least $n^2/8 + n^{3/2}$ edges is o(1).
- 2. A tournament on a vertex set V is an orientation of the edges of the complete graph on V. Thus, for each pair $\{i, j\}$ of distinct elements of V, exactly one of the directed edges $i \to j$ and $j \to i$ is present. (Think of an all-play-all tournament whose players are the elements of V; the orientation of the edge between i and j indicates who wins the match between i and j.)

Let σ be a permutation of $\{1, 2, ..., n\}$. The permutation can be seen as a ranking of the players. We say that an *upset* occurs if the edge $i \to j$ is present (i.e. j beats i) but $\sigma(i) < \sigma(j)$ (i.e. i is higher ranked than j).

Show that there exists a tournament on $\{1, 2, ..., n\}$ such that, for all rankings σ , the difference between the number of upsets and the number of non-upsets is no greater than $2n^{3/2}\sqrt{\log n}$. (In other words, no ranking gives a correct prediction for significantly more than 50% of the matches.)

3. Let H = (V, E) be a hypergraph. Let χ be a two-colouring (red/blue) of its vertices. The discrepancy of an edge $e \in E$ under the colouring χ is the absolute difference between the number of blue vertices in e and the number of red vertices in e. The discrepancy of H under χ , denoted $\operatorname{disc}(H, \chi)$, is the maximum over all edges e of the discrepancy of e under χ . Finally, the discrepancy of e, disc (H, χ) .

[For example, if H is k-uniform, disc(H) < k if and only if H is 2-colourable.]

- (i) Show that if H is k-uniform and has $m \ge 2$ edges, then $\operatorname{disc}(H) \le 2\sqrt{k \log m}$.
- (ii) Show that if H is k-uniform and each edge intersects at most d other edges, then $\operatorname{disc}(H) \leq \sqrt{2k \log(6(d+1))}$.

Branching processes:

4. Using results from lectures, show that the survival probability $\rho(c) = 1 - \eta(c)$ of the Poisson branching process $\mathbf{X}_{\text{Po}(c)}$ satisfies $\rho(1+\varepsilon) \sim 2\varepsilon$ as ε tends to zero from above.

Can you obtain further terms in this expansion?

- 5. Let Y_k denote the number of k-vertex components of G = G(n, p).
 - (i) Using Cayley's formula k^{k-2} for the number of trees on k (labelled) vertices, show directly that if k is fixed and p=p(n) satisfies $np\to c$ with c>0 constant, then

$$\mathbb{E}Y_k \sim \binom{n}{k} k^{k-2} p^{k-1} e^{-ck}.$$

- (ii) Deduce that $\rho_k(c) = c^{k-1} k^{k-1} e^{-ck} / k!$. [You may like to give a direct proof of this formula.]
- (iii) Deduce that

$$\sum_{k=1}^{\infty} c^{k-1} \frac{k^{k-1}}{k!} e^{-ck} = 1$$

if $0 \le c \le 1$, and that the sum is strictly less than 1 if c > 1. [You may not like to give a direct proof of this!]

- 6. (i) Show that for each $c \in (1, \infty)$ there is a unique $d \in (0, 1)$ such that $ce^{-c} = de^{-d}$
 - (ii) Let η be the extinction probability of $\mathbf{X}_{Po(c)}$, the Galton-Watson branching process with offspring distribution Po(c). Show that $c\eta = d$ where d is related to c as in part (i).
 - (iii) Consider the first particle (the root) in the branching process $\mathbf{X}_{\text{Po}(c)}$. What is the probability of extinction of the process conditional on the event that the root has k children (for $k \in \{0, 1, 2, ...\}$)? Use this to find the conditional distribution of the number of children of the root, conditional on the event that the process dies out.
 - (iv) Hence or otherwise argue that the branching process $\mathbf{X}_{\text{Po}(c)}$, conditioned on extinction, has the same distribution as the branching process $\mathbf{X}_{\text{Po}(d)}$. What does this *suggest* about the random graphs G(n, d/n) and G(n, c/n)?

 $Bonus\ question\ (compulsory\ for\ MFoCS\ students,\ optional\ for\ others):$

7. (i) Let X_1, X_2, \ldots, X_n be independent random variables such that $0 \le X_i \le 1$. Let $S_n = \sum_{i=1}^n X_i$ and let $p = \sum \mathbb{E} X_i / n$, so that $\mathbb{E} S_n = np$. Show that

$$\mathbb{P}\left(S_n \geqslant xn\right) \leqslant e^{-uxn} \left(1 - p + pe^u\right)^n$$

for any u > 0, x > p, and deduce that the Chernoff bounds proved in lectures for the case $S_n \sim \text{Bin}(n, p)$ also apply in this more general case.

(ii) Let a_1, \ldots, a_n be constants and let c > 0. Let Y_1, \ldots, Y_n be independent random variables such that $a_i \leq Y_i \leq a_i + c$, for all i. Give (with brief justification) a version of the Chernoff bound for $\mathbb{P}(S_n - \mathbb{E}S_n \geq t)$, where $S_n = \sum_{i=1}^n Y_i$.

If you find an error please check the website, and if it has not already been corrected, e-mail riordan@maths.ox.ac.uk