
QUESTION SHEET 2 – RANDOM MATRIX THEORY 2020/21

(1) Let X be an n ⇥ n complex Hermitian matrix taken at random from the GUE, scaled

by 1/
p
n with respect to the definition in the lecture notes. Explicitly, Xij = X

⇤
ji, for

1  i < j  n the real and imaginary parts of Xij are i.i.d. Gaussian random variables with

mean 0 and variance 1/2n, and Xii are i.i.d. real Gaussian random variables with mean 0

and variance 1/n for 1  i  n.

(a) Prove that for any smooth function f({Xkl}kl), which does not grow too quickly as

|Xkl| ! 1,
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NB the partial derivative is computed with respect to the complex variable Xji,

defined so that if z = x + iy and g(z, z) = g(x, y), then
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(b) Define Yk = TrX
k � ETrXk

. Prove, using the result of the previous question, for any

integers k1, . . . , kp, the Dyson-Schwinger equation (also known as a loop equation)
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(c) Setting m
(n)
k = E 1

nTrX
k
, prove that |m(n)

k |  k, for finite constants k, k 2 N.
(d) Prove that for all k 2 N
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when n ! 1.

(e) Using the above results, prove that mk = limn!1m
(n)
k satisfies

mk =

k�2X

l=0

mlmk�l�2

with m0 = 1 and m1 = 0. Hence evaluate mk.

(2) This problem covers the proof of the Marchenko-Pastur law using the Stieltjes transform.

Let X 2 Cp⇥n
be a random matrix with i.i.d. entries that we take to have zero mean,

variance 1/n, and eighth moment that is O(1/n
4
). Denote Rp = XX

†
. Let y

† 2 C1⇥n

represent the first row of X and write
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
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(a) Show that for z 2 C+
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(b) For A 2 Cp⇥p
and D 2 Cn⇥n

, both invertible, and for B 2 Cp⇥n
and C 2 Cn⇥p
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Use this formula to show that

⇥
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⇤
11

=
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(c) The following is a theorem that can be found in [1]. Let A1, A2, . . . , with AN 2 CN⇥N
,

be a series of matrices with uniformly bounded spectral norm. Let x1, x2, . . . , with

xN 2 CN
, be random vectors with i.i.d. entries of zero mean, variance 1/N , and

eighth order moment that is O(1/N
4
), independent of AN . Then when N ! 1,

x
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NTrAN
a.s.�! 0.

Use this to show that
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(d) The following is a theorem that can be found in [1]. Let z 2 C\R, A 2 CN⇥N
,

B 2 CN⇥N
, with B Hermitian, and v 2 CN

. Then

|Tr((B � zIN )
�1 � (B + vv

† � zIN )
�1

)A|  ||A||
|Imz|

where ||A|| denotes the spectral norm of A. Moreover, if B is non-negative definite,

for z 2 R�

|Tr((B � zIN )
�1 � (B + vv

† � zIN )
�1

)A|  ||A||
|z|.

Using this, show that, if m(z) denotes the Stieltjes transform of the limiting spectral

density of Rp when p ! 1 and p/n ! �, then m is a solution of

m =
1

1� � � z � z�m

and so confirm the Marchenko-Pastur law.

(3) Perform numerical experiments to test the Marchenko-Pastur law
1
.
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1This problem is optional and will not be marked. The same will be the case for similar problems on subsequent
sheets that involve numerical computation. Nevertheless, you are strongly encouraged to try them.
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