
Problem sheet 1 General Relativity II, Hilary Term 2021

Questions marked with a star have lowest priority to be discussed during class. Any comments or corrections

please to Jan.Sbierski@maths.ox.ac.uk.

1) ∗ (Revision) Let M be a smooth manifold and recall that X∞(M) denotes the space of vector fields and

Ω1(M) the space of covector fields (1-forms). Show that a map

τ : X∞(M)× · · · × X∞(M)︸ ︷︷ ︸
` times

×Ω1(M)× · · · × Ω1(M)︸ ︷︷ ︸
k times

→ C∞(M)

is induced by a (k, `)-tensor field if, and only if, it is multilinear over C∞(M).

Similarly a map

τ : X∞(M)× · · · × X∞(M)︸ ︷︷ ︸
` times

×Ω1(M)× · · · × Ω1(M)︸ ︷︷ ︸
k times

→ X∞(M)

is induced by a (k + 1, `)-tensor field if, and only if, it is multilinear over C∞(M).

[This is nearly trivial, just be careful with unravelling the definitions.]

2) Let X,Y, Z ∈ X∞(M) be smooth vector fields on a Lorentzian manifold (M, g). Show that

(∇∇Z)(X,Y )− (∇∇Z)(Y,X) = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z

holds, where∇ is the Levi-Civita connection. I.e., the left and the right hand side are equivalent definitions

of the Riemann curvature tensor R(X,Y )Z.

3) Let (M, g) be a Lorentzian (or Riemannian) manifold, consider a point p ∈ M and let xµ be a local

coordinate system centred at p (i.e. xµ(p) = 0). Let X,Y, Z ∈ TpM be three tangent vectors. Let

0 < ε, δ � 1 be very small. We first parallely propagate Z along the curve γ, i.e., first from 0 along the

straight coordinate line to εXµ and then along the straight coordinate line to εXµ + δY µ to obtain the

vector Zγ(εXµ + δY µ). Now, we parallely propagate Z along the curve γ′, i.e., first from 0 to δY µ and

then to εXµ+ δY µ, both along straight coordinate lines. Denote the resulting vector by Zγ′(εXµ+ δY µ).

Show that to leading order in ε and δ we have

Zργ(εXµ + δY µ)− Zργ′(εX
µ + δY µ) = −εδRρκαβ(0)ZκXαY β ,

thus giving another interpretation of curvature.

[Hint: Can you justify that the parallel transport of Z from 0 to εXµ is to leading order Zµ−εΓµκσ(0)XκZσ? ]
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Figure 1: For problem 3

4) ∗ (Revision) Let M be a smooth manifold.

(a) Let X,Y, Z ∈ X∞(M). Prove the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 .

(b) Let ∇ be an affine connection on M . Show that the torsion T (X,Y ) := ∇XY −∇YX − [X,Y ] is a

(1, 2)-tensor field. Here X,Y ∈ X∞(M).

(c) Is the Lie bracket [·, ·] : X∞(M)× X∞(M)→ X∞(M) an affine connection?

5) Let M be a smooth manifold and let X,Y be smooth vector fields. Show that for a general (k, `)-tensor

field T we have the following identity for the Lie derivative:

LX(LY T )− LY (LXT ) = L[X,Y ]T .

6) (a) Let (M, g) be an n-dimensional Lorentzian (or Riemannian) manifold. Use the equation

∇a∇bKc = RdabcKd (1)

from the lectures to show that the maximum number of linearly independent Killing vector fields on

M is n(n+1)
2 .

[Hint: Derive a system of ODEs with initial data given at a point p in M .]

(b) Consider 4-dimensional Minkowski spacetime. Write down equation (1) in standard Cartesian coor-

dinates and derive the 10-dimensional space of Killing vectors on Minkowski spacetime. Choose the

basis vectors such that they form the infinitesimal generators of translations and Lorentz transfor-

mations.
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7) This problem introduces and discusses locally inertial coordinates, which can be used by a freely falling

observer to make contact with special relativity. We will make use of them later in the course when we

discuss the observation of gravitational waves.

Let (M, g) be a 3 + 1-dimensional Lorentzian manifold.

(a) Let yµ be a coordinate system around a point p ∈M . Show that

∂κgνρ(p) = 0 for all ν, ρ, κ ∈ {0, . . . , 3} ⇐⇒ Γµνκ(p) = 0 for all ν, κ, µ ∈ {0, . . . , 3} .

(b) Let γ : I →M be an affinely parameterised timelike geodesic with g(γ̇, γ̇) = −1, i.e., the worldline of

a freely falling observer, parameterised by proper time. Consider a proper time s0 ∈ I and consider

an orthonormal Lorentz frame e0 := γ̇(s0), e1, e2, e3 ∈ Tγ(s0)M , i.e., we have g(eµ, eν) = mµν with

mµν = diag(−1, 1, 1, 1). Parallely propagate the Lorentz frame eµ along γ such that ∇γ̇eµ = 0 holds.

Introduce the mapping1

(x0, x1, x2, x3) 7→ expγ(x0)(x
1e1 + x2e2 + x3e3) ∈M .

Show that in a small neighbourhood of γ(s0) these are coordinates and that in these coordinates the

metric takes the form

g = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 +O(r2)dxµ ⊗ dxν ,

where r2 = (x1)2 + (x2)2 + (x3)2. We call such coordinates locally inertial coordinates.

(c) Let γ : I → M be a timelike curve parametrised by proper time. Assume there exists a coordinate

system xµ in a neighbourhood of some point γ(s0) such that in these coordinates γ(s) = (s, 0, 0, 0)

and

g = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 +O(r2)dxµ ⊗ dxν

holds, where r is as above. Show that, in particular, γ must be an affinely parametrised geodesic

and that ∂1, ∂2, ∂3 are parallel along γ.

8) ∗(Optional) Let (M, g) be an n-dimensional Riemannian manifold.

(a) Let p ∈M and denote with Λ2T ∗pM the space of all 2-covectors at p that are antisymmetric, i.e., all

ω ∈ T ∗pM ⊗ T ∗pM such that ωab = −ωba. Moreover, for α, β ∈ T ∗pM we define the wedge product

α ∧ β := α⊗ β − β ⊗ α ∈ Λ2T ∗pM .

Let α1, . . . , αn be an orthonormal basis for T ∗pM . Show that αi ∧ αj with 1 ≤ i < j ≤ n is a basis

of Λ2T ∗pM and thus Λ2T ∗pM is n(n−1)
2 dimensional.

(b) Show that for α, β, γ, δ ∈ T ∗pM the mapping

< α ∧ β, γ ∧ δ >:= det

(
g−1(α, γ) g−1(α, δ)

g−1(β, γ) g−1(β, δ)

)

induces an inner product on Λ2T ∗pM with respect to which αi∧αj , 1 ≤ i < j ≤ n , is an orthonormal

basis. Also show that for ω, ρ ∈ Λ2T ∗pM one has < ω, ρ >= gikgjlωijρkl.

1Recall from GR I that the exponential map expp : TpM ⊇ U →M at basepoint p maps the tangent vector X to expp(X) :=

σ(1), where σ : [0, 1]→M is the unique geodesic with σ(0) = p and σ̇(0) = X.
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(c) Consider the Riemann curvature tensor as a (2, 2)-tensor R kl
ij and show that it is a self-adjoint

linear map R : Λ2T ∗pM → Λ2T ∗pM with respect to the inner product < ·, · >.

(d) Show that if (M, g) is connected and has n(n+1)
2 linearly independent Killing vector fields that then

the Riemannian curvature tensor is of the form Rijkl = 2Cgk[igj]l = C(gkigjl − gkjgil) with C being

a constant.

[Hint: You may use that an isometry φ : M → M preserves the Riemann tensor, i.e., (φ∗R)ijkl =

Rijkl. ]

Where in GR I have you encountered such spaces? One can indeed show further that manifolds

whose Riemann tensor is of the above form with the same constant C are locally isometric.
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