Problem sheet 3 General Relativity II, Hilary Term 2021

Questions marked with a star have lowest priority to be discussed during class. Any comments or corrections please to Jan.Sbierski@maths.ox.ac.uk.

1) Consider the linearised Einstein equations in the wave gauge

$$\Box \overline{\tilde{h}}_{\mu\nu} = -16\pi T^{(1)}_{\mu\nu}$$
$$\partial^{\mu} \overline{\tilde{h}}_{\mu\nu} = 0 ,$$

where we recall that that $\overline{\tilde{h}}_{\mu\nu} = \tilde{h}_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}\tilde{h}$, where η is the Minkowski metric. Now consider a point mass (modelling a spherically symmetric body) of mass εM which is at rest at the coordinate origin x = y = z = 0. The corresponding stress energy tensor is given by $T_{\mu\nu} = \varepsilon T^{(1)}_{\mu\nu} = \varepsilon M \delta^3(\underline{x}) U_{\mu} U_{\nu}$, where $U = \partial_t$ is the four velocity of the particle. Derive the external gravitational field $g_{\mu\nu} = \eta_{\mu\nu} + \varepsilon \tilde{h}_{\mu\nu}$ under the assumption that it is stationary and compare it to the Schwarzschild metric with mass εM in the region where $\frac{\varepsilon M}{\sqrt{x^2 + y^2 + z^2}}$ is small.

2) According to the Quadrupole formula the asymptotically leading order terms of the metric corrections $\tilde{h}_{\mu\nu}$ of a radiating system in wave gauge take the form

$$\begin{split} \overline{\tilde{h}}_{00}(t,\underline{x}) &\simeq \frac{4M}{r} + \frac{2x_i x_k}{r^3} \frac{d}{dt^2} Q_{ik}(t-r) \\ \overline{\tilde{h}}_{0i}(t,\underline{x}) &\simeq -\frac{2x_k}{r^2} \frac{d^2}{dt^2} Q_{ik}(t-r) \\ \overline{\tilde{h}}_{ij}(t,\underline{x}) &\simeq \frac{2}{r} \frac{d^2}{dt^2} Q_{ij}(t-r) \; . \end{split}$$

Recall that $\tilde{h}_{\mu\nu} = \tilde{h}_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}\tilde{h}$, where η is the Minkowski metric. Compute the metric corrections $\tilde{h}_{\mu\nu}$ and show that the curvature component R^i_{00j} of $g_{\mu\nu} = \eta_{\mu\nu} + \varepsilon \tilde{h}_{\mu\nu}$ to leading order in $0 < \varepsilon \ll 1$ and to leading order in $\frac{1}{r}$ is given by

$$R^{i}_{00j}(t,\underline{x}) \simeq \frac{\varepsilon}{r} \Big[\Pi^{m}_{\ i} \Pi^{n}_{\ j} - \frac{1}{2} \Pi^{mn} \Pi_{ij} \Big] \frac{d^{4}}{dt^{4}} Q_{mn}(t-r) ,$$

where $\Pi^{mn} = \delta^{mn} - \frac{x_n}{r} \frac{x_m}{r}$. What is the interpretation of Π^m_n ?

- 3) Consider two stars, each of mass m and modelled as point particles, moving in a circular Newtonian orbit of radius R in the x, y-plane centred at the origin.
 - (a) Show that their trajectories may be taken to be $\gamma_{\pm}(t) = (t, \pm R \cos(\omega t), \pm R \sin(\omega t), 0)$, where $\omega^2 = \frac{m}{4R^3}$.
 - (b) Consider the corresponding stress-energy tensor

$$T^{\mu\nu} = \sum_{a=\pm} m \int \dot{\gamma}^{\mu}_{a} \dot{\gamma}^{\nu}_{a} \delta^{4}(x^{\alpha} - \gamma^{\alpha}_{a}(\tau)) \ d\tau \ ,$$

where τ is proper time of the particles and $\dot{\gamma}_a^{\mu} = \frac{d}{d\tau} \gamma_a^{\mu}$. Compute the stress-energy tensor and the quadrupole moment in the slow motion approximation.

(c) Recall that our derivation of the quadrupole formula required the system to be non-self-gravitating, which is violated in this scenario. However, assume now that it still serves as a good approximation even in the weakly-self-gravitating case if all other assumptions made in its derivation are met. What restrictions does this impose on the parameters m and R?

Consider the stars to be each of one solar mass $\approx 2 \cdot 10^{30} kg$. Give an order of magnitude estimate on R for which we might expect the quadrupole formula to be a good approximation.

- (d) ^(*) Compute the metric corrections $\tilde{h}_{\mu\nu}$ according to the quadrupole formula.
- 4) This question recalls the derivation of electromagnetic radiation and thus makes explicit the differences and similarities between the gravitational and electromagnetic cases. Let (M, g) be the 3 + 1-dimensional Minkowski spacetime with canonical coordinates x^{μ} . Maxwell's equation read dF = 0 and $\partial_{\mu}F^{\mu\nu} = 4\pi J^{\nu}$, where J is the source 4-vector and F is the Faraday tensor, an antisymmetric 2-form.
 - (a) Show that J satisfies the conservation law $\partial_{\mu}J^{\mu} = 0$ by virtue of the Maxwell equations.
 - (b) We now consider a source J that is compactly supported in space. Show that the charge $q(t) := \int_{\mathbb{R}^3} J^0(t, \underline{x}) d\underline{x}$ is independent of time.
 - (c) Consider now the Maxwell equations in the Lorentz gauge

$$\Box \tilde{A}_{\mu} = 4\pi J_{\mu}$$
$$\partial^{\mu} \tilde{A}_{\mu} = 0$$

where \tilde{A} is a one-form such that $d\tilde{A} = F$. Follow the approach taken in the gravitational case in the lectures to derive the following expression for the far field (i.e. for large $r = |\underline{x}|$)

$$\tilde{A}_0(t,\underline{x}) \simeq \frac{q}{r} + \frac{x_i}{r^2} \frac{d}{dt} D_i(t-r)$$
$$\tilde{A}_i(t,\underline{x}) \simeq -\frac{1}{r} \frac{d}{dt} D_i(t-r) ,$$

where $D_i(t) := \int_{\mathbb{R}^3} J^0(t, \underline{x}) x_i \, d\underline{x}$ is the *dipole moment*. Spell out the assumptions under which the above approximation is valid.

- (d) ^(*) Compute the leading order of the electric and magnetic field in the far region and show that they (the leading orders) are orthogonal.
- (e) ^(*) (Distributional part is optional) Consider a point particle with charge *e* oscillating according to

$$t \stackrel{\gamma}{\mapsto} (t, 0, 0, L\sin(\omega t))$$

The associated current 4-vector is given by $J^{\mu} = e \int \delta^4 (x^{\nu} - \gamma^{\nu}(\tau)) \dot{\gamma}^{\mu}(\tau) d\tau$, where τ is the proper time of the particle and $\dot{\gamma}^{\mu} = \frac{d}{d\tau} \gamma^{\mu}$. Show that $\partial_{\mu} J^{\mu} = 0$ in the sense of distributions.

Assume now that the particle is moving slowly compared to the speed of light, i.e. $0 < \omega \ll 1$. Compute in this approximation the dipole moment $D_i(t)$.

5) ^(*) Let (M, g) be a (d + 1)-dimensional Lorentzian manifold and let $f : M \to \mathbb{R}$ be a function such that for $f^{-1}(0) =: \Sigma$ we have $df \neq 0$ on Σ , i.e., Σ is a hypersurface. Let now Σ be a *null* hypersurface, i.e., we have in addition $g^{-1}(df, df) = 0$ on Σ . Show/recall that one can locally introduce coordinates $\{x_0, \ldots, x_d\}$ such that $x_0 = f$. Let

$$g_{\mu\nu} = \begin{pmatrix} g_{00} & g_{01} & \dots & g_{0d} \\ g_{10} & & & \\ \vdots & & g_{ij} \\ g_{d0} & & & \end{pmatrix}$$

be the components of g in these coordinates. Show that $\det(\{g_{ij}\}_{1 \le i,j \le d}) = 0$.

6) Let $M = \mathbb{R} \times (r_+, \infty) \times \mathbb{S}^2$ with the standard $\{t, r, \theta, \varphi\}$ coordinates where $r_+ = M + \sqrt{M^2 - a^2}$, M > 0, and 0 < a < M. We define the Kerr metric g on M by

$$g = -\left(1 - \frac{2Mr}{\rho^2}\right) dt^2 - \frac{2Mra\sin^2\theta}{\rho^2} \left(dt \otimes d\varphi + d\varphi \otimes dt\right) + \frac{\rho^2}{\Delta} dr^2 + \rho^2 d\theta^2 + \left(r^2 + a^2 + \frac{2Mra^2\sin^2\theta}{\rho^2}\right) \sin^2\theta d\varphi^2 ,$$

where $\rho^2 = r^2 + a^2 \cos^2 \theta$ and $\Delta = r^2 - 2Mr + a^2$. Show that the vector field ∂_t is a Killing vector field and that it is timelike for $r > M + \sqrt{M^2 - a^2 \cos^2 \theta}$. Also show that ∂_t is not hypersurface orthogonal. Thus (M, g) is stationary but not static.