
Problem sheet 4 General Relativity II, Hilary Term 2021

Questions marked with a star have lowest priority to be discussed during class. Any comments or corrections

please to Jan.Sbierski@maths.ox.ac.uk.

1) Let (M, g) be a Lorentzian manifold and let g̃ = Ω2g be a Lorentzian metric on M that is conformal to

g, where Ω is a smooth function with Ω(x) 6= 0 for all x ∈M .

(a) Show that the Christoffel symbols Γ̃µνκ of g̃ are given by

Γ̃µνκ = Γµνκ + ∂κ log Ω · δµν + ∂ν log Ω · δµκ − ∂λ log Ω · gµλgνκ .

(b) Let γ : R ⊇ I → M be a null geodesic with respect to g. Show that it is also a null geodesic with

respect to g̃ (but not necessarily affinely parametrised).

(c) ∗ Give a counterexample to the above for timelike/spacelike geodesics, i.e., give an explicit example

of a Lorentzian manifold (M, g) together with a conformal metric g̃ and a timelike/spacelike geodesic

γ : I → R with respect to g which, however, is not a timelike/spacelike geodesic with respect to g̃.

2) This question introduces the deSitter spacetime. Consider 4 + 1-dimensional Minkowski spacetime, i.e.,

R5 with standard Cartesian coordinates {v, w, x, y, z} and metric m = −dv2 + dw2 + dx2 + dy2 + dz2. Let

M ⊆ R5 denote the level set

−v2 + w2 + x2 + y2 + z2 = α2 ,

with α > 0. Check that this is a timelike hypersurface. Can you sketch it (suppressing some dimensions)?

By restricting the Minkowski metric to the tangent spaces of M we obtain a Lorentzian metric g on M . In

fact, the Ricci curvature of the Lorentzian metric g on M satisfies Rµν = 3
α2 gµν . The Einstein equations

with cosmological constant Λ read

Rab −
1

2
Rgab + Λgab = 8πTab .

It thus follows that (M, g) is a solution to the Einstein equations with cosmological constant Λ = 3
α2 and

Tab = 0. It is called the deSitter spacetime.

We now introduce coordinates on M by (t, χ, θ, ϕ)
ι7→
(
v, w, x, y, z

)
with

v = α sinh(
t

α
)

w = α cosh(
t

α
) cosχ

x = α cosh(
t

α
) sinχ cos θ

y = α cosh(
t

α
) sinχ sin θ cosϕ

z = α cosh(
t

α
) sinχ sin θ sinϕ .

What is the range of these coordinates? Do they cover all of M? Show that in these coordinates the

metric g is given by

g = −dt2 + α2 cosh2(
t

α
)(dχ2 + sin2 χ[dθ2 + sin2 θ dϕ2]) .
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Draw the hypersurfaces of constant t in your above sketch. What is their topology, how does their

geometry change with coordinate time t?

We now construct the Penrose diagram. Choose a new time-coordinate λ(t) which satisfies dλ
dt = 1

α cosh( tα )
.

Write the metric in the coordinates (λ, χ, θ, ϕ) and show that the deSitter spacetime is conformal to part

of the Einstein static universe. Which boundary surfaces would you call past/future null infinity? Draw

the Penrose diagram. Explain why an observer, even if she observes for an infinite time, cannot observe

the entire spacetime. How does this compare to the situation in Minkowski spacetime?

3) Let (M, g) be a Lorentzian manifold and let Σ ⊆M be a Killing horizon of a Killing vector field T . Show

that the surface gravity κ, given by ∇TT |Σ = κT |Σ, satisfies

κ2 = −1

2

[
(∇aTb)(∇aT b)

]
|Σ .

Hint: Use that T is hypersurface orthogonal on Σ.

4) This problem guides you through the derivation of the laws of geometric optics in curved spacetime. Let

(M, g) be a Lorentzian manifold and F ∈ Ω2(M) a smooth two-form, the Faraday tensor. The source-free

Maxwell equations read

dF = 0 and ∇µFµν = 0 . (1)

Since dF = 0, one can locally1 find a potential A ∈ Ω1(M) such that dA = F .

(a) Show that F satisfies (1) iff A satisfies

∇µ∇µAν −∇ν∇µAµ −RκνAκ = 0 . (2)

(b) Recall the gauge freedom Ãµ = Aµ + ∂µχ. Show that any solution Aµ can be put into the Lorentz

gauge ∇µÃµ = 0 by solving an inhomogeneous wave equation for χ (note that �gχ := ∇µ∇µχ is the

wave operator in curved spacetimes).

(c) We now construct approximate solutions of (2) in the Lorentz gauge, i.e., of

∇µ∇µAν −RµνAµ = 0 and ∇µAµ = 0 . (3)

We make the geometric optics ansatz

Aapprox
ν =

1

λ
aνe

iλφ , (4)

where aν ∈ Ω1(M), φ ∈ C∞(M), and λ > 0 is a large parameter. Compute ∇µ∇µAapprox
ν −

RµνA
approx
µ and ∇µAapprox

µ , group the terms according to their power in λ, and show that the

equations (3) are satisfied by (4) up to order O( 1
λ ) iff aµ and φ satisfy

∇µφ · aµ = 0 , ∇µφ · ∇µφ = 0 , ∇µφ · ∇µaν +
1

2
�gφ · aν = 0 . (5)

Also infer that if the large parameter λ is large compared to covariant derivatives of aν and the

spacetime curvature Rµν , then (4) with aν and φ satisfying (5) is a good approximate solution of

(3).

1Or in fact in any simply connected domain – so for example in particular in all of the Schwarzschild spacetime.
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(d) The vector k := (dφ)] is called the wave vector. Can you justify this terminology?

Consider an observer following a timelike curve γ parametrised by proper time who carries with him-

self an orthonormal basis {E0 = γ̇, E1, . . . , En} of the tangent space which forms his local reference

frame. Show that he would interpret the quantity − 1
2πλ ·E0φ|p = − 1

2πλ · g(E0, k)|p as the frequency

of the electromagnetic wave (4) at a point p on his worldline.

(e) The equation ∇µφ ·∇µφ = 0 is known as the Eikonal equation. It can be always solved locally. Show

that it implies that the wave vector k is null and that it satisfies ∇kk = 0, i.e., it is propagated

affinely along null geodesics.

(f) Let us now decompose the covector amplitude aν in (4) as aν = α·fν , with the amplitude α ∈ C∞(M)

and the polarisation covector fν ∈ Ω1(M). It follows from the first equation in (5) that fνk
ν = 0,

i.e., the polarisation vector is orthogonal to the wave vector, i.e., it must be tangent to the null

hypersurfaces φ = const. Show that to leading order in λ the electric and magnetic fields do not

change by adding a multiple of kν to fν .

Thus, only if f is spacelike do we have a non-vanishing electromagnetic field. Without loss of

generality we can thus normalise the polarisation covector by fνf
ν = 1. Show that the third equation

in (5) implies the propagation equation

∇kα+
1

2
∇µkµ · α = 0 (6)

for the amplitude along the integral curves of k and that the polarisation covector is parallely prop-

agated along k, i.e.,

∇kf = 0 .

Note that (6) in particular implies that if α vanishes on some point on an integral curve of k (which

are null geodesics by ∇kk = 0), then it vanishes along the whole curve. This makes precise in which

sense and under what conditions ‘light propagates along null geodesics in general relativity’.

(g) Consider now the Schwarzschild spacetime with an observer γA following a timelike curve of constant

r = rA > 2M , θ = θ0, ϕ = ϕ0 and another observer γB following a timelike curve of constant

r = rB > rA, θ = θ0, ϕ = ϕ0. Make precise, using the laws of geometric optics derived in this

exercise, that a high-frequency light signal of frequency fA as measured by observer A, sent from A

to B, arrives red-shifted at observer B with a frequency fB =

√
1− 2M

rA

1− 2M
rB

fA.

5) Let M = R× (r+,∞)× S2 with the standard {t, r, θ, ϕ} coordinates where r+ = M +
√
M2 − a2, M > 0,

and 0 < a < M . We define the Kerr metric g on M by

g = −(1− 2Mr

ρ2
) dt2 − 2Mra sin2 θ

ρ2
(dt⊗ dϕ+ dϕ⊗ dt) +

ρ2

∆
dr2

+ ρ2 dθ2 +
(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θ dϕ2 ,

(7)

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2. Consider a stationary observer A with velocity

u(∂t + Ω∂ϕ) at some value of r0 ∈ (r+,∞) and some value of θ0 ∈ (0, π), where u > 0 is chosen such that

the velocity is normalised. Show that Ω corresponds to the angular frequency of A as seen by an observer

B with velocity ∂t at infinity who is at rest with respect to the asymptotic Lorentz frame.

Thus, an observer with Ω = 0 appears static from infinity ‘with respect to the fixed stars’.
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(Hint: The movement of A as seen by B depends on the null geodesics connecting A’s worldline with B’s.

Use the symmetries of the Kerr spacetime to answer this question without actually computing the null

geodesics.)

6) ∗ Show that the Kerr metric (7) from the last problem reduces to

(a) the Schwarzschild metric for a = 0

(b) the Minkowski metric in spheroidal coordinates for M = 0, but a 6= 0. Here, the spheroidal coor-

dinates in Minkowski spacetime are given by x = (r2 + a2)
1
2 sin θ cosϕ, y = (r2 + a2)

1
2 sin θ sinϕ,

z = r cos θ. Note that the surfaces r = const are spheroids x2+y2

r2+a2 + z2

r2 = 1.
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