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Introduction

In this lecture I will

I explain what the finite element method is for;

I give a sketch of how it works;

I outline the questions we will address in the rest of the course.
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Introduction

What is the finite element method for?

The finite element method is a framework for computing numerical
approximations to boundary and initial-boundary value problems.
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Introduction

What is the finite element method for?

The finite element method is a framework for computing numerical
approximations to boundary and initial-boundary value problems.

Example: the Navier–Stokes equations

Find velocity u : Ω→ R3 and pressure p : Ω→ R such that

−∇ · ν
(
∇u+ (∇u)>

)
+∇ · (u⊗ u) +∇p = f

∇ · u = 0
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Introduction

What is the finite element method for?

The finite element method is a framework for computing numerical
approximations to boundary and initial-boundary value problems.

Example: the equations of elasticity

Find displacement u : Ω→ R3 such that

−µ∇2u− (µ+ γ)∇∇ · u = f
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Introduction

What is the finite element method for?

The finite element method is a framework for computing numerical
approximations to boundary and initial-boundary value problems.

Example: the nonlinear Schrödinger equation

Find wave function ψ : Ω× (0, T ]→ C such that

i
∂ψ

∂t
= −1

2
∇2ψ + |ψ|2ψ + (x2 + y2 + z2)ψ
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Introduction

How does it work?

The finite element method converts PDE problems into algebraic ones.

Lu = f  Ax = b

The discrete system arises by breaking up the domain Ω into a mesh:
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Introduction

Comparing the finite element method

There are many different techniques used to compute numerical
approximations of PDE. How does FEM compare?

3 Able to handle complicated geometries (vs e.g. finite differences)

3 Able to handle very general PDE (vs e.g. boundary element methods)

3 Rooted in the modern variational theory of PDE

3 Can design structure-preserving discretisations

7 Algebraic convergence (vs exponential with spectral methods)

7 Can take more work per degree-of-freedom (vs e.g. finite differences)

3 The most popular approach used in science and industry
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Basic steps of the finite element method

Section 2

Basic steps of the finite element method
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Basic steps of the finite element method

We illustrate the essential steps of the finite element method with the
problem: for given f : Ω→ R, find u : Ω→ R such that

−∇2u := −∇ · ∇u = f in Ω,

u = 0 on ∂Ω.

For Ω ⊂ R2, this is

−
(
∂2u

∂x2
+
∂2u

∂y2

)
= f,

while for Ω ⊂ R3, this is

−
(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= f.
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Basic steps of the finite element method

We illustrate the essential steps of the finite element method with the
problem: for given f : Ω→ R, find u : Ω→ R such that

−∇2u := −∇ · ∇u = f in Ω,

u = 0 on ∂Ω.

The steps are:

I write as a variational problem over a function space V ;

I formulate over a finite-dimensional subspace Vh ⊂ V ;

I construct Vh + basis with a mesh of Ω;

I assemble and solve the resulting linear system of equations.
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Basic steps of the finite element method Variational formulation

We test the equation with a test function v and integrate:

−
∫

Ω
v∇2u dx =

∫
Ω
vf dx.

Just as two surfaces are the same if they look the same from all directions,
we demand the LHS and RHS match for “all” test functions (tbd).

We can now integrate by parts to shift derivatives onto v:

−
∫

Ω
v∇2u dx =

∫
Ω
∇v · ∇u dx−

∫
∂Ω
v∇u · n ds =

∫
Ω
vf dx.

Since we know u on the boundary, there’s no need to test there. Let’s fix
v = 0 on the boundary:∫

Ω
∇v · ∇u dx =

∫
Ω
vf dx.

This is the variational or weak formulation of the Poisson equation.
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Basic steps of the finite element method Variational formulation

Our problem is to find the trial function u ∈ V such that∫
Ω
∇v · ∇u dx =

∫
Ω
fv dx

for all test functions v ∈ V . What function space V should we look in?

We need

I u to have all first-order derivatives;

I the gradient of u to be square-integrable;

I u to satisfy u = 0 on the boundary.

The set of such functions is called H1
0 (Ω) =: V .

Key advantage of variational formulation

Classical formulation required u ∈ C2(Ω); we now only require u to have
first derivatives.
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Basic steps of the finite element method Discretisation

V is infinite-dimensional; it is too big to search in! So to compute we look
instead at finite-dimensional subspaces Vh ⊂ V . The Galerkin projection of
our problem onto Vh is: find uh ∈ Vh such that∫

Ω
∇vh · ∇uh dx =

∫
Ω
vhf dx

for all vh ∈ Vh. Here h represents the resolution of our discretisation,
i.e. the maximal diameter of an element in the mesh.

In this simple case the well-posedness of the discrete problem follows from
the continuous one for any Vh. Some discretisations will be convergent
(uh → u as h→ 0 in a suitable norm) and some will not. We want
discretisations that are well-posed and which converge quickly.
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Basic steps of the finite element method Constructing a finite element space

The finite element method is a way to construct a Vh (+ a basis) with
good approximation properties and convenient computational properties.
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Basic steps of the finite element method Constructing a finite element space

The finite element method is a way to construct a Vh (+ a basis) with
good approximation properties and convenient computational properties.

Key idea

Represent a function with a polynomial on each cell of the mesh.

. . . with a specified degree of continuity.

discont., degree = 0 cont., degree = 1 discont., degree = 1
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Basic steps of the finite element method Assembling and solving

Suppose we now have Vh = span{φ1, . . . , φN}. For brevity we write

a(u, v) :=

∫
Ω
∇v · ∇u dx, F (v) :=

∫
Ω
vf dx.

Let’s expand uh and vh in terms of our basis. First write

vh =
N∑
i=1

Viφi

Then our problem becomes:

a(uh, vh) = F (vh)

=⇒ a(uh,
∑
i

Viφi) = F (
∑
i

Viφi)

=⇒
∑
i

Via(uh, φi) =
∑
i

ViF (φi).

As this has to hold for all possible values of Vi, this is equivalent to

a(uh, φi) = F (φi) for i = 1, . . . , N.

Each test function φi will yield one row of the resulting matrix.
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Basic steps of the finite element method Assembling and solving

Now expand uh as

uh =

N∑
j=1

Ujφj

Substituting, we find

a

∑
j

Ujφj , φi

 = F (φi)

=⇒
∑
j

a(φj , φi)Uj = F (φi)

or in matrix notation
AU = b,

where
Aij = a(φj , φi), bi = F (φi).

Our numerical approximation is computed by solving this linear system.
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Basic steps of the finite element method Implementation

1 from firedrake import *

2

3 mesh = UnitSquareMesh(128, 128, quadrilateral=True)

4 V = FunctionSpace(mesh, "CG", 1)

5 (x, y) = SpatialCoordinate(mesh)

6

7 f = sin(10*pi*x) * sin(5*pi*y)

8 bc = DirichletBC(V, 0, "on_boundary")

9

10 u = Function(V)

11 v = TestFunction(V)

12 G = inner(grad(u), grad(v))*dx - inner(f, v)*dx

13

14 solve(G == 0, u, bc)

15 File("output/poisson.pvd").write(u)
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Basic steps of the finite element method Implementation
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Outlook

Section 3

Outlook
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Outlook Remarks

This sketch gives the core idea of how the finite element method works.
However, each of these steps gets more complicated for real problems:

I There are different variational formulations for the same PDE, with
different advantages and disadvantages.

I For most problems the subspace Vh must be chosen carefully to
achieve a convergent method; any old choice won’t work.

I Fast solvers for the resulting linear systems must exploit the PDE
structure.
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Outlook Open questions

The main questions we will address in the remainder of this course are:

I How do we formulate problems variationally? [Lec 2, 3, 5, 6, 12]

I Are the continuous and discrete variational problems well-posed? [Lec
4, 13, 14]

I What error is incurred in the approximation? [Lec 6, 7, 8, 11, 13]

I How do we implement the finite element method? [Lec 8, 9, 10]
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C6.4 Finite Element Methods for PDEs
Lecture 2: Lebesgue spaces

Patrick E. Farrell

University of Oxford
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Lecture 2: Lebesgue spaces

Our goal for the next three lectures is to prove the Lax–Milgram theorem
about the well-posedness of the linear variational problem

find u ∈ V such that a(u, v) = F (v) for all v ∈ V

where a : V × V → R is bilinear and F : V → R is linear.

When it applies, the Lax–Milgram theorem will prove the well-posedness of
both the continuous problem and its Galerkin approximation.

Moreover, we can bound the error in Galerkin approximation in terms of
the constants arising in the statement of Lax–Milgram.

Before getting to Lax–Milgram, we must first understand the Lebesgue
and Sobolev spaces V in which we look for solutions.
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Lebesgue spaces Banach spaces

Definition (normed vector space)

A normed vector space X is a vector space equipped with a norm
‖ · ‖ : X → R that satisfies the following properties:

I ‖x‖ ≥ 0, and ‖x‖ = 0 ⇐⇒ x = 0;

I ‖αx‖ = |α|‖x‖ for any scalar α ∈ R;

I ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition (Banach space)

A Banach space is a complete normed vector space.

Recall that completeness of a normed vector space X means that all
Cauchy sequences in X converge in X. A Cauchy sequence (xn) is one
where ∀ε > 0∃N > 0∀m,n > N ‖xn − xm‖ < ε.
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Lebesgue spaces Banach spaces

Example

Euclidean space Rn equipped with the 1-norm, the 2-norm, and the
supremum norm

‖x‖1 :=

n∑
i=1

|xi|, ‖x‖2 :=

(
n∑

i=1

|xi|2
)1/2

, ‖x‖∞ := max
i
|xi|

are all Banach spaces.

Example

The space of continuous functions from a domain Ω to R equipped with
the supremum norm

‖f‖∞ = sup{|f(x)| : x ∈ Ω}

is a Banach space.
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Lebesgue spaces Hilbert spaces

Definition (inner product space)

An inner product space X is a vector space equipped with an inner
product (·, ·) : X ×X → R that satisfies the following properties:

I (u, v) = (v, u);

I (αu+ βv,w) = α(u,w) + β(v, w) for α, β ∈ R;

I (u, u) ≥ 0 with (u, u) = 0 ⇐⇒ u = 0.

An inner product induces a norm ‖u‖ =
√

(u, u).

Definition (Hilbert space)

A Hilbert space is a complete inner product space.
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Lebesgue spaces Hilbert spaces

Example

The canonical example of a Hilbert space is Rn with inner product

(u, v)Rn = u>v.

Example

The space of square-integrable functions on a domain L2(Ω) with inner
product

(u, v)L2(Ω) =

∫
Ω
uv dx.
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Lebesgue spaces Hilbert spaces

Example

The space H1
0 (Ω) of square-integrable functions that are zero on the

boundary and that have square-integrable derivatives is a Hilbert space
with inner product

(u, v)H1
0 (Ω) =

∫
Ω
∇u · ∇v dx.

If (u, u)H1
0 (Ω) = 0 then u must be constant; but the only constant function

in H1
0 (Ω) is the zero function, because of the boundary conditions.
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Lebesgue spaces Hilbert spaces

Example
The space H1(Ω) = H(grad,Ω) of square-integrable functions that have square-integrable
gradient is a Hilbert space with inner product

(u, v)H1(Ω) =

∫
Ω
uv +∇u · ∇v dx.

Example
The space H(div,Ω) of square-integrable vector-valued functions that have square-integrable
divergence is a Hilbert space with inner product

(u, v)H(div,Ω) =

∫
Ω
u · v +∇ · u∇ · v dx.

Example
For Ω ⊂ R3, the space H(curl,Ω) of square-integrable vector-valued functions that have
square-integrable curl is a Hilbert space with inner product

(u, v)H(curl,Ω) =

∫
Ω
u · v +∇× u · ∇ × v dx.
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Lebesgue spaces Hilbert spaces

Theorem (Cauchy–Schwarz inequality)

For a Hilbert space X and any u, v ∈ X,

|(u, v)X | ≤ ‖u‖X‖v‖X .

Proof.

Let λ ∈ R. Then

0 ≤ ‖u+ λv‖2X = (u+ λv, u+ λv)X

= (u, u) + (u, λv) + (λv, u) + (λv, λv)

= ‖u‖2X + 2λ(u, v) + λ2‖v‖2X .

The right-hand side is a quadratic polynomial in λ with real coefficients,
and it is non-negative for all λ ∈ R. Therefore its discriminant is
non-positive; it can only be zero or negative. Thus,

|2(u, v)X |2 − 4‖u‖2X‖v‖2X ≤ 0.
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Dual of a Hilbert space

Section 2

Dual of a Hilbert space
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Dual of a Hilbert space

Definition (Linear functional on a Hilbert space)

Given a Hilbert space X, a linear functional j on X is a function
j : X → R that satisfies

j(αu+ βv) = αj(u) + βj(v).

Example

Integration over a fixed domain Ω, evaluation at a fixed point x, and
evaluation of the derivative at a point x in a fixed direction v are all
examples of linear functionals (when they are defined!).

Example

Drag over a wing, compliance of a structure, average global temperature.
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Dual of a Hilbert space

Definition (Bounded linear functional)

A bounded linear functional j : X → R is one for which there exists
L ∈ [0,∞) such that

|j(v)| ≤ L‖v‖X ∀ v ∈ X.

Lemma (Boundedness and continuity)

Boundedness is equivalent to continuity.

Proof.

See notes, Lemma 2.3.4.
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Dual of a Hilbert space

Example

Given any g ∈ X, we can construct

j(v) = (g, v)X .

This is bounded, since by Cauchy–Schwarz

|j(v)| = |(g, v)X | ≤ ‖g‖X‖v‖X .
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Dual of a Hilbert space

Definition (Dual of a Hilbert space)

The dual X∗ of a Hilbert space X is the space of all bounded linear
functionals on X. This has a natural norm induced by the norm on the
underlying space:

‖j‖X∗ := sup
‖v‖X=1

|j(v)| .

This gives the “tightest L” in the definition of boundedness.

Given a j ∈ X∗, denote the action of j on v by

〈j, v〉 := j(v).

This is called the duality pairing.
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Dual of a Hilbert space Riesz Representation Theorem

Theorem (Riesz Representation Theorem)

Any bounded linear functional j ∈ X∗ can be uniquely represented by a
g ∈ X, via

〈j, v〉 = (g, v) for all v ∈ X.

Moreover, the norms agree: ‖j‖X∗ = ‖g‖X .

This defines a canonical linear map, the Riesz map R : X∗ → X, that
maps j 7→ g. This Riesz map is an isometric isomorphism.

Example

Let X = L2(Ω) and let

j(v) = 〈j, v〉 =

∫
Ω
v dx.

Then its L2(Ω) Riesz representation is the constant function g(x) = 1.
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Lebesgue spaces

Section 3

Lebesgue spaces
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Lebesgue spaces

Definition (Lebesgue p-norm, p ∈ [1,∞))

Let p ∈ [1,∞). The Lp(Ω) norm is defined by

‖u‖Lp(Ω) =

(∫
Ω
|u|p dx

)1/p

.

Definition (Lebesgue p-norm, p =∞)

The L∞(Ω) norm is defined by

‖u‖L∞(Ω) = inf{C ≥ 0 : |u(x)| ≤ C almost everywhere}.

This is the essential supremum of |u|.
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Lebesgue spaces

Definition (Lebesgue space)

For p ∈ [1,∞], consider the definition

Lp(Ω) = {u : Ω→ R : ‖u‖Lp(Ω) <∞}.

These are Banach spaces for all p, a Hilbert space for p = 2.

Important remark

The Lebesgue integral ignores differences on a set of measure zero. Two
functions f and g that differ only on a set of measure zero will have
‖f − g‖Lp = 0. In order to fix this, we actually take elements of Lp to be
equivalence classes of functions that differ up to sets of measure zero.

Consequence

For f ∈ Lp(Ω), to evaluate f(x), we have to prove that there is a
continuous function in the equivalence class and evaluate that.
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Lebesgue spaces

Fix Ω ⊂ Rn to have finite measure.

Example

The function f(x) = 1 is in Lp(Ω) for all p:

‖1‖Lp(Ω) =

(∫
Ω

1p dx

)1/p

= |Ω|1/p <∞.

Example

Let Ω = (0, 1) and let
fq(x) = x−q.

Then fq ∈ Lp(Ω) ⇐⇒ q < 1/p. That is, 1
x 6∈ L

1(Ω), but 1
x0.999 ∈ L1(Ω),

and 1√
x
6∈ L2(Ω), but 1

x0.4999 ∈ L2(Ω), etc.

In other words, the larger the p, the slower the allowed rate of blow-up at
singularities. For L∞(Ω) no blow-up whatsoever is allowed.
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Lebesgue spaces

Theorem (Hölder’s inequality)

Let p, q ∈ [1,∞] such that
1

p
+

1

q
= 1.

The elements of such a pair are called Hölder conjugates. By convention
here, 1 and ∞ are conjugate.

If f ∈ Lp(Ω) and g ∈ Lq(Ω), then fg ∈ L1(Ω) and

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

Theorem (Inclusion of Lebesgue spaces)

Let Ω be bounded. Let 1 ≤ p < q ≤ ∞. If f ∈ Lq(Ω), then f ∈ Lp(Ω).

Proof.

See notes, Theorem 2.5.10.
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Lecture 3: Sobolev spaces

In the previous lecture, we studied Lebesgue spaces, which capture how
integrable a function is.

In this lecture, we now study Sobolev spaces, which also capture how
differentiable a function is. But first, we must generalise our notion of
taking a derivative.
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Weak derivatives Motivation

Definition (Classical/strong differentiability in one dimension)

f ′(x) := lim
h→0

f(x+ h)− f(x)

h
.

Remark

This is based on pointwise evaluation. But we’ve seen that pointwise
evaluation isn’t a native concept to Lebesgue functions. We can’t always
do it!
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Weak derivatives Motivation

Recall that the variational formulation of the Poisson equation requires
evaluating terms like ∫

Ω
∇uh · ∇vh dx.

How do we do this if uh is a C0 piecewise polynomial?

Answer

We will develop a sense of differentiation, called the weak derivative, built
on integration by parts.
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Weak derivatives Definition

To motivate the definition, first suppose f ∈ C1(a, b). Let φ be a
differentiable function that is zero on the boundary {a, b}. Then
integration by parts tells us that∫ b

a
f ′φ dx = −

∫ b

a
fφ′ dx,

i.e. we can swap the differentiation operator onto the test function φ. This
is how we will define the weak derivative f ′ in Lebesgue spaces.
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Weak derivatives Definition

Definition (Compact support in Ω)

A function φ ∈ C(Ω) has compact support if

supp(φ) = closure{x ∈ Ω : φ(x) 6= 0}

is compact (i.e. is bounded) and is a subset of the interior of Ω. In
particular, this means that φ vanishes on ∂Ω (and in a neighbourhood of
it).

Definition (Bump functions)

The set of bump functions C∞0 (Ω) is the set of C∞(Ω) functions that
have compact support in Ω.

Example

Ψ(x) =

{
exp

(
− 1

1−x2

)
if |x| < 1

0 otherwise

is in C∞0 (−2, 2).
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Weak derivatives Definition

What set of functions might have weak derivatives?

Definition (Locally integrable functions)

Given a domain Ω, the set of locally integrable functions is defined by

L1
loc(Ω) = {f : Ω→ R, f |K ∈ L

1(K) for all compact K ⊂ interior Ω}.

This set includes L1(Ω) and C0(Ω) as subsets.

P. E. Farrell (Oxford) Finite Element Methods 3 7 / 22



Weak derivatives Definition

Definition (Weak first derivative)

A function f ∈ L1
loc(Ω) has a weak ith partial derivative ∂f/∂xi if there

exists a function g ∈ L1
loc(Ω) such that∫

Ω
gφ dx = −

∫
Ω
f
∂φ

∂xi
dx for all φ ∈ C∞0 (Ω).

With this, we can define the weak gradient, curl, and divergence in the
obvious way (collect the relevant weak partial derivatives).

Theorem

Weak derivatives are unique, up to a set of measure zero.

From now on, whenever I take a derivative, I mean a weak derivative!
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Weak derivatives Definition

Example

Let Ω = (−1, 1) and take f(x) = |x|. Then it has a weak derivative f ′

given by

f ′ =

{
−1 x < 0

1 x > 0.
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Weak derivatives Definition

Example

Let Ω = (−1, 1) and take f(x) = |x|. Then it has a weak derivative f ′

given by

f ′ =

{
−1 x < 0

1 x > 0.

To verify this, let φ ∈ C∞0 (Ω). Then∫ 1

−1
f(x)φ′(x) dx =

∫ 0

−1
f(x)φ′(x) dx+

∫ 1

0
f(x)φ′(x) dx

= −
∫ 0

−1
(−1)φ(x) dx+ [fφ]0−1 −

∫ 1

0
(+1)φ(x) dx+ [fφ]10

= −
∫ 1

−1
f ′(x)φ(x) dx+

(
(fφ)(0−)− (fφ)(0+)

)
= −

∫ 1

−1
f ′(x)φ(x) dx.
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Weak derivatives Definition

Example

Let Ω = (−1, 1) and take f(x) = |x|. Then it has a weak derivative f ′

given by

f ′ =

{
−1 x < 0

1 x > 0.

More generally . . .

Any continuous piecewise-differentiable function is weakly differentiable,
because the boundary terms arising in integration by parts will cancel.

This is important because this is what we will use to approximate the
solutions of PDEs!

P. E. Farrell (Oxford) Finite Element Methods 3 9 / 22



Weak derivatives Definition

Example

A counterexample: take Ω = (−1, 1) and take f(x) = sign(x), i.e.

f(x) =


−1 x < 0

0 x = 0

1 x > 0.

This function has no weak derivative.

An informal proof: the only candidate f ′ would be f ′ ≡ 0, but the
discontinuity at x = 0 means that the extra terms arising from integration
by parts do not vanish.
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Weak derivatives Higher derivatives

To compactly define higher derivatives, we first need to introduce
multi-index notation.

Definition (multi-index notation)

Let Ω ⊂ Rn. A multi-index α is a tuple of n non-negative integers

α = (α1, . . . , αn), αi ∈ N+.

Given a multi-index α and φ ∈ C∞(Ω), define

∂αxφ = φ(α) = Dαφ =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

φ.

The length of α is the order of the derivative,

|α| =
n∑
i=1

αi.

P. E. Farrell (Oxford) Finite Element Methods 3 11 / 22



Weak derivatives Higher derivatives

Example

The multi-index (1, 0) corresponds to ∂/∂x1. The multi-index (0, 1)
corresponds to ∂/∂x2. A sum over |α| = 1 means to sum over all first
order derivatives.
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Weak derivatives Higher derivatives

Definition (Weak derivative)

Let Ω ⊂ Rn. We say that a given function f ∈ L1
loc(Ω) has a weak

derivative Dαf provided there exists a function g ∈ L1
loc(Ω) such that∫

Ω
gφ dx = (−1)|α|

∫
Ω
fφ(α) dx for all φ ∈ C∞0 (Ω).

P. E. Farrell (Oxford) Finite Element Methods 3 13 / 22



Sobolev spaces

Section 2

Sobolev spaces
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Sobolev spaces

Definition (Sobolev norm)

Let f ∈ L1
loc(Ω). Let k be a non-negative integer.

Suppose that the weak
derivatives Dαf exist for all |α| ≤ k. For p ∈ [1,∞), define the Sobolev
norm

‖f‖Wk
p (Ω) =

∑
|α|≤k

‖Dαf‖pLp(Ω)

1/p

.

In the case p =∞

‖f‖Wk
p (Ω) = max

|α|≤k
‖Dαf‖L∞(Ω).

Definition (Sobolev space)

Define the Sobolev space W k
p (Ω) as

W k
p (Ω) = {f ∈ L1

loc(Ω) : ‖f‖Wk
p (Ω) <∞}.
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Sobolev spaces

Theorem

The Sobolev space W k
p (Ω) is a Banach space.

Proof.

See theorem 1.3.2 of Brenner & Scott.

Theorem

The Sobolev spaces with p = 2 are Hilbert spaces. These are denoted by

Hk(Ω) = W k
2 (Ω).
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Sobolev spaces

Example

The space W 0
p (Ω) = Lp(Ω). That is, if we ask for no weak derivatives, we

just get the Lp(Ω) space back.

Example

Suppose l ≥ k. Then W l
p(Ω) ⊂W k

p (Ω); we’re just asking for fewer
derivatives.

Example

Suppose 1 ≤ p ≤ q ≤ ∞ and that Ω is bounded. Then W k
q (Ω) ⊂W k

p (Ω).

P. E. Farrell (Oxford) Finite Element Methods 3 17 / 22



Sobolev spaces Sobolev embeddings

There are other inclusions between Sobolev spaces that are less obvious.
These will be encoded in Sobolev’s inequality. However, in order for the
result to be true, we will need an additional regularity requirement on the
domain Ω.

Definition (Lipschitz domain, informal)

We say Ω is a Lipschitz domain, or has Lipschitz boundary, if ∂Ω is
everywhere locally the graph of a Lipschitz continuous function.

This regularity condition is important: without it, the Sobolev inequality is
not true. Henceforth, we assume that Ω is a Lipschitz domain.
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Sobolev spaces Sobolev embeddings

There are three numbers describing a Sobolev space:

I n, the dimension of the domain;

I k, the number of weak derivatives possessed;

I p, the integrability of the function and derivatives.

Sobolev’s inequality tells us that if you possess enough weak derivatives
that are integrable enough, then your function is continuous and bounded.

Theorem (Sobolev’s inequality)

Let p ∈ [1,∞). Suppose

k ≥ n when p = 1

k > n/p when p > 1.

Then there is a constant C such that for all u ∈W k
p (Ω),

‖u‖L∞(Ω) ≤ C‖u‖Wk
p (Ω),

and moreover there is a continuous function in the equivalence class of u.

P. E. Farrell (Oxford) Finite Element Methods 3 19 / 22



Sobolev spaces Sobolev embeddings

Example

For n = 1, the existence of a single weak derivative of any integrability is
enough to ensure continuity.

Example

For n = 2, we have W 1
1 (Ω) 6⊂ C(Ω), but W 2

1 (Ω) ⊂ C(Ω).

Example

For n = 3, we have W 2
1 (Ω) 6⊂ C(Ω), but W 3

1 (Ω) ⊂ C(Ω).

P. E. Farrell (Oxford) Finite Element Methods 3 20 / 22



Sobolev spaces Sobolev embeddings

Example

Let’s look at the continuity properties of the Hilbert spaces Hk(Ω),
i.e. p = 2. With p = 2, Sobolev’s inequality tells us that we need

k > n/2.

In one dimension,
H1(Ω) ⊂ C(Ω).

For n = 2, Sobolev’s inequality tells us we need k > 1, i.e. k ≥ 2, so in
two dimensions

H1(Ω) 6⊂ C(Ω), H2(Ω) ⊂ C(Ω).

For n = 3, Sobolev’s inequality tells us we need k > 1.5, so k ≥ 2 is again
sufficient.
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Reviewing the variational formulation of the Poisson equation

We are now in a position to see why the space

H1
0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}

is the “right” one for the variational formulation of the Poisson equation:
find u ∈ H1

0 (Ω) such that∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx

for all v ∈ H1
0 (Ω).

I We want v ∈ L2(Ω) and f ∈ L2(Ω) to ensure that the RHS is a
bounded linear functional of v.

I We want u|∂Ω = 0 to satisfy the strongly-imposed boundary
conditions.

I We need the first weak derivatives to exist to talk about ∇u and ∇v.

I We want u and v to have square-integrable weak derivatives, as this
guarantees a(u, v) <∞ (by Cauchy-Schwarz).
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In this course, we will see three main theorems regarding the
well-posedness of the linear variational problem: for F ∈ V ∗,

find u ∈ V such that a(u, v) = F (v) for all v ∈ V

of increasing generality:

I Riesz Representation Theorem: a bounded, coercive, symmetric

I Lax–Milgram Theorem: a bounded, coercive

I Babuška’s Theorem: a bounded, satisfies an inf-sup condition

In this lecture we will study the first two.
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I Babuška’s Theorem: a bounded, satisfies an inf-sup condition

In this lecture we will study the first two.

P. E. Farrell (Oxford) Finite Element Methods 4 2 / 23



In this course, we will see three main theorems regarding the
well-posedness of the linear variational problem: for F ∈ V ∗,

find u ∈ V such that a(u, v) = F (v) for all v ∈ V

of increasing generality:

I Riesz Representation Theorem: a bounded, coercive, symmetric

I Lax–Milgram Theorem: a bounded, coercive
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Definitions

Definition (Bounded bilinear form)

A bilinear form a : H ×H → R is said be to bounded if there exists
C ∈ [0,∞) such that

|a(v, w)| ≤ C‖v‖H‖w‖H for all v, w ∈ H.

As with linear functionals, this is equivalent to continuity.

The best constant C satisfying the definition is called the continuity
constant of a:

C := sup
v∈H
v 6=0

sup
w∈H
w 6=0

|a(v, w)|
‖v‖H‖w‖H

.
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Definitions

Definition (Coercive bilinear form)

A bilinear form a : H ×H → R is said be to coercive on V ⊂ H or
V -coercive if there exists α > 0 such that

a(v, v) ≥ α‖v‖2H for all v ∈ V.
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Definitions

Definition (Coercive bilinear form)

A bilinear form a : H ×H → R is said be to coercive on V ⊂ H or
V -coercive if there exists α > 0 such that

a(v, v) ≥ α‖v‖2H for all v ∈ V.

This is stronger than a being positive-definite (a(u, u) > 0 for u 6= 0).

Example

Consider the space H = `2(R), the space of square-summable sequences.
The form

a(x, y) =

∞∑
m=1

2−mxmym

is positive-definite but not coercive.
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Definitions

Definition (Coercive bilinear form)

A bilinear form a : H ×H → R is said be to coercive on V ⊂ H or
V -coercive if there exists α > 0 such that

a(v, v) ≥ α‖v‖2H for all v ∈ V.

As before, the best constant α satisfying the definition is called the
coercivity constant of a:

α := inf
u∈V
u6=0

a(u, u)

‖u‖2H
.
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Definitions

Note that we must have α ≤ C, as

α‖u‖2H ≤ a(u, u) ≤ C‖u‖2H .
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The symmetric case

Let’s assume for now that a is also symmetric.

Theorem

Let H be a Hilbert space, and suppose a : H ×H → R is a symmetric
bilinear form that is continuous on H and coercive on a closed subspace
V ⊂ H. Then (V, a(·, ·)) is a Hilbert space.

We must prove that a is an inner product on V , and that V is complete
with respect to the induced norm.
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The symmetric case

If 0 = a(v, v) ≥ α‖v‖2H ≥ 0, then v = 0. Clearly a(v, v) ≥ 0 for all v ∈ V .
Symmetry and linearity are assumed, so a(·, ·) is an inner product on V .

Denote
‖v‖a =

√
a(v, v).

It remains to show that (V, ‖ · ‖a) is complete.
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The symmetric case

Suppose that {vn} is a Cauchy sequence in (V, ‖ · ‖a), i.e.

∀ε > 0 ∃N > 0 ∀m,n > N ‖vn − vm‖a < ε.

Since ‖v‖H ≤ 1√
α
‖v‖a, ‖vn − vm‖H < ε/

√
α and {vn} is also Cauchy in

(H, ‖ · ‖H).

Since H is complete, there exists v ∈ H such that vn → v in the ‖ · ‖H
norm. Since V is closed in H, v ∈ V . Now observe that as a is bounded

‖v − vn‖a =
√
a(v − vn, v − vn) ≤

√
C‖v − vn‖2H =

√
C‖v − vn‖H

where C is the continuity constant for a. Hence vn → v in the ‖ · ‖a norm
too, so V is complete with respect to this norm.
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The symmetric case

Faster: note that coercivity and continuity guarantee that

α‖v‖2H ≤ ‖v‖2a ≤ C‖v‖2H for all v ∈ V.

So the norms are equivalent, and hence induce the same notion of
convergence and completeness.
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The symmetric case

The well-posedness of the symmetric coercive bounded linear variational
problem follows immediately.

Theorem

Let V be a closed subspace of a Hilbert space H. Let a : H ×H → R be
a symmetric continuous V -coercive bilinear form, and let F ∈ V ∗.
Consider the variational problem:

find u ∈ V such that a(u, v) = F (v) for all v ∈ V.

This problem has a unique stable solution.

Proof.

Our previous result implies that a(·, ·) is an inner product on V , and that
(V, a) is a Hilbert space. Apply the Riesz Representation Theorem, that
every bounded linear functional F ∈ V ∗ has a unique representative (in
this case u).
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The symmetric case

Proof.

Stability means that we can find a constant c such that

‖u‖V ≤ c‖F‖V ∗ .

By the Riesz representation theorem, the Riesz map is an isomorphism, so
this follows for the norms generated by the inner product with c = 1.
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The symmetric case

Example

The variational problem

find u ∈ H1
0 (Ω) such that

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx for all v ∈ H1

0 (Ω)

is well-posed, as H1
0 (Ω) is a closed subspace of H1(Ω), and we will show

later that the bilinear form is H1
0 (Ω)-coercive, symmetric, and bounded.
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The nonsymmetric case

Section 3

The nonsymmetric case
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The nonsymmetric case

Now let us drop the assumption that a(u, v) = a(v, u).

Theorem (Lax–Milgram)

Let V be a closed subspace of a Hilbert space H. Let a : H ×H → R be
a (not necessarily symmetric) continuous V -coercive bilinear form, and let
F ∈ V ∗. Consider the variational problem:

find u ∈ V such that a(u, v) = F (v) for all v ∈ V.

This problem has a unique stable solution.
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The nonsymmetric case

For the proof, it will be more convenient to treat the LVP as an equation
in the dual V ∗.

Lemma

Let a : V × V → R be linear in its second argument and bounded. For any
u ∈ V , define a functional via A : u 7→ Au

(Au)(v) := a(u, v) for all v ∈ V.

Then Au ∈ V ∗, i.e. A : V → V ∗. Furthermore, A is itself linear if a is
linear in its first argument.

Proof.

Linearity is straightforward. For boundedness (so that Au ∈ V ∗),

‖Au‖V ∗ = sup
v 6=0

|Au(v)|
‖v‖H

= sup
v 6=0

|a(u, v)|
‖v‖H

≤ C‖u‖H <∞.
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The nonsymmetric case

Thus, the variational problem

find u ∈ V such that a(u, v) = F (v) for all v ∈ V

is equivalent to

find u ∈ V such that 〈Au, v〉 = 〈F, v〉 for all v ∈ V.

And since equality of two dual objects means exactly that they have the
same output on all possible inputs, this is equivalent to

find u ∈ V such that Au = F,

where the equality is between dual objects, Au ∈ V ∗ and F ∈ V ∗.
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The nonsymmetric case

Example

In the case of the homogeneous Dirichlet Laplacian operator, we have
A : H1

0 (Ω)→
(
H1

0 (Ω)
)∗

. We could symbolically write A = −∇2 and
interpret

−∇2u = f

as an equation in the dual of H1
0 (Ω). This dual space is denoted

H−1(Ω) :=
(
H1

0 (Ω)
)∗

and we can regard the Laplacian as a map H1
0 (Ω)→ H−1(Ω).
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The nonsymmetric case

We know from the Riesz Representation Theorem that there is an
isometric isomorphism R : V ∗ → V from the dual of a Hilbert space V ∗

back to V . By composing these operators, we have the problem

find u ∈ V such that RAu = RF,

where the equality is between primal objects, RAu ∈ V and RF ∈ V .
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The nonsymmetric case

Proof strategy: we will define a map T : V → V whose fixed point is the
solution of our variational problem, and then show it is a contraction, and
invoke the Banach contraction mapping theorem.

Theorem (Contraction mapping theorem)

Given a nonempty Banach space V and a mapping T : V → V satisfying

‖Tv1 − Tv2‖ ≤M‖v1 − v2‖

for all v1, v2 ∈ V and fixed M , 0 ≤M < 1, there exists a unique u ∈ V
such that

u = Tu.

That is, a contraction T has a unique fixed point u.
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The nonsymmetric case

We now prove the Lax–Milgram Theorem.

Proof.

Cast the variational problem

find u ∈ V such that a(u, v) = F (v) for all v ∈ V

as the primal equality

find u ∈ V such that RAu = RF

as discussed. For a fixed ρ ∈ (0,∞), define the affine map T : V → V

Tv = v − ρ (RAv −RF ) .

If T is a contraction for some ρ, then there exists a unique fixed point
u ∈ V such that

Tu = u− ρ(RAu−RF ) = u,

i.e. that RAu = RF . We now show that such a ρ exists.
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The nonsymmetric case

Proof.

For any v1, v2 ∈ V , let v = v1 − v2. Then

‖Tv1 − Tv2‖2H = ‖v1 − v2 − ρ(RAv1 −RAv2)‖2H

= ‖v − ρ(RAv)‖2H (lin. of R, A)

= ‖v‖2H − 2ρ(RAv, v) + ρ2‖RAv‖2H (lin. of i. prod.)

= ‖v‖2H − 2ρAv(v) + ρ2Av(RAv) (definition of R)

= ‖v‖2H − 2ρa(v, v) + ρ2a(v,RAv) (definition of A)

≤ ‖v‖2H − 2ρα‖v‖2H + ρ2C‖v‖H‖RAv‖H(coerc. & cont.)

≤ (1− 2ρα+ ρ2C2)‖v‖2H (A cts, R isom.)

= (1− 2ρα+ ρ2C2)‖v1 − v2‖2H .
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The nonsymmetric case

Proof.

Thus, if we can find a ρ such that

1− 2ρα+ ρ2C2 < 1,

i.e. that
ρ(ρC2 − 2α) < 0,

then we are done. If we choose ρ ∈ (0, 2α/C2) then T is a contraction
and a unique solution exists.
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The nonsymmetric case

Proof.

It remains to show stability.

‖u‖2H ≤
1

α
a(u, u) =

1

α
F (u) ≤ 1

α
‖F‖V ∗‖u‖H ,

and so

‖u‖H ≤
1

α
‖F‖V ∗
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C6.4 Finite Element Methods for PDEs
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This lecture has three goals:

I Study the variational formulation of more problems;

I Look at how to prove well-posedness with Lax–Milgram;

I See some problems our current theory cannot handle.

P. E. Farrell (Oxford) Finite Element Methods 5 2 / 26



One-dimension problems Dirichlet-Neumann Laplacian

We consider the Poisson problem in one dimension with mixed boundary
conditions:

−u′′ = f, u(0) = 0, u′(1) = g.

Let’s investigate how we can use Lax–Milgram for this.

The solution can be determined from f via two integrations. First of all,
by integrating both sides from t to 1, we can write

u′(t) =

∫ 1

t
f(s) ds+ g,

and integrating again from 0 to x yields

u(x) =

∫ x

0

∫ 1

t
f(s) ds dt+ gx.

This shows that the equation is well-posed.
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One-dimension problems Dirichlet-Neumann Laplacian

Now consider a variational formulation. We define the space

V = {v ∈ H1(0, 1) : v(0) = 0}.

This makes sense, because in one dimension H1 functions are continuous.

Two kinds of boundary conditions:

I The Dirichlet condition u(0) = 0 is carried in the definition of the
space (strongly enforced).

I The Neumann condition u′(1) = g will appear in the variational
formulation (weakly enforced).
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One-dimension problems Dirichlet-Neumann Laplacian

Multiplying the equation by v ∈ V and integrating, we find∫ 1

0
−u′′v dx =

∫ 1

0
fv dx.

We next integrate by parts:∫ 1

0
u′v′ dx− u′(1)v(1) + u′(0)v(0) =

∫ 1

0
fv dx.

The surface integral term on the left disappears as v(0) = 0. On the right,
we know that u′(1) = g, and so we have∫ 1

0
u′v′ dx =

∫ 1

0
fv dx+ gv(1).

Thus, we have a linear variational problem with

a(u, v) =

∫ 1

0
u′v′ dx, F (v) =

∫ 1

0
fv dx+ gv(1).
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One-dimension problems Dirichlet-Neumann Laplacian

Theorem

The following bilinear form is coercive on V :

a(u, v) =

∫ 1

0
u′v′ dx.

Proof.

The norm on H1(0, 1) is

‖v‖2H1(0,1) = ‖v‖2L2(0,1) + ‖v′‖2L2(0,1).

We wish to show that there exists a constant α > 0 such that

a(v, v) ≥ α‖v‖2H1(0,1) for all v ∈ V.

Expanding definitions, we want to find an α such that

a(v, v) = ‖v′‖2L2(0,1) ≥ α
(
‖v‖2L2(0,1) + ‖v′‖2L2(0,1)

)
.
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One-dimension problems Dirichlet-Neumann Laplacian

Proof.

If we can prove that there exists an α′ > 0 such that

‖v′‖2L2(0,1) ≥ α
′‖v‖2L2(0,1)

⇐⇒ ‖v′‖2L2(0,1) + α′‖v′‖2L2(0,1) ≥ α
′
(
‖v‖2L2(0,1) + ‖v′‖2L2(0,1)

)
⇐⇒ ‖v′‖2L2(0,1) ≥

α′

α′ + 1
‖v‖2H1(0,1)

then we are done with α = α′

α′+1 .
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One-dimension problems Dirichlet-Neumann Laplacian

Proof.

We can write

v(t) =

∫ t

0
v′(x) dx =

∫ 1

0
v′(x)w′

t(x) dx = a(v, wt),

where the function wt ∈ V is defined by

wt(x) =

{
x 0 ≤ x ≤ t,
t x > t.

This function is not strongly differentiable, but has weak derivative

w′
t(x) =

{
1 0 ≤ x ≤ t,
0 x > t,

The function wt(x) ∈ V is the a-Riesz representation of the functional
j : v 7→ v(t).
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One-dimension problems Dirichlet-Neumann Laplacian

Proof.

We can invoke Cauchy–Schwarz on L2(0, 1) to get

|v(t)| = |a(v, wt)| ≤ ‖v′‖L2(0,1)‖w′
t‖L2(0,1) =

√
t‖v′‖L2(0,1),

since

‖w′
t‖L2(0,1) =

(∫ t

0
12 dx

)1/2

=
√
t.

Thus,

‖v‖2L2(0,1) =

∫ 1

0
v2(x) dx ≤

∫ 1

0
x‖v′‖2L2(0,1) dx =

1

2
‖v′‖2L2(0,1)

so in this case we can take α′ = 2 and thus α = 2
3 .
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One-dimension problems Dirichlet-Neumann Laplacian

Two remarks:

Remark

Note that if we consider a over the whole of H1(0, 1), it is not coercive:
v(x) ≡ 1 ∈ H1(0, 1) with a(v, v) = 0 but ‖v‖ > 0.

The boundary condition v(0) = 0 is essential to the coercivity.

Remark

Notice that the coercivity constant will depend on the length of the
domain: for an interval of length L, α′ = 2

L2 and α = 2
L2+2

.
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One-dimension problems Dirichlet-Neumann Laplacian

Theorem

The following bilinear form is continuous:

a(u, v) =

∫ 1

0
u′v′ dx.

Proof.

|a(u, v)| ≤ ‖u′‖L2(0,1)‖v′‖L2(0,1)

≤
(
‖u‖2L2(0,1) + ‖u′‖2L2(0,1)

) 1
2
(
‖v‖2L2(0,1) + ‖v′‖2L2(0,1)

) 1
2

= ‖u‖H1(0,1)‖v‖H1(0,1).

That is, the bilinear form is continuous with C = 1.

We can thus apply Lax–Milgram to problems with this bilinear form.
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One-dimension problems Advection-diffusion-reaction

Now consider a nonsymmetric problem: for f ∈ L2(0, 1), solve

−u′′ + u′ + u = f, u′(0) = 0 = u′(1).

Since we have no Dirichlet conditions, we set V = H1(0, 1).

Testing against v ∈ V and integrating by parts, we find∫ 1

0
u′v′ dx+

∫ 1

0
u′v dx+

∫ 1

0
uv dx =

∫ 1

0
fv dx.

Thus, our standard variational problem has

a(u, v) =

∫ 1

0
u′v′ + u′v + uv dx, F (v) =

∫ 1

0
fv dx.
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One-dimension problems Advection-diffusion-reaction

To prove continuity, observe that

|a(u, v)| ≤ |(u, v)H1(0,1)|+
∣∣∣∣∫ 1

0
u′v dx

∣∣∣∣
≤ ‖u‖H1(0,1)‖v‖H1(0,1) + ‖u′‖L2(0,1)‖v‖L2(0,1)

≤ 2‖u‖H1(0,1)‖v‖H1(0,1)

so we can take our continuity constant C = 2.

To prove coercivity, observe that

a(v, v) =

∫ 1

0
v′

2
+ v′v + v2 dx

=
1

2

∫ 1

0
(v′

2
+ v2) dx+

1

2

∫ 1

0
(v′ + v)2 dx

≥ 1

2
‖v‖2H1(0,1).
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Higher dimensions

Section 2

Higher dimensions
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Higher dimensions Dirichlet-Neumann Laplacian

Break up ∂Ω into disjoint ΓD and ΓN . Consider

−∇2u = f in Ω,

u = 0 on ΓD,

∇u · n = g on ΓN .

Define the space

V = {v ∈ H1(Ω) : v|ΓD
= 0}.

Multiplying by v ∈ V , integrating and integrating by parts, we get∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx+

∫
∂Ω
∇u · nv ds,

=

∫
Ω
fv dx+

∫
ΓN

gv ds.
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Higher dimensions Dirichlet-Neumann Laplacian

The continuity proof works as in one dimension. For coercivity, we need a
result from functional analysis.

Theorem (Poincaré–Friedrichs inequality)

Let Ω be a bounded Lipschitz domain, and suppose ΓD ⊂ ∂Ω is closed
and has nonzero measure. Let

V = {v ∈ H1(Ω) : v|ΓD
= 0}.

Then there is a constant K ∈ R depending only on Ω and ΓD such that

‖u‖2L2(Ω) =

∫
Ω
u2 dx ≤ K

∫
Ω
|∇u|2 dx = K‖∇u‖2L2(Ω)

for all u ∈ V . The constant K(Ω,ΓD) is called the Poincaré constant for
the domain and boundary.
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Higher dimensions Dirichlet-Neumann Laplacian

Write

|u|2H1(Ω) :=

∫
Ω
|∇u|2 dx = ‖∇u‖2L2(Ω).

In general this is a seminorm: |u|H1(Ω) = 0 6=⇒ u = 0.

On
V = {v ∈ H1(Ω) : v|ΓD

= 0},

manipulating the Poincaré–Friedrichs inequality yields

1

K + 1
‖u‖2H1(Ω) ≤ |u|

2
H1(Ω) ≤ ‖u‖

2
H1(Ω).

So if you have Dirichlet conditions somewhere then |u|H1(Ω) is an
equivalent norm to ‖u‖H1(Ω).

Remark

If Ω is contained within an n-dimensional cube of side L, then L provides
a (possibly non-optimal) Poincaré constant. (Braess, 2007)
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P. E. Farrell (Oxford) Finite Element Methods 5 17 / 26



Higher dimensions Dirichlet-Neumann Laplacian

Write

|u|2H1(Ω) :=

∫
Ω
|∇u|2 dx = ‖∇u‖2L2(Ω).

In general this is a seminorm: |u|H1(Ω) = 0 6=⇒ u = 0.

On
V = {v ∈ H1(Ω) : v|ΓD

= 0},
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Higher dimensions Dirichlet-Neumann Laplacian

What happens with inhomogeneous Dirichlet conditions?

−∇2u = f in Ω

u = h on ΓD

∇u · n = g on ΓN .

Consider

û = u− h.
Then û satisfies

−∇2û = f +∇2h in Ω

û = 0 on ΓD

∇û · n = g −∇h · n on ΓN ,

or variationally

a(û, v) = a(u− h, v) = a(u, v)− a(h, v) = F (v)− a(h, v)

for all v ∈ V .
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Higher dimensions Pure Neumann problem

What about pure Neumann conditions?

−∇2u = f in Ω

∇u · n = g on ∂Ω.

If u satisfies the equation, so does u+ c, c ∈ R!

If this is to have any solution, f and g must be compatible:∫
Ω
f dx =

∫
Ω
−∇2u dx =

∫
Ω
∇u · ∇1 dx−

∫
∂Ω
∇u · n ds = −

∫
∂Ω
g ds.
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Higher dimensions Pure Neumann problem

If we take the variational formulation with V = H1(Ω), we get∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx+

∫
∂Ω
gv ds,

We cannot apply Lax–Milgram because the bilinear form is not V -coercive.

To eliminate the nullspace of constants, consider the solution space that is
L2-orthogonal to it:

V = {v ∈ H1(Ω) :

∫
Ω
v dx = 0}

The bilinear form is coercive over this space (Poincaré–Neumann).
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Higher dimensions Other boundary conditions

Let us briefly consider two other kinds of boundary conditions. Robin
conditions relate ∇u · n and u:

−∇2u = f in Ω,

∇u · n+ βu = g on ∂Ω.

Taking V = H1(Ω), this yields the variational problem∫
Ω
∇u · ∇v dx+ β

∫
∂Ω
uv ds =

∫
Ω
fv dx+

∫
∂Ω
gv ds.

Proving the properties required for Lax–Milgram requires knowledge of
trace theorems, which we haven’t discussed.
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Higher dimensions Other boundary conditions

Before moving on, let’s consider an interesting physical model.

In 1879, Josef Stefan realised that the power radiated from the surface of
a black body at temperature u is proportional to the difference of the
fourth powers between u and the ambient temperature u0:

−∇2u = f in Ω,

∇u · n = c(u4 − u4
0) on ∂Ω.

Multiplying by a test function and integrating by parts, we get: find
u ∈ H1(Ω) such that∫

Ω
∇u · ∇v dx− c

∫
∂Ω

(u4 − u4
0)v ds =

∫
Ω
fv dx

for all v ∈ H1(Ω).

Problem is no longer a linear variational problem! To be discussed.
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Higher dimensions Mixed Poisson

At this point, I may have given you the impression that there’s only one
variational formulation for a problem. This is not true, and different
formulations have advantages and disadvantages.

Suppose we want to know the flux in the Poisson equation accurately. We
can solve the mixed formulation: find σ : Ω→ Rn, u : Ω→ R such that

σ = −∇u in Ω,

∇ · σ = f in Ω,

u = 0 on ∂Ω.

Solving this formulation will give an accurate approximation of the flux,
and allow for the easy implementation of more complicated constitutive
laws.
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Higher dimensions Mixed Poisson

σ = −∇u in Ω, ∇ · σ = f in Ω.

Let’s multiply the first equation by a vector-valued test function v, and the
second by a scalar-valued function w:∫

Ω
σ · v dx+

∫
Ω
∇u · v = 0,∫

Ω
∇ · σw dx =

∫
Ω
fw dx.

Since σ needs to have a divergence, and we want v and σ to come from
the same space, let’s integrate by parts in the first equation. For symmetry
I’ll negate the second equation:∫

Ω
σ · v dx−

∫
Ω
u∇ · v +

∫
∂Ω
uv · n ds = 0,

−
∫

Ω
∇ · σw dx = −

∫
Ω
fw dx.

Impose the Dirichlet condition weakly!
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Ω
σ · v dx−

∫
Ω
u∇ · v +

∫
∂Ω
uv · n ds = 0,

−
∫

Ω
∇ · σw dx = −

∫
Ω
fw dx.

Impose the Dirichlet condition weakly!
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Higher dimensions Mixed Poisson

What function spaces do we need to make sense of∫
Ω
σ · v dx−

∫
Ω
u∇ · v = 0,

−
∫

Ω
∇ · σw dx = −

∫
Ω
fw dx.

We don’t need any derivatives on u or w, so u ∈ L2(Ω).

For σ and v, we need σ ∈ L2(Ω;Rn) and for ∇ · σ ∈ L2(Ω). This is the
space H(div,Ω):

H(div,Ω) = {σ ∈ L2(Ω;Rn) : ∇ · σ ∈ L2(Ω)}.

Its inner product is

(u, v)H(div,Ω) =

∫
Ω
u · v +∇ · u∇ · v dx.
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Higher dimensions Mixed Poisson

A nice property of variational problems is that we can add the two
equations together. The problem is the same as:

Find (σ, u) ∈ H(div,Ω)× L2(Ω) such that

B(σ, u; v, w) :=

∫
Ω
σ · v dx−

∫
Ω
∇ · vu−

∫
Ω
∇ · σw dx = −

∫
Ω
fw dx

for all (v, w) ∈ H(div,Ω)× L2(Ω).

Lax–Milgram certainly won’t apply:

B(0, u; 0, u) = 0 for all u ∈ L2(Ω).

We will study the well-posedness of this problem with a more general
theory later.
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C6.4 Finite Element Methods for PDEs
Lecture 6: Differentiation and energy minimisation
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In this lecture we will see a fundamental connection between symmetric
linear variational problems:

find u ∈ V such that a(u, v) = F (v) for all v ∈ V,

and energy minimisation:

u = argmin
v∈V

J(v).

This is one reason why the variational formulation is so useful, and will
also lead to an insight into Galerkin approximation.
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Differentiation between Banach spaces

We use derivatives of a function at a point u to give us a local model of
how it behaves in the neighbourhood of u. We want to do the same in
Banach spaces.

Given a function J : V →W , V , W Banach spaces, how can we
differentiate J? As a concrete example, think of J : H1

0 (Ω)→ R defined
by

J(u) =
1

2

∫
Ω
|∇u|2 dx−

∫
Ω
fu dx.

How will this functional change value if we make a small perturbation v to
the input argument?

We will introduce progressively stronger notions of differentiation for this.
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Differentiation between Banach spaces

Definition (Directional derivative)

Let J : V →W , where V and W are Banach spaces. The directional
derivative of J evaluated at u ∈ V in the direction v ∈ V is

J ′(u; v) = lim
ε→0+

J(u+ εv)− J(u)

ε
,

if the limit exists.

Definition (Directionally differentiable)

If the directional derivative of J at u in the direction v exists for all v,
then J is directionally differentiable at u.
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Differentiation between Banach spaces

We will want more than just all directional derivatives exist. We will want

I that the derivative is linear and bounded in the perturbation direction
(Gâteaux);

I that the derivative is a good approximation of the function nearby
(Fréchet).

Definition (Gâteaux differentiable)

If J is directionally differentiable at u, and there exists a bounded linear
map J ′(u) : V →W such that

J ′(u; v) = J ′(u)v,

then J is Gâteaux differentiable at u with derivative J ′(u).

Example

If W = R, then J ′(u) ∈ V ∗ for each u ∈ V .
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Differentiation between Banach spaces

Definition (Fréchet differentiable)

Suppose J is Gâteaux differentiable at a point u ∈ V and that the
derivative J ′ satisfies

lim
v→0

‖J(u+ v)− J(u)− J ′(u)v‖
‖v‖

= 0 for all v ∈ V.

Then J is Fréchet differentiable at u.

This allows us to approximate what J does near u.
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Differentiation between Banach spaces

With our example

J(u) =
1

2

∫
Ω
|∇u|2 dx−

∫
Ω
fu dx,

let’s calculate J ′(u; v) for a given u, v ∈ H1
0 (Ω).

J ′(u; v) = lim
ε→0+

1

2ε

∫
Ω
|∇u+ ε∇v|2 − |∇u|2 dx− 1

ε

∫
Ω
f(u+ εv − u) dx

= lim
ε→0+

1

2ε

∫
Ω
|∇u|2 + 2ε∇u · ∇v + ε2|∇v|2 − |∇u|2 dx−

∫
Ω
fv dx

= lim
ε→0+

1

2ε

∫
Ω

2ε∇u · ∇v + ε2|∇v|2 dx−
∫

Ω
fv dx

=

∫
Ω
∇u · ∇v dx−

∫
Ω
fv dx.

So if J ′(u; v) = 0 for all v ∈ H1
0 (Ω), u satisfies the weak formulation of

the Poisson equation!
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Symmetric coercive problems and energy

For symmetric coercive problems, there is a strong relationship between
LVPs and minimisation.

Theorem (Energy minimisation)

Suppose a is symmetric, coercive, and bounded, and F ∈ V ∗. Let u be
the unique solution to

find u ∈ V such that a(u, v) = F (v) for all v ∈ V.

Then u is the unique solution to

u = argmin
v∈V

J(v) :=
1

2
a(v, v)− F (v).
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Symmetric coercive problems and energy

Proof.

Let v ∈ V . We want to show J(v) ≥ J(u). Calculating,

J(v)− J(u) =
1

2
a(v, v)− F (v)− 1

2
a(u, u) + F (u)

=
1

2
a(v, v)− 1

2
a(u, u)− F (v − u)

=
1

2
a(v, v)− 1

2
a(u, u)− a(u, v − u)

=
1

2
a(v − u, v − u).

Because a is coercive,

J(v)− J(u) ≥ α

2
‖v − u‖2V ≥ 0 for all v ∈ V.
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Symmetric coercive problems and energy

The minimiser u is unique, because if ũ also minimises J , then

J(ũ)− J(u) = 0 ≥ α

2
‖ũ− u‖2V ≥ 0

and hence ũ = u.
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Symmetric coercive problems and energy

What about the other way around?

Theorem

Let u ∈ V be a minimiser of J : V → R. Then u is a solution of

J ′(u; v) = 0 for all v ∈ V.

Proof.

Since u is a minimiser of J , J(u+ εv) ≥ J(u) for all ε > 0, v ∈ V . This
implies

J(u+ εv)− J(u)

ε
≥ 0.

Taking the limit as ε→ 0+ yields J ′(u; v) ≥ 0.

Replacing v with −v, we have J ′(u;−v) = −J ′(u; v) ≥ 0,
i.e. J ′(u; v) ≤ 0. So J ′(u; v) = 0.
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Symmetric coercive problems and energy

The variational problem

find u ∈ V such that J ′(u; v) = 0 for all v ∈ V

might be linear, nonlinear, coercive, or not! In general it describes
stationary points of J , not just minimisers.

Only symmetric problems can arise from energy minimisation. If a
variational problem is nonsymmetric it doesn’t enjoy this structure.
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Section 3

Galerkin approximation
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Galerkin approximation

We saw in Lecture 1 that a finite element approximation is a Galerkin
approximation: given a closed subspace Vh ⊂ V , we approximate the
solution of

find u ∈ V such that a(u, v) = F (v) for all v ∈ V,

with the Galerkin approximation over Vh

find uh ∈ Vh such that a(uh, vh) = F (vh) for all vh ∈ Vh.
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Galerkin approximation

Assume that a is symmetric, coercive, and bounded. Then the variational
problems can be restated as (for J(v) := 1

2a(v, v)− F (v)):

u = argmin
v∈V

J(v),

and
uh = argmin

vh∈Vh

J(vh).

So
J(u) ≤ J(uh) ≤ J(vh) for all vh ∈ Vh!

The finite element method gives you the best approximation in this
energetic sense, when the problem has a nice quadratic energy functional.

P. E. Farrell (Oxford) Finite Element Methods 6 15 / 24



Galerkin approximation

Assume that a is symmetric, coercive, and bounded. Then the variational
problems can be restated as (for J(v) := 1

2a(v, v)− F (v)):

u = argmin
v∈V

J(v),

and
uh = argmin

vh∈Vh

J(vh).

So
J(u) ≤ J(uh) ≤ J(vh) for all vh ∈ Vh!

The finite element method gives you the best approximation in this
energetic sense, when the problem has a nice quadratic energy functional.

P. E. Farrell (Oxford) Finite Element Methods 6 15 / 24



Galerkin approximation

Assume that a is symmetric, coercive, and bounded. Then the variational
problems can be restated as (for J(v) := 1

2a(v, v)− F (v)):

u = argmin
v∈V

J(v),

and
uh = argmin

vh∈Vh

J(vh).

So
J(u) ≤ J(uh) ≤ J(vh) for all vh ∈ Vh!

The finite element method gives you the best approximation in this
energetic sense, when the problem has a nice quadratic energy functional.

P. E. Farrell (Oxford) Finite Element Methods 6 15 / 24



Galerkin approximation

Assume that a is symmetric, coercive, and bounded. Then the variational
problems can be restated as (for J(v) := 1

2a(v, v)− F (v)):

u = argmin
v∈V

J(v),

and
uh = argmin

vh∈Vh

J(vh).

So
J(u) ≤ J(uh) ≤ J(vh) for all vh ∈ Vh!

The finite element method gives you the best approximation in this
energetic sense, when the problem has a nice quadratic energy functional.

P. E. Farrell (Oxford) Finite Element Methods 6 15 / 24



Examples Helmholtz

Let’s set
V = {v ∈ H1(Ω) : v|ΓD

= 0}

and look for minimisers of

J(u) =
1

2

∫
Ω
∇u · ∇u dx+

1

2

∫
Ω
u2 dx−

∫
Ω
fu dx−

∫
ΓN

gu ds.

Calculating, we find

J ′(u; v) =

∫
Ω
∇u · ∇v dx+

∫
Ω
uv dx−

∫
Ω
fv dx−

∫
ΓN

gv ds

Setting J ′(u; v) = 0, we have a linear variational problem with

a(u, v) =

∫
Ω
∇u · ∇v dx+

∫
Ω
uv dx, F (v) =

∫
Ω
fv dx+

∫
ΓN

gv ds.
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Examples Helmholtz

This is called the (good) Helmholtz problem:

a(u, v) =

∫
Ω
∇u · ∇v dx+

∫
Ω
uv dx, F (v) =

∫
Ω
fv dx+

∫
ΓN

gv ds.

In strong form, we have

−∇2u+ u = f in Ω,

u = 0 on ΓD,

∇u · n = g on ΓN .
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Examples Helmholtz

Let’s consider Lax–Milgram. Here a(u, v) = (u, v)H1(Ω), so the form is
continuous by Cauchy–Schwarz with C = 1.

Similarly, as
a(v, v) = (v, v)H1(Ω) = ‖v‖2H1(Ω),

the problem is coercive with α = 1.
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Examples Helmholtz

Let’s look at how to compute minimisers of this Helmholtz problem.

1 from firedrake import *

2

3 mesh = UnitSquareMesh(128, 128, quadrilateral=True)

4 (left, right) = (1, 2)

5 V = FunctionSpace(mesh, "CG", 1)

6 (x, y) = SpatialCoordinate(mesh)

7

8 f = Constant(1), g = Constant(0)

9 bc = DirichletBC(V, 0, (left, right))

10

11 u = Function(V)

12

13 J = (0.5 * inner(grad(u), grad(u))*dx + 0.5 * inner(u, u) * dx

14 - inner(f, u)*dx - inner(g, u)*ds)

15 G = derivative(J, u, TestFunction(V))

16

17 solve(G == 0, u, bc)
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Examples Linear elasticity

By far the most important problem of this form is the equations of linear
elasticity. The finite element method was invented by engineers looking to
solve linear elasticity; its mathematical foundations and generalisations
came much later.

Let Ω ⊂ Rn be an open bounded Lipschitz domain; its closure sΩ is
referred to as the reference configuration. We seek to characterise its
shape upon loading via a mapping φ : sΩ→ Rn via

Ω̃ = φ(sΩ).

It is useful to write the deformation φ as the sum of the identity map plus
a displacement:

φ(x) = x+ u(x),

where u(x) : sΩ→ Rn.
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Examples Linear elasticity

For an isotropic homogeneous body, the displacement u : sΩ→ Rn

minimises the potential energy

J(u) =
1

2

∫
Ω

2µε(u) : ε(u) + λ(∇ · u)2 dx−
∫

Ω
f · u dx−

∫
ΓN

g · u ds.

Here f is the body loading (e.g. gravity), g is the surface traction, and

ε(u) =
1

2

(
∇u+ (∇u)>

)
,

i.e. the symmetric part of the gradient (Jacobian) ∇u : Ω→ Rn×n of the
displacement. The parameters µ, λ > 0 are material-dependent.

This yields a linear variational problem with

a(u, v) =

∫
Ω

2µε(u) : ε(v)+λ∇·u∇·v dx, F (v) =

∫
Ω
f ·v dx+

∫
ΓN

g·v ds.
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Examples Linear elasticity

In strong form, we have

−2µ∇ · ε(u)− λ∇∇ · u = f in Ω,

u = 0 on ΓD,

2µε(u) · n+ λ (tr ε(u))n = g on ΓN .

The bilinear form is continuous and coercive. In n dimensions, the
continuity constant is

C = 2µ+ nλ.

Coercivity is guaranteed by Korn’s lemma; if ΓD = ∂Ω, the coercivity
constant is

α = µ.
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Examples Linear elasticity

1 from firedrake import *

2

3 mesh = BoxMesh(30, 10, 10, 10, 1, 1)

4 V = VectorFunctionSpace(mesh, "CG", 1)

5

6 g = Constant((0, 0, -5e7))

7 bc = DirichletBC(V, 0, 1)

8

9 u = Function(V)

10 (mu, lam) = (27.4e9, 64.0e9)

11

12 J = (0.5 * 2*mu * inner(sym(grad(u)), sym(grad(u)))*dx

13 + 0.5 * lam * inner(div(u), div(u)) * dx

14 - inner(g, u)*ds(2))

15 G = derivative(J, u, TestFunction(V))

16

17 solve(G == 0, u, bc)
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Examples Linear elasticity
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C6.4 Finite Element Methods for PDEs
Lecture 7: Galerkin approximation

Patrick E. Farrell

University of Oxford
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Given a linear variational problem

find u ∈ V such that a(u, v) = F (v) for all v ∈ V,

we form its Galerkin approximation over a closed subspace Vh ⊂ V

find uh ∈ Vh such that a(uh, vh) = F (vh) for all vh ∈ Vh.

We first consider its approximation properties over arbitrary subspaces Vh,
then in subsequent lectures consider Vh constructed via finite elements.
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Elementary properties

Corollary

Let a and F satisfy the hypothesis of the Lax–Milgram Theorem. Then
the Galerkin approximation is well-posed for any closed subspace Vh ⊂ V .

Proof.

As Vh ⊂ V , a : Vh × Vh → R is bounded and coercive on Vh, with the
same continuity and coercivity constants. F : Vh → R is linear and
bounded. Thus, by Lax–Milgram, the variational problem defining the
Galerkin approximation is well-posed.

For coercive problems, well-posedness is inherited. This is not true for
noncoercive problems. This makes discretising noncoercive problems much
harder.
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Elementary properties

Once we choose a basis {φi} of Vh, the linear system is

Ax = b,

where
uh =

∑
i

xiφi, bi = F (φi), Aji = a(φi, φj).

The linear system we must solve for our Galerkin approximation inherits
useful properties of the underlying problem.

If a is symmetric, so is A:

Aji = a(φi, φj) = a(φj , φi) = Aij .

If a is coercive (hence positive-definite), so is A:

c>Ac = a

(∑
i

ciφi,
∑
i

ciφi

)
≥ 0.
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Galerkin orthogonality

We know that the solution u satisfies

a(u, v) = F (v) for all v ∈ V,

and thus in particular

a(u, vh) = F (vh) for all vh ∈ Vh ⊂ V.

The Galerkin approximation uh ∈ Vh satisfies

a(uh, vh) = F (vh) for all vh ∈ Vh ⊂ V.

Subtracting, we find

a(u− uh, vh) = 0 for all vh ∈ Vh.

This is called Galerkin orthogonality.
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Quasi-optimality

Let’s assume that a is coercive and bounded, but not symmetric.

Lemma (Céa’s Lemma)

The Galerkin approximation uh ∈ Vh to u ∈ V is quasi-optimal, in that it
satisfies

‖u− uh‖V ≤
C

α
min
vh∈Vh

‖u− vh‖V .

Proof.

For any vh ∈ Vh,

α‖u− uh‖2V ≤ a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u− uh, vh − uh)

= a(u− uh, u− vh)

≤ C‖u− uh‖V ‖u− vh‖V .

Dividing by α and minimising over vh ∈ V , we obtain the result.
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Lemma (Céa’s Lemma)

The Galerkin approximation uh ∈ Vh to u ∈ V is quasi-optimal, in that it
satisfies

‖u− uh‖V ≤
C

α
min
vh∈Vh

‖u− vh‖V .

Proof.

For any vh ∈ Vh,

α‖u− uh‖2V ≤ a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u− uh, vh − uh)

= a(u− uh, u− vh)

≤ C‖u− uh‖V ‖u− vh‖V .

Dividing by α and minimising over vh ∈ V , we obtain the result.

P. E. Farrell (Oxford) Finite Element Methods 7 6 / 18



Quasi-optimality

Let’s assume that a is coercive and bounded, but not symmetric.
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Quasi-optimality

Remark

This quasi-optimality result relates (the error in the PDE approximation)
with (the approximating power of the space Vh). This decouples the error
analysis from the specific PDE and turns the focus to constructing Vh with
good approximation properties.

This leads to the question: given u ∈ V , what is

min
vh∈Vh

‖u− vh‖V ?

In the finite element context, the answer will depend on the smoothness of
u, the mesh size h, and the polynomial degree p.

Remark

The ratio C/α is crucial. If C/α = 5, things are fine. But if C/α = 1000,
our discretisation won’t be very useful.
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Optimality in energy norm

Now let’s also assume that a is symmetric.

Recall that a defines a norm ‖v‖a :=
√
a(v, v) on V , with

α‖v‖2V ≤ ‖v‖2a ≤ C‖v‖2V ,

where the continuity and coercivity constants are measured in the V norm.

When we measure the continuity and coercivity constants in the energy
norm, we get that C = 1 (by Cauchy–Schwarz) and α = 1 (by definition).
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Optimality in energy norm

Apply Céa’s Lemma in the energy norm:

‖u− uh‖a ≤
C

α
min
vh∈Vh

‖u− vh‖a

= min
vh∈Vh

‖u− vh‖a.

Since uh ∈ Vh, we must have equality, and thus the error is optimal in the
norm induced by the problem:

‖u− uh‖a = min
vh∈Vh

‖u− vh‖a.

The Galerkin approximation uh is the projection of u onto Vh in the
a-inner product!
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Optimality in energy norm

What if we want to measure our error for a symmetric problem in the
V -norm?

Using the equivalences

α‖v‖2V ≤ ‖v‖2a ≤ C‖v‖2V ,

we have

‖u− uh‖V ≤
1√
α
‖u− uh‖a

=
1√
α

min
vh∈Vh

‖u− vh‖a

≤
√
C

α
min
vh∈Vh

‖u− vh‖V

so we improve the constant of quasi-optimality by a square root!
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Linear elasticity: the nearly incompressible case
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Linear elasticity: the nearly incompressible case
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Linear elasticity: the nearly incompressible case

Let’s consider linear elasticity again for a problem on Ω ⊂ Rn. We seek

u = argmin
v∈[H1

0 (Ω)]n

1

2

∫
Ω

2µε(u) : ε(u) + λ(∇ · u)2 dx−
∫

Ω
f · u dx.

When engineers implemented the finite element method for this problem,
they observed something puzzling: it worked well for steel and concrete,
but did not work for rubber. Why not?

We claimed in Lecture 6 that its coercivity and continuity constants are

C = 2µ+ nλ, α = µ.

Let’s investigate the practical consequences of this.
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Linear elasticity: the nearly incompressible case

Consider the following different materials for n = 3:

Material µ λ C α
√
C/α

steel 75 112 486 75 2.55

concrete 18 27 117 18 2.55
rubber A 0.018 0.9 2.75 0.018 12.2
rubber B 0.018 9.0 27.5 0.018 38.7
rubber C 0.018 90 275 0.018 122.4

Table: Lamé parameters for different materials. All units for µ, λ,C, α are
multiplied by 109.

As λ→∞, the Galerkin approximation breaks down. This is because
C = C(µ, λ), while α = α(µ). This is called locking.

The parameter λ penalises ‖∇ · u‖2L2(Ω); as λ→∞, the displacement is
not allowed to change the volume. The different rubber samples are
becoming nearly incompressible.
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Linear elasticity: the nearly incompressible case

Note that this problem of locking is not specific to any particular
discretisation; it is that the formulation of the problem is becoming
ill-conditioned.

What can we do? Use a different formulation!
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Linear elasticity: the nearly incompressible case

We introduce an auxiliary variable

p = λ∇ · u

which in weak form becomes∫
Ω
q∇ · u dx =

1

λ

∫
Ω
pq dx.

We then consider: find (u, p) ∈ H1
0 (Ω;Rn)× L2(Ω) such that∫

Ω
2µε(u) : ε(v) dx+

∫
Ω
p∇ · v dx =

∫
Ω
f · v dx,

− 1

λ

∫
Ω
pq dx+

∫
Ω
q∇ · u dx = 0,

for all (v, q) ∈ H1
0 (Ω;R2)× L2(Ω).

This remains uniformly well-posed as λ→∞, even for λ =∞!
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Linear elasticity: the nearly incompressible case

Does the mixed formulation have an energetic structure?∫
Ω

2µε(u) : ε(v) dx+

∫
Ω
p∇ · v dx =

∫
Ω
f · v dx

− 1

λ

∫
Ω
pq dx+

∫
Ω
q∇ · u dx = 0

are the Euler–Lagrange stationarity conditions for the Lagrangian

L(u, p) =
1

2

∫
Ω

2µε(u) : ε(u) dx+

∫
Ω
p∇·u dx− 1

2λ

∫
p2 dx−

∫
Ω
f ·u dx.

This becomes the familiar linear elastic energy under p 7→ λ∇ · u.

We will see later that the solution (u, p) is a saddle point of L.
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Linear elasticity: the nearly incompressible case

Note that the bilinear form

B(u, p; v, q) =

∫
Ω

2µε(u) : ε(v) dx+

∫
Ω
p∇·v dx+

∫
Ω
q∇·u dx− 1

λ

∫
Ω
pq dx

is not coercive:

B(0, p; 0, p) = − 1

λ
‖p‖2L2(Ω) < 0.

We will see in subsequent lectures how to analyse such systems. We have
exchanged a simple-to-discretise but unstable formulation for a stable but
harder-to-discretise one.

P. E. Farrell (Oxford) Finite Element Methods 7 17 / 18



Linear elasticity: the nearly incompressible case

Note that the bilinear form

B(u, p; v, q) =

∫
Ω

2µε(u) : ε(v) dx+

∫
Ω
p∇·v dx+

∫
Ω
q∇·u dx− 1

λ

∫
Ω
pq dx

is not coercive:

B(0, p; 0, p) = − 1

λ
‖p‖2L2(Ω) < 0.

We will see in subsequent lectures how to analyse such systems. We have
exchanged a simple-to-discretise but unstable formulation for a stable but
harder-to-discretise one.

P. E. Farrell (Oxford) Finite Element Methods 7 17 / 18



Linear elasticity: the nearly incompressible case

Note that the bilinear form

B(u, p; v, q) =

∫
Ω

2µε(u) : ε(v) dx+

∫
Ω
p∇·v dx+

∫
Ω
q∇·u dx− 1

λ

∫
Ω
pq dx

is not coercive:

B(0, p; 0, p) = − 1

λ
‖p‖2L2(Ω) < 0.

We will see in subsequent lectures how to analyse such systems. We have
exchanged a simple-to-discretise but unstable formulation for a stable but
harder-to-discretise one.

P. E. Farrell (Oxford) Finite Element Methods 7 17 / 18



Linear elasticity: the nearly incompressible case

1 from firedrake import *

2 mesh = BoxMesh(30, 10, 10, 10, 1, 1)

3 V = VectorFunctionSpace(mesh, "CG", 2)

4 Q = FunctionSpace(mesh, "CG", 1)

5 Z = V*Q

6

7 g = Constant((0, 0, -5e7))

8 bc = DirichletBC(Z.sub(0), 0, 1)

9

10 z = Function(Z)

11 (u, p) = split(z)

12 (mu, lam) = (27.4e9, 64.0e9)

13

14 L = (mu * inner(sym(grad(u)), sym(grad(u)))*dx

15 + p * div(u) * dx - 1/(2*lam) * p**2 * dx

16 - inner(g, u)*ds(2))

17 G = derivative(L, z, TestFunction(Z))

18 solve(G == 0, z, bc)
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In the last lecture, we saw Céa’s Lemma: for a coercive bounded a, the
error in Galerkin approximation is bounded by

‖u− uh‖V ≤
C

α
min
vh∈Vh

‖u− vh‖V .

How do we construct discrete spaces Vh ⊂ V with good approximating
properties on general domains?

The finite element method!
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In the last lecture, we saw Céa’s Lemma: for a coercive bounded a, the
error in Galerkin approximation is bounded by

‖u− uh‖V ≤
C

α
min
vh∈Vh

‖u− vh‖V .

How do we construct discrete spaces Vh ⊂ V with good approximating
properties on general domains?

The finite element method!

P. E. Farrell (Oxford) Finite Element Methods 8 2 / 27
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Key idea: use piecewise polynomials on a mesh of Ω.

Data stored to represent a piecewise linear function, Vh ⊂ H1(Ω).
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Key idea: use piecewise polynomials on a mesh of Ω.

Data stored to represent a piecewise linear vector function, Vh ⊂ H(div,Ω).
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Finite elements

Let’s consider what happens on a single cell first, then stitch them
together to enforce the continuity properties we need to conform to the
Sobolev space we want.

Definition (Finite element)

A finite element is a triple (K,V,L) where

I The cell K is a bounded, closed subset of Rn with nonempty connected
interior and piecewise smooth boundary;

I The space V = V(K) is a finite dimensional function space on K of
dimension d;

I The set of degrees of freedom L = {`1, . . . , `d} is a basis for V∗, the
dual space of V.
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Finite elements

The linear Lagrange finite element CG1 in one, two and three dimensions. The
black circles denote pointwise evaluation.

Example (2D)

K = 4, V = span(1, x, y), L = {`1, `2, `3}, `i : v 7→ v(xi).
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Finite elements

The quadratic Lagrange finite element CG2 in two dimensions.

Example

K = 4, V = span(1, x, y, x2, y2, xy), L = {`1, . . . `6}, each `i evaluates
the function at a vertex or edge midpoint.
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Finite elements

Definition (Polynomial spaces)

Denote the space of polynomials of total degree q on K ⊂ Rn:

Pq(K) = span

{
xα1
1 xα2

2 · · ·x
αn
n |K :

n∑
i=1

αi ≤ q, αi ≥ 0 for all i = 1, . . . , n

}
,

of maximal degree q on K:

Qq(K) = span
{
xα1
1 xα2

2 · · ·x
αn
n |K : αi ≤ q, αi ≥ 0 for all i = 1, . . . , n

}
,

Example

For 4,� ⊂ R2,

P2(4) = span{1, x, x2, y, y2, xy},
Q2(�) = span{1, x, x2, y, y2, xy, x2y, xy2, x2y2}.
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Finite elements

Intuition

The degrees of freedom are what we need to store to specify a particular
v ∈ V.

For fixed x, consider the functional `x(v) = v(x). Since `x ∈ V∗, we can
write

`x = α1`1 + · · ·+ αd`d

for some coefficients α. So if we know `i(v), i = 1, . . . , d, then we know
v(x) at every x ∈ K.

The main work in verifying that something is a finite element is in
checking that L is indeed a basis for V∗.
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Finite elements

Lemma (Verifying finite elements)

Let V be a d-dimensional vector space and let L = {`1, . . . , `d} be a subset
of the dual space V∗. Then the following two statements are equivalent:

(a) L is a basis for V∗;
(b) Given v ∈ V with `i(v) = 0 for i = 1, . . . , d, then v ≡ 0.

This means that we just need to verify condition (b), which is much easier;
we set the degrees of freedom to be zero and show that the only element
of V that satisfies this is the zero element.

Definition

We say that L determines V if given v ∈ V, `i(v) = 0 ∀i =⇒ v = 0. We
also say that L is unisolvent.
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Finite elements

Example

For CG1(4), if v is zero at each vertex, then v must be zero everywhere as
a plane is uniquely determined by its values at three non-collinear points.
Thus, the linear Lagrange element on a triangle is indeed a finite element.
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Finite elements

Having fixed L, the usual choice for a basis of V is the nodal basis.

Definition (nodal basis)

The basis {φ1, . . . , φd} of V dual to L, i.e. with the property that

`i(φj) = δij

is called the nodal basis for V.

Example (CG1 in one dimension)

Let K = [0, 1], V = P1(K), and L be pointwise evaluation at the
endpoints. Then the nodal basis is given by

φ1(x) = 1− x, φ2(x) = x.
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Finite elements

Example (CG1 in two dimensions)

Let K be the triangle with vertices at (0, 0), (0, 1), (1, 0). Let
V = P1(K), and L be pointwise evaluation at the vertices. Then the
nodal basis is given by

φ1(x) = 1− x1 − x2, φ2(x) = x1, φ3(x) = x2.
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Finite elements

The Lagrange CGq elements on tetrahedra for q = 1, . . . , 6.

Definition (Lagrange element on a simplex)

The Lagrange element CGq of dimension n and degree q ≥ 1 is

I K is an n-dimensional simplex (interval, triangle, tetrahedron),

I V = Pq(K),

I `i : v 7→ v(xi), i = 1, . . . , f(q),

where xi, i = 1, . . . , f(q) is an enumeration of points in the element.
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Finite elements

One of the main things we will do with finite elements is interpolate
functions onto them.

Definition (Interpolant on an element)

Let (K,V,L) be a finite element. For a suitable function space H, define
the interpolant IK : H → V via

IK : u 7→ IKu
`i(IKu) = `i(u) for all `i ∈ L.

That is, the interpolant matches the function being interpolated at the
degrees of freedom.

In the nodal basis, the interpolation operator is particularly simple:

IKu =

d∑
i=1

`i(u)φi.
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Meshes and the local-to-global mapping

Section 2

Meshes and the local-to-global mapping
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Meshes and the local-to-global mapping

To define a global function space and basis

Vh = span{φ1, . . . , φN} ⊂ V,

we need to decompose Ω into cells, define a finite element on each, and
then specify how the local function spaces are to be stitched together.

Assume that Ω is polytopic, so that it can be decomposed into cells
exactly. (Otherwise we have to worry about geometric approximation
errors also.)

P. E. Farrell (Oxford) Finite Element Methods 8 16 / 27



Meshes and the local-to-global mapping

To define a global function space and basis

Vh = span{φ1, . . . , φN} ⊂ V,

we need to decompose Ω into cells, define a finite element on each, and
then specify how the local function spaces are to be stitched together.

Assume that Ω is polytopic, so that it can be decomposed into cells
exactly. (Otherwise we have to worry about geometric approximation
errors also.)

P. E. Farrell (Oxford) Finite Element Methods 8 16 / 27



Meshes and the local-to-global mapping

Definition (mesh)

A meshM is a geometric decomposition of a domain Ω into a finite set of
cellsM = {Ki} such that

1. ∪iKi = Ω.

2. If Ki ∩Kj for i 6= j is exactly one point, it is a common vertex of Ki

and Kj .

3. If Ki ∩Kj for i 6= j is not exactly one point, it is a common facet of
Ki and Kj (edge in two dimensions, face in three dimensions).

Meshing is a huge subject of computational geometry in its own right.
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Meshes and the local-to-global mapping
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Meshes and the local-to-global mapping

We equip each cell K ∈M with a finite element, so we have a set of
finite elements {(K,VK ,LK) : K ∈M}. We’ll assume we always equip
each cell with the same type of element to gloss over technicalities.

We can thus give our first specification of a finite element space. Suppose
we solve a variational problem over V . Then we take

Vh = {v ∈ V : v|K ∈ VK ∀ K ∈M}.

Let’s consider V = H1(Ω). To enforce that Vh ⊂ H1(Ω), we need to
make sure that functions in the space are continuous. How do we do that?
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Meshes and the local-to-global mapping

We specify how the elements fit together with the local-to-global mapping.
For each cell K ∈M, we must specify a local-to-global map

ιK : {1, . . . , d(K)} → {1, . . . , N}

which specifies how the local degrees of freedom `Ki (v) relate to the global
degrees of freedom. Each local degree of freedom corresponds to a global
degree of freedom, under the action of the local-to-global map:

`ιK(i)(v) = `Ki (v|K), i = 1, . . . , d(K).

If two different degrees of freedom `K , `K
′

on two different cells K,K ′

both map to the same global degree of freedom, we demand

`K(v|K) = `K
′
(v|K′),

i.e. matching degrees of freedom agree.
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Meshes and the local-to-global mapping
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The local-to-global mapping for a mesh of two triangles, both equipped with
CG2. By mapping matching local degrees of freedom at the common edge to the
same global degree of freedom, the local-to-global map ensures the C0-continuity
of the approximation: Vh ⊂ H1(Ω).
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Meshes and the local-to-global mapping

By not mapping matching local degrees of freedom at the common edge to the
same global degree of freedom, a discontinuous approximation results:
Vh ⊂ L2(Ω).
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Meshes and the local-to-global mapping

The matching properties of the local-to-global map determine the global
continuity of the function space, and hence which Sobolev space it
conforms to.

Definition (conforming approximation)

Suppose the continuous variational problem is posed over a Hilbert space
V . If Vh ⊂ V , the approximation is conforming; if Vh 6⊂ V , then the
approximation is said to be nonconforming.

In this course we will only consider conforming discretisations, although
nonconforming ones are important, common, and useful.
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Meshes and the local-to-global mapping

Once we have the local-to-global map, we gather all of the global degrees
of freedom

L = {`1, . . . , `N} =
⋃

K∈M
{`ιK(i), i = 1, . . . , d(K)}.

and use its associated nodal basis our basis for Vh:

Vh = span{φ1, . . . , φN}, `i(φj) = δij , φi|K ∈ VK ∀ K ∈M.

Reproduced from Braess (2007).
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Meshes and the local-to-global mapping

Now that we have a global function space, we can construct a global
interpolation operator.

Definition (global interpolation operator)

Let Vh be a finite element function space constructed by equipping a mesh
M with finite elements. Then the interpolation operator Ih : H → Vh is
defined by

(Ihu)|K = IKu,

and that Ihu satisfies any necessary continuity requirements.

Example

If we take CGq in 2D or 3D, we have V = H1(Ω) and H = H2(Ω).
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C6.4 Finite Element Methods for PDEs
Lecture 9: Local and global assembly

Patrick E. Farrell

University of Oxford
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We are solving the Galerkin approximation

find uh ∈ Vh such that a(uh, vh) = F (vh) for all vh ∈ Vh

over Vh := span{φ1, . . . , φN}.

In this lecture we study the central algorithm executed by a finite element
code, the assembly algorithm for computing A and b of

Ax = b.

Recall that
Aji = a(φi, φj), bj = F (φj).
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Assembly

The näıve algorithm for assembly:

1: for i = 1, . . . , N do
2: for j = 1, . . . , N do
3: Compute Aji = a(φi, φj).
4: end for
5: end for

has two major disadvantages:

I Each φi has local support. For most pairs i, j, a(φi, φj) = 0.

I Each evaluation of a requires integrating over Ω, i.e. a loop over cells.
The calculations required to integrate over each cell are repeated
many times.
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Assembly

A better idea:

I Loop over each cell of the mesh once.

I Calculate all contributions of each cell to all entries that it influences.

Notation: (K, VK , LK), d = dim(VK), ιK , φKi = φιK(i)

∣∣
K

.

1: for K ∈M do
2: Fetch the local-to-global map ιK .

3: Compute the local tensor AK :
4: for i = 1, . . . , d do
5: for j = 1, . . . , d do
6: Compute (AK)ji = a(φKi , φ

K
j ) (only on the cell K).

7: end for
8: end for

9: Add the local tensor to the global tensor:

10: AιK ,ιK
+
= AK

11: end for
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Assembly

ιK(1)

1

2

3

1 2 3

AK,32

ιK(2) ιK(3)

ιK(1)

ιK(2)

ιK(3)

Finite element assembly. We loop over each cell K of the mesh and assemble the
local stiffness matrix AK (top right). We add this matrix to the submatrix of the
global stiffness matrix A formed by taking the rows and columns associated with
the local-to-global map ιK .
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Assembly

Assembly of a CG2 discretisation in 1D.



× × × 0 0 0 0
× × × 0 0 0 0
× × × × × 0 0
0 0 × × × 0 0
0 0 × × × × ×
0 0 0 0 × × ×
0 0 0 0 × × ×
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Assembling the local tensor

Section 2

Assembling the local tensor
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Assembling the local tensor

How do we assemble the local tensor on a cell?∫
K
φi(x)φj(x) dx or

∫
K
∇φi(x) · ∇φj(x) dx or . . .

We calculate the integral with a quadrature rule on a reference element.
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Assembling the local tensor

Introduce a reference element

(K̂, V̂, L̂)

and a set of diffeomorphisms

{FK : K ∈M} such that K = FK(K̂) for all K ∈M.

x̂

x̂1 = (0, 0) x̂2 = (1, 0)

x̂3 = (0, 1) x = FK(x̂)

K̂

K

x1

x2
FK
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Assembling the local tensor

For each K ∈M, the map FK generates a function space on K via

V(K) = {v = v̂ ◦ F−1K : v̂ ∈ V̂},

and a set of degrees of freedom on K via

L(K) = {`(v) = ˆ̀(v ◦ FK) : ˆ̀∈ L̂}.

By construction, we obtain a nodal basis for V(K) from one on V̂.
Suppose {φ̂i}di=1 satisfies

ˆ̀
i(φ̂j) = δij .

Define φKi = φ̂i ◦ F−1K . Computing, we find

`Kj (φKi ) = ˆ̀
j(φ

K
i ◦ FK) = ˆ̀

j(φ̂i ◦ F−1K ◦ FK) = ˆ̀
j(φ̂i) = δij .
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Assembling the local tensor

For this simple approach of mapping to a reference element to work, we
need

V(K) = VK , L(K) = LK ,

i.e. the finite element constructed via transformation is the same as that
constructed directly on the cell.

This is true for Lagrange finite elements, and more complicated maps
make it true for other finite elements we will meet.
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Assembling the local tensor

Let’s consider an example. Suppose we need to calculate∫
K
φi(x)φj(x) dx.

We transform coordinates in the integral, at the cost of the determinant of
the Jacobian of the mapping:∫

K
φi(x)φj(x) dx =

∫
K̂
φ̂i(x̂)φ̂j(x̂)|JK(x̂)| dx̂,

where JK(x̂) is the Jacobian of FK(x̂).

We then approximate the integral with a quadrature rule:∫
K̂
f(x̂) dx̂ ≈

q∑
i=1

wif(x̂i).
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Assembling the local tensor

Definition (quadrature rule of degree m)

A quadrature rule over a cell K̂ is a choice of q quadrature points x̂i ∈ K̂
and weights wi such that∫

K̂
f(x̂) dx̂ ≈

q∑
i=1

wif(x̂i).

It has degree of precision (or degree) m if the approximation is exact for
polynomials of degree m or less.

In 1D, Gaussian quadrature gives us the optimal choice of weights and
quadrature points to maximise the degree of the rule. For q points in an
interval we get m = 2q − 1. In higher dimensions things are not as simple,
and the best quadrature rules are collated in an encyclopaedia.
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Assembling the local tensor

To summarise. Offline calculations:

I Quadrature rule on the reference cell

I Basis functions at the quadrature points of the reference cell

Online calculations:

I Coordinate transformation & Jacobian

In particular we do not need to calculate the basis functions for each cell.
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Assembling the local tensor

Let’s look at another example. Consider∫
K
∇xφi(x) · ∇xφj(x) dx,

which is what we need to calculate for solving Poisson.

Transforming, we get∫
K
∇xφi(x) · ∇xφj(x) dx =

∫
K̂
∇xφ̂i(x̂) · ∇xφ̂j(x̂)|JK(x̂)| dx̂,

but this is still not computable because it requires derivatives with respect
to the physical coordinate.

To replace these, we apply the chain rule:

∂φ

∂xk
=
∑
l

∂x̂l
∂xk

∂φ

∂x̂l
.

Some calculation finds that

∇xφ̂(x̂) = J−>K (x̂)∇x̂φ̂(x̂).
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Assembling the local tensor

Thus, finally, we write∫
K
∇xφi(x)·∇xφj(x) dx =

∫
K̂

(
J−>K ∇x̂φ̂i(x̂)

)
·
(
J−>K ∇x̂φ̂j(x̂)

)
|JK(x̂)| dx̂.

Remarks:

I Modern finite element software does this for you.

I We need to calculate the gradients of the basis functions at
quadrature points (offline).
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Representing the element map

Section 3

Representing the element map
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Representing the element map

Prelude: some finite elements.

Definition (Lagrange element CG1 on a quadrilateral)

K = �, V = Q1(�),L evaluation at vertices.
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Representing the element map

Prelude: some finite elements.

Definition (Vector Lagrange element [CG1]
2 on a quadrilateral)

K = �, V = Q1(�)2,L evaluation of each component at vertices.
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Representing the element map

Prelude: some finite elements.

Definition (Lagrange element CG2 on a quadrilateral)

K = �, V = Q2(�),L evaluation at points shown.
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Representing the element map

Prelude: some finite elements.

Definition (Vector Lagrange element [CG2]
2 on a quadrilateral)

K = �, V = Q2(�)2,L evaluation of each component at points shown.
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Representing the element map

One can consider a purely topological mesh: sets of cells and vertices, with
connectivity maps between them.

The geometric mesh of Ω assigns coordinates to each cell ([CG]2).
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The geometric mesh of Ω assigns coordinates to each cell ([CG2]
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Representing the element map

ξ1

x 3

x 2

x 1

x 5

x 6

x 4ξ3

ξ2

ξ5
ξ6

ξ4
ξ

η
X (ξ)

x

y

We represent the coordinate field with Lagrange elements of arbitrary order,
allowing us to bend the mesh. This is useful if Ω is not a polygon or polyhedron.

This means that for each element we can write

x =
d∑
i=1

xiψ̂i(x̂)

for (scalar-valued) coefficients xi and (vector-valued) basis functions ψ̂i.
This is an explicit construction for the map x = FK(x̂).
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C6.4 Finite Element Methods for PDEs
Lecture 10: Finite elements beyond Lagrange
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We are solving the linear variational problem

find u ∈ V such that a(u, v) = F (v) for all v ∈ V.
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We are solving the linear variational problem

find u ∈ V such that a(u, v) = F (v) for all v ∈ V.

One of the great advantages of the finite element method is that you can
tailor the approximation Vh to the function space V . For V 6= H1(Ω) we
usually want to use different finite elements than Lagrange.
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One of the great advantages of the finite element method is that you can
tailor the approximation Vh to the function space V . For V 6= H1(Ω) we
usually want to use different finite elements than Lagrange.

The fundamental Hilbert spaces we have met are related by the de Rham
complex:

H1 H(curl) H(div) L2

Σh Vh Wh Qh

grad curl div

grad curl div
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We are solving the linear variational problem

find u ∈ V such that a(u, v) = F (v) for all v ∈ V.

One of the great advantages of the finite element method is that you can
tailor the approximation Vh to the function space V . For V 6= H1(Ω) we
usually want to use different finite elements than Lagrange.

The fundamental Hilbert spaces we have met are related by the de Rham
complex:

H1 H(curl) H(div) L2

Σh Vh Wh Qh

grad curl div

grad curl div

We can build finite element spaces for all spaces in the L2 de Rham
complex in a structure-preserving way.
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Barycentric coordinates

On the interval Ω = [0, 1], the obvious way to label a point is with a single
coordinate x.

x
(λ0, λ1)
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It will be convenient for us to label points with barycentric coordinates:
n+ 1 coordinates for a simplex in Rn with the constraint that

∑
i λi = 1.
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n+ 1 coordinates for a simplex in Rn with the constraint that

∑
i λi = 1.

In 1D, λ0 = x, λ1 = 1− x.

The reason why this is convenient is because it gives us a nice way to
describe different geometric parts of our simplex. In 1D, we have the left
vertex is given by λ0 = 0, the right vertex by λ1 = 0.
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coordinate x.

x
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It will be convenient for us to label points with barycentric coordinates:
n+ 1 coordinates for a simplex in Rn with the constraint that

∑
i λi = 1.

In 1D, λ0 = x, λ1 = 1− x.

The reason why this is convenient is because it gives us a nice way to
describe different geometric parts of our simplex. In 1D, we have the left
vertex is given by λ0 = 0, the right vertex by λ1 = 0.

Another way to look at it: the barycentric coordinates express a point p as
a convex combination of the vertices.
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Barycentric coordinates

(1,0,0) (0,1,0)

(0,0,1)

(1/2,1/2,0)

(1/2,0,1/2) (0,1/2,1/2)(1/4,1/4,1/2)

(1/4,1/2,1/4)(1/2,1/4,1/4)

(1/3,1/3,1/3)

For a triangle, we represent points p = (λ1, λ2, λ3); three numbers, but
only two degrees of freedom because of the summation constraint.

The edge opposite vertex i is described by λi = 0.
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Factorisation lemma

Lemma (First factorisation lemma)

Let P be a polynomial of degree d ≥ 1 that vanishes on a hyperplane
{x : L(x) = 0}, where L(x) is a non-degenerate linear function. Then we
can write P = LQ, where Q is a polynomial of degree d− 1.

Example (One dimension)

Suppose P vanishes on the hyperplane {x : x− r = 0}. Then we can write
P = (x− r)Q for some polynomial Q.

Example (Higher dimensions)

Suppose P vanishes on each edge of a triangle. Then P = λ1λ2λ3Q for
some Q.
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Factorisation lemma

The quadratic Lagrange finite element CG2 in two dimensions.

Unisolvence of CG2

Suppose v ∈ P2(4) with all degrees of freedom zero. Restricted to an
edge, v is a quadratic polynomial with three roots, hence v = 0 on each
edge. By the factorisation lemma, v = λ1λ2c for a constant c ∈ R.
Evaluating both sides on the edge λ3 = 0 shows that c = 0.
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Factorisation lemma

Lemma (Second factorisation lemma)

Let P be a polynomial of degree d ≥ 2 such that P and ∇P · n vanish on
a hyperplane {x : L(x) = 0}, where n is the normal to L. Then we can
write P = L2Q, where Q is a polynomial of degree d− 2.

Remark

If P vanishes on {x : L(x) = 0}, so does ∇P · t for a tangent vector t.

Proof.

Since P vanishes on {x : L(x) = 0}, we have P = LQ̃. Calculating,

∇P · n = Q̃∇L · n+ L∇Q̃ · n.

Since L vanishes on the plane, and ∇L is normal to the plane (hence
colinear with n), this forces Q̃ = 0 on {x : L(x) = 0}. Hence Q̃ = LQ for
some Q.
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The biharmonic problem

Section 3

The biharmonic problem
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The biharmonic problem

The biharmonic equation arises in many areas of physics. It describes
equilibrium configurations of clamped plates under transverse loading, the
stresses in an elastic body, the stream function in certain flow regimes, and
other things. The equation is

∇4u = f in Ω,

u = 0 on ∂Ω,

∇u · n = 0 on ∂Ω.

Here ∇4 = ∆2 = ∇ · ∇∇ · ∇. More simply, in two dimensions

∂4u

∂x4
+
∂4u

∂y4
+ 2

∂4u

∂x2∂y2
= f.
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The biharmonic problem

Let’s cast this into variational form formally, i.e. not yet specifying V .
Multiplying by v ∈ V for some V , we find∫

Ω
∇4uv dx =

∫
Ω
∇ · ∇∇ · ∇uv dx =

∫
Ω
fv dx.

We want to invoke Lax–Milgram, so we want u ∈ V and v ∈ V . Let’s
integrate by parts once:∫

Ω
∇4uv dx = −

∫
Ω

(∇∇ · ∇)u · ∇v dx+

∫
∂Ω
∇ (∇ · ∇u) · nv ds

and again: ∫
Ω
∇4uv dx =

∫
Ω

(∇ · ∇u) (∇ · ∇v) dx

−
∫
∂Ω

(∇ · ∇u)∇v · n ds

+

∫
∂Ω
∇ (∇ · ∇u) · nv ds.
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The biharmonic problem

Noting that the Laplacian ∇2 = ∇ · ∇, we rewrite∫
Ω
∇4uv dx =

∫
Ω
∇2u∇2v dx−

∫
∂Ω
∇2u∇v · n ds+

∫
∂Ω
∇
(
∇2u

)
· nv ds.

We need square-integrable second derivatives, so V ⊂ H2(Ω).

We have nowhere convenient to enforce the boundary conditions
u = ∇u · n = 0. So we should take

V = H2
0 (Ω) := {v ∈ H2(Ω) : v = 0,∇v · n = 0 on ∂Ω}.

With v ∈ V , the surface integrals vanish, leaving us with the problem: find
u ∈ H2

0 (Ω) such that∫
Ω
∇2u∇2v dx =

∫
Ω
fv dx for all v ∈ H2

0 (Ω).
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The biharmonic problem

How do we discretise this problem? If we take Vh ∼ CGp, Vh 6⊂ H2!

For a piecewise smooth function u, u ∈ H1(Ω) ⇐⇒ u ∈ C0(Ω).

Since u ∈ H2(Ω) iff u and all its first derivatives are in H1(Ω), that means
for u ∈ H2(Ω) we need u ∈ C1(Ω).

Two approaches:

I C1-continuous finite elements;

I nonconforming discretisations.
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The Hermite element

Section 4

The Hermite element
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The Hermite element

Definition (Hermite finite element)

K = [0, 1], V = P3(K), and

L = {v 7→ v(0),

v 7→ v′(0),

v 7→ v(1),

v 7→ v′(1)}.

This gives a C1 approximation, because the function value and derivative
agree across cells (by construction).

Unisolvence

Suppose v ∈ P3(K) with all dofs zero. Then v is a cubic polynomial with
four roots (two double roots), hence zero.

P. E. Farrell (Oxford) Finite Element Methods 10 14 / 28



The Hermite element

Definition (Hermite finite element)

K = [0, 1], V = P3(K), and

L = {v 7→ v(0),

v 7→ v′(0),

v 7→ v(1),

v 7→ v′(1)}.

This gives a C1 approximation, because the function value and derivative
agree across cells (by construction).

Unisolvence

Suppose v ∈ P3(K) with all dofs zero. Then v is a cubic polynomial with
four roots (two double roots), hence zero.

P. E. Farrell (Oxford) Finite Element Methods 10 14 / 28



The Hermite element

Definition (Hermite finite element)

K = [0, 1], V = P3(K), and

L = {v 7→ v(0),

v 7→ v′(0),

v 7→ v(1),

v 7→ v′(1)}.

This gives a C1 approximation, because the function value and derivative
agree across cells (by construction).

Unisolvence

Suppose v ∈ P3(K) with all dofs zero. Then v is a cubic polynomial with
four roots (two double roots), hence zero.

P. E. Farrell (Oxford) Finite Element Methods 10 14 / 28



The Hermite element
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The Hermite element

Definition (Hermite element in 2D)

K = 4,V = P3(4),L shown.
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The Hermite element

Lemma (Unisolvence of the triangular Hermite element)

The Hermite element in two dimensions is unisolvent.
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The Hermite element

Lemma (Unisolvence of the triangular Hermite element)

The Hermite element in two dimensions is unisolvent.

Proof.

Suppose u ∈ P3(4) with all dofs zero. Along an edge of the triangle, u is
a cubic polynomial with 2 double roots, so u = 0 along each edge. Thus,
u(x) = cλ1λ2λ3 for some c ∈ R. Since the value at the barycentre is also
zero, and λ1 = λ2 = λ3 = 1/3 at the barycentre, we must have c = 0.
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The Hermite element

Job done?

No!

In the unisolvence proof we saw the dofs on an edge (i.e. those shared with
a neighbour) determine u and thus ∇u · t, t the tangent vector of the
edge. But they do not determine ∇u · n.

For two elements, take

p(x) =

{
λ1λ2λ3 x ∈ K1,

0 x ∈ K2,
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The Argyris element

Section 5

The Argyris element
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The Argyris element
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The Argyris element

Definition (Hermite element in 2D)

K = 4,V = P5(4),L shown.
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The Argyris element

Lemma (Unisolvence of the triangular Argyris element)

The Argyris element in two dimensions is unisolvent.
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The Argyris element

Proof.

Suppose u ∈ P5(4) with all dofs zero. Along an edge, u is a quintic
polynomial with 2 treble roots, so u = 0 along each edge. Moreover,
∇u · n is a quartic polynomial with 2 double roots and a single root, hence
zero. Thus, u is divisible by λ2

1λ
2
2λ

2
3, which is of degree 6. Thus u = 0.
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The Argyris element

1 from firedrake import *

2

3 mesh = UnitSquareMesh(20, 20)

4 V = FunctionSpace(mesh, "Argyris", 5)

5

6 u = Function(V)

7 v = TestFunction(V)

8

9 (x, y) = SpatialCoordinate(mesh)

10 f = sin(2*pi*x) * sin(2*pi*y)

11

12 F = (inner(div(grad(u)), div(grad(v)))*dx

13 + inner(u, v)*dx

14 - inner(f, v)*dx)

15 solve(F == 0, u)
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Nonconforming methods

dim lowest p for Vh ⊂ H2(Ω)

1 3
2 5
3 9

An alternative: nonconforming discretisations. Use Lagrange elements and
weakly enforce C1 continuity by penalising the jump in ∇u ·n across edges.

ah(u, v) =
∑
K∈M

∫
K
∇2u∇2v dx+γ

∑
E∈Eh

1

|E|

∫
E

J∇u·n K J∇v ·n K ds+· · ·

where the jump over cells K+, K− is

J∇u · n K := (∇u)+ · n+ + (∇u)− · n−.
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weakly enforce C1 continuity by penalising the jump in ∇u ·n across edges.

ah(u, v) =
∑
K∈M

∫
K
∇2u∇2v dx+γ

∑
E∈Eh

1

|E|

∫
E

J∇u·n K J∇v ·n K ds+· · ·
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Nonconforming methods

Research aside: in recent work coauthors & I have proposed the energy
functional

F (δρ,Q) =

∫
Ω

[
a

2
(δρ)2 +

b

3
(δρ)3 +

c

4
(δρ)4

+B

∣∣∣∣D2δρ+ q2

(
Q+

Id
d

)
δρ

∣∣∣∣2
+
K

2
|∇Q|2 + fn(Q)

]
to model smectic liquid crystals.

This requires δρ ∈ H2(Ω) because of the Hessian D2δρ in the energy.

We discretise this with Lagrange elements by adding∑
E∈E

∫
E

γ

|E|3
(J∇δρ · n K)2

to the energy.
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Nonconforming methods

A toroidal focal conic domain, computed for the first time as a minimiser of an
energy functional.
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Elements for H(div) and H(curl)

Section 7

Elements for H(div) and H(curl)
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Elements for H(div) and H(curl)

Let’s consider another model problem, the H(div) Riesz map:

u−∇∇ · u = f in Ω,

u · n = 0 on ∂Ω.

Casting to variational form, we have∫
Ω
u · v dx−

∫
Ω

(∇∇ · u) · v dx =

∫
Ω
f · v dx,

and integrating by parts yields∫
Ω
u · v dx+

∫
Ω
∇ · u∇ · v dx−

∫
Ω
∇ · uv · n ds =

∫
Ω
f · v dx.

The base space is H(div), and we need to enforce BCs:

V = H0(div) := {v ∈ H(div) : v · n = 0 on ∂Ω},
with final formulation: find u ∈ V such that∫

Ω
u · v dx+

∫
Ω
∇ · u∇ · v dx =

∫
Ω
f · v dx for all v ∈ V.
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Elements for H(div) and H(curl)

On problem sheet 1 we learn that a pw smooth function is in H(div) iff its
normal component is continuous.

Definition (Lowest order Brezzi–Douglas–Marini element)

K = 4 or K = , V = P1(K)n, L eval normal component on facets.
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Elements for H(div) and H(curl)

Similarly, for the H(curl) Riesz map

u+∇×∇× u = f in Ω,

u× n = 0 on ∂Ω,

we end up with the variational formulation over

V := {v ∈ H(curl) : v × n = 0}

to find u ∈ V such that∫
Ω
u · v dx+

∫
Ω
∇× u · ∇ × v dx =

∫
Ω
f · v dx for all v ∈ V.
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Elements for H(div) and H(curl)

On problem sheet 1 we learn that a pw smooth function is in H(curl) iff
its tangential components are continuous.

Definition (Lowest order Nédélec element of the second kind)

K = 4 or K = , V = P1(K)n, L eval tangential component on edges.
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Definition (Lowest order Nédélec element of the second kind)

K = 4 or K = , V = P1(K)n, L eval tangential component on edges.

P. E. Farrell (Oxford) Finite Element Methods 10 27 / 28



Elements for H(div) and H(curl)

On problem sheet 1 we learn that a pw smooth function is in H(curl) iff
its tangential components are continuous.

Definition (Lowest order Nédélec element of the second kind)

K = 4 or K = , V = P1(K)n, L eval tangential component on edges.

P. E. Farrell (Oxford) Finite Element Methods 10 27 / 28



Elements for H(div) and H(curl)

Consider again the de Rham complex:

H1 H(curl) H(div) L2grad curl div

grad curl div
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Elements for H(div) and H(curl)

Consider again the de Rham complex:

H1 H(curl) H(div) L2

vertices edges faces cells

grad curl div

grad curl div

The finite element method has deep connections to algebraic topology and
differential geometry: the finite element exterior calculus.
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C6.4 Finite Element Methods for PDEs
Lecture 11: Interpolation error estimates

Patrick E. Farrell

University of Oxford
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We are approximating the linear variational problem

find u ∈ V such that a(u, v) = F (v) for all v ∈ V

with the solution of

find uh ∈ Vh such that a(uh, vh) = F (vh) for all vh ∈ Vh.
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with the solution of

find uh ∈ Vh such that a(uh, vh) = F (vh) for all vh ∈ Vh.

In Lecture 7 we saw Céa’s Lemma for coercive, bounded a:

‖u− uh‖V ≤
C

α
min
vh∈Vh

‖u− vh‖V

≤ C

α
‖u− Ihu‖V

≤ C

α
f(h, p)
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≤ C

α
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where Ih : V → Vh is the finite element interpolation operator.
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find uh ∈ Vh such that a(uh, vh) = F (vh) for all vh ∈ Vh.

In Lecture 7 we saw Céa’s Lemma for coercive, bounded a:

‖u− uh‖V ≤
C

α
min
vh∈Vh

‖u− vh‖V

≤ C

α
‖u− Ihu‖V

≤ C

α
f(h, p)

where Ih : V → Vh is the finite element interpolation operator.

We seek a bound in terms of parameters we control: h, p.
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Prelude: Sobolev seminorms

In lecture 3, we saw that the Sobolev space W k
p (Ω) for p <∞ is equipped

with

‖u‖Wk
p (Ω) =

 ∑
|α|≤k

‖Dαu‖pLp(Ω)

1/p

.

At this point it is convenient to introduce the Sobolev seminorm

|u|Wk
p (Ω) =

 ∑
|α|=k

‖Dαu‖pLp(Ω)

1/p

.

Example

‖u‖2H1(Ω) = ‖u‖2L2(Ω) + |u|2H1(Ω).
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Prelude: measuring the mesh size

We want to bound the interpolation error in terms of the mesh size h→ 0
and polynomial degree p→∞. How should we characterise the size of the
mesh?

The quantity we will use on each cell is its diameter.

Definition (diameter of a cell)

hK = diam(K) = sup{‖x− y‖ : x, y ∈ K}.

For a triangle or tetrahedron, this resolves to the length of its longest edge.

Over the whole mesh we take a pessimistic view.

Definition (mesh size)

Given a mesh M, its mesh size h is given by

h = max
K∈M

diam(K).

P. E. Farrell (Oxford) Finite Element Methods 11 4 / 19



Prelude: measuring the mesh size

We want to bound the interpolation error in terms of the mesh size h→ 0
and polynomial degree p→∞. How should we characterise the size of the
mesh?

The quantity we will use on each cell is its diameter.

Definition (diameter of a cell)

hK = diam(K) = sup{‖x− y‖ : x, y ∈ K}.

For a triangle or tetrahedron, this resolves to the length of its longest edge.

Over the whole mesh we take a pessimistic view.

Definition (mesh size)

Given a mesh M, its mesh size h is given by

h = max
K∈M

diam(K).

P. E. Farrell (Oxford) Finite Element Methods 11 4 / 19



Prelude: measuring the mesh size

We want to bound the interpolation error in terms of the mesh size h→ 0
and polynomial degree p→∞. How should we characterise the size of the
mesh?

The quantity we will use on each cell is its diameter.

Definition (diameter of a cell)

hK = diam(K) = sup{‖x− y‖ : x, y ∈ K}.

For a triangle or tetrahedron, this resolves to the length of its longest edge.

Over the whole mesh we take a pessimistic view.

Definition (mesh size)

Given a mesh M, its mesh size h is given by

h = max
K∈M

diam(K).

P. E. Farrell (Oxford) Finite Element Methods 11 4 / 19



Prelude: measuring the mesh size

We consider a sequence of meshes (Mh)h indexed by mesh size h→ 0.
We need a technical condition on the sequence of meshes.
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We need a technical condition on the sequence of meshes.

Definition (incircle diameter of a cell)

The incircle diameter ρK of a cell K is the diameter of the largest
hyperdisc (i.e. disc in two dimensions, ball in three dimensions) that is
completely contained within K.
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Prelude: measuring the mesh size

We consider a sequence of meshes (Mh)h indexed by mesh size h→ 0.
We need a technical condition on the sequence of meshes.

Definition (incircle diameter of a cell)

The incircle diameter ρK of a cell K is the diameter of the largest
hyperdisc (i.e. disc in two dimensions, ball in three dimensions) that is
completely contained within K.

Definition (shape regularity of mesh sequence (Mh)h)

A sequence of meshes (Mh)h is shape regular if there exists a constant σ
such that

sup
h

max
K∈Mh

hK
ρK
≤ σ.
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Interpolation error for Lagrange elements

Section 3

Interpolation error for Lagrange elements
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Interpolation error for Lagrange elements

First, consider CGp elements applied to problems in H1(Ω).

Theorem

Let (Vh)h be the function spaces constructed with continuous Lagrange
elements of order p on a shape-regular sequence of meshes (Mh)h indexed
by mesh size h. Let u ∈ Hp+1(Ω), and let Ih : Hp+1(Ω)→ Vh be the
interpolation operator associated with each Vh. Then there exists a
constant D <∞ independent of u such that

‖u− Ihu‖H1(Ω) ≤ Dhp|u|Hp+1(Ω).
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Interpolation error for Lagrange elements

‖u− Ihu‖H1(Ω) ≤ Dhp|u|Hp+1(Ω).

Remark

For p = 1, the interpolation error depends on the second derivatives
(curvature). If |u|H2(Ω) is zero, i.e. for a linear function, the interpolant is
exact.

Remark

Error scales like hp. If solutions are smooth, increasing p is better. If not,
decreasing h is better. These can be combined in hp-adaptive schemes.

Remark

Notice that we require u ∈ H2(Ω) for CG1, as before.
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Interpolation error for Lagrange elements

How do we know if u ∈ H2(Ω)? An elliptic regularity result.

Theorem (Example elliptic regularity result)

Let Ω be C∞-smooth, i.e. ∂Ω possesses a local parametrisation by C∞

functions. Then the solution u ∈ H1
0 (Ω) to the Poisson equation is an

element of H2(Ω) and satisfies

|u|H2(Ω) ≤ c‖f‖L2(Ω)

for some constant c.
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Interpolation error for Lagrange elements

The requirement that Ω has some smoothness is indispensable.

With a re-entrant corner, u ∈ H1(Ω) \H2(Ω).
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Changing norms: Aubin–Nitsche duality

Section 4

Changing norms: Aubin–Nitsche duality
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Changing norms: Aubin–Nitsche duality

The interpolation error bound also depends on the norm used.

The L2(Ω) norm is weaker than the H1(Ω) norm: it only measures how
good your approximation of the function is, while the H1(Ω) norm also
measures the function and its derivative.

When you measure the interpolation error in a weaker norm, the
convergence rate improves:

Theorem

Let (Vh)h be the function spaces constructed with continuous Lagrange
elements of order p on a shape-regular sequence of meshes (Mh)h indexed
by mesh size h. Let u ∈ Hp+1(Ω), and let Ih : Hp+1(Ω)→ Vh be the
interpolation operator associated with each Vh. Then there exists a
constant D <∞ independent of u such that

‖u− Ihu‖L2(Ω) ≤ Dhp+1|u|Hp+1(Ω).
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by mesh size h. Let u ∈ Hp+1(Ω), and let Ih : Hp+1(Ω)→ Vh be the
interpolation operator associated with each Vh. Then there exists a
constant D <∞ independent of u such that

‖u− Ihu‖L2(Ω) ≤ Dhp+1|u|Hp+1(Ω).
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Changing norms: Aubin–Nitsche duality

Let’s consider solving the Poisson equation. We’re not primarily interested
in ‖u− Ihu‖L2(Ω)! We’re interested in ‖u− uh‖L2(Ω).

Céa’s Lemma only tells us about ‖u− uh‖H1(Ω) in terms of
‖u− Ihu‖H1(Ω). How can we get a hold of estimates of ‖u− uh‖L2(Ω)?

The Aubin–Nitsche duality argument.
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Changing norms: Aubin–Nitsche duality

Consider the variational problem

find u ∈ H1
0 (Ω) such that a(u, v) = (f, v)L2(Ω) for all v ∈ H1

0 (Ω),

where Ω is C∞-smooth and

a(u, v) =

∫
Ω
∇u · ∇v dx.

We know that this has a unique solution u ∈ H1
0 (Ω) by the Riesz

representation theorem, and that u ∈ H2(Ω) by elliptic regularity.

We thus know that its Galerkin approximation with CG1 elements satisfies

‖u− uh‖H1(Ω) ≤ CDα−1h|u|H2(Ω)

≤ cCDα−1h‖f‖L2(Ω).
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Changing norms: Aubin–Nitsche duality

Consider the error e = u− uh ∈ H1
0 (Ω). Given any element of a Hilbert

space, we can construct its associated dual element as

e∗(v) = (u− uh, v)L2(Ω).

and this makes sense as data for an auxiliary problem (‘adjoint’ or ‘dual’):

find w ∈ H1
0 (Ω) such that a(w, v) = e∗(v) for all v ∈ H1

0 (Ω).

By the same arguments we know that this has a unique solution and that
there exists c such that

|w|H2(Ω) ≤ c‖e‖L2(Ω).
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Changing norms: Aubin–Nitsche duality

Now consider ‖u− uh‖2L2(Ω), the quantity we wish to bound. We have

‖u− uh‖2L2(Ω) = (u− uh, u− uh)L2(Ω) = e∗(u− uh)

= a(w, u− uh)

= a(u− uh, w − Ihw) (sym, GO)

≤ C‖u− uh‖H1(Ω)‖w − Ihw‖H1(Ω) (a cts)

≤ CDh‖u− uh‖H1(Ω)|w|H2(Ω) (interp)

≤ C2D2α−1h2|u|H2(Ω)|w|H2(Ω) (err est)

≤ C2D2α−1ch2|u|H2(Ω)‖u− uh‖L2(Ω) (ell reg)

and hence there exists a constant C ′ such that

‖u− uh‖L2(Ω) ≤ C ′h2|u|H2(Ω)

as required.
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Interpolation error estimates for other elements

Section 5

Interpolation error estimates for other elements

P. E. Farrell (Oxford) Finite Element Methods 11 17 / 19



Interpolation error estimates for other elements

Basic gist: if Pp(K) ⊂ V and Pp+1(K) 6⊂ V, expect

‖u− Ihu‖Hs(Ω) ≤ chp+1−s|u|Hp+1(Ω)

for sufficiently regular u.

This is true even for quad/hex elements: since P1(K) ( Q1(K) and
P2(K) 6⊂ Q1(K), we only get first order in the H1(Ω) norm with CG1 on
quads.

Let’s see how this works with the Argyris element. We have (under the
same assumptions)

‖u− Ihu‖H2(Ω) ≤ Dh4|u|H6(Ω),

‖u− Ihu‖H1(Ω) ≤ Dh5|u|H6(Ω),

‖u− Ihu‖H0(Ω) ≤ Dh6|u|H6(Ω).
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Interpolation error estimates for other elements

It can also be of interest to consider what interpolation does to other
quantities. For example, suppose we are solving the time-dependent
Maxwell’s equations, which involve Gauss’ law:

∇ ·B = 0

for the magnetic field B ∈ H(div).

If we start with initial data B0 for the magnetic field that satisfies this, we
need to make sure that

∇ · (IhB0) = 0

also.

For H(div)-conforming elements such as the BDM family, we have such a
result:

‖∇ · (u− Ihu) ‖L2(Ω) ≤ Dhs|∇ · u|Hs(Ω).

If ∇ · u = 0, then this forces ∇ · Ihu = 0 also.
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C6.4 Finite Element Methods for PDEs
Lecture 12: Nonlinear problems

Patrick E. Farrell

University of Oxford
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So far we have treated linear, coercive problems. In these last lectures we
will relax both of these assumptions.

To discretise with finite elements, we convert linear PDEs into linear
variational problems. It is not a surprise that we will convert nonlinear
PDEs into nonlinear variational problems!
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Some samples.

Linear PDE Nonlinear PDE

Stokes Navier–Stokes

Linear elasticity Hyperelasticity
Maxwell Magnetohydrodynamics

Schrödinger Gross–Pitaevskii
Linearised gravity Einstein field equations
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Bratu–Gelfand equation

Example (Bratu–Gelfand equation for λ ∈ R)

u′′(x) + λeu = 0, u(0) = 0 = u(1).

We multiply by a test function and integrate by parts: find u ∈ V such
that

−
∫ 1

0
u′(x)v′(x) dx+

∫ 1

0
λeuv dx = 0 for all v ∈ V,

and by inspection we take V = H1
0 (0, 1).
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Bratu–Gelfand equation

1 from firedrake import *

2

3 mesh = UnitIntervalMesh(100)

4 x = SpatialCoordinate(mesh)[0]

5 V = FunctionSpace(mesh, "CG", 5)

6

7 u = Function(V)

8 v = TestFunction(V)

9 lmbda = Constant(1)

10

11 G = -inner(grad(u), grad(v))*dx + inner(exp(u), v)*dx

12 bc = DirichletBC(V, 0, "on_boundary")

13

14 u.interpolate(-x*(x-1))

15 solve(G == 0, u, bc)
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Bratu–Gelfand equation
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Bratu–Gelfand equation

If we change

u.interpolate(-x*(x-1))

solve(G == 0, u, bc)

to

u.interpolate(-16*x*(x-1))

solve(G == 0, u, bc)

we get . . .
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Bratu–Gelfand equation
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Bratu–Gelfand equation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

2

4

6

8

10

u(
0.

5)

The Bratu problem

Solutions

number of solutions =


2 λ ∈ (0, λ?),

1 λ ∈ {0, λ?},
0 otherwise,

with

λ? = 8

(
min
x>0

x

cosh x

)2

≈ 3.5138307.
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Variational formulation of nonlinear problems

Section 2

Variational formulation of nonlinear problems
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Variational formulation of nonlinear problems

Our basic abstraction for linear problems was:

find u ∈ V such that a(u, v) = F (v) for all v ∈ V.

Our abstraction for nonlinear problems will be:

find u ∈ V such that G(u; v) = 0 for all v ∈ V,

where G : V × V → R.

We use G(u; v) to record that G is nonlinear in u but always linear in v.
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Variational formulation of nonlinear problems

It’s often useful to reformulate the variational statement as an equation, as
we did in the linear case.

Define H : V → V ∗ via

(H(u)) (v) = 〈H(u), v〉 = G(u; v).

Solutions of our nonlinear variational problem are exactly roots of H,
i.e. we seek u ∈ V such that

H(u) = 0.
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Variational formulation of nonlinear problems

Algorithms in numerical analysis break down a problem into a sequence of
simpler ones. For example, for an ODE, we have

transient DE
implicit scheme−−−−−−−−−→ nonlinear equations
Newton’s method−−−−−−−−−−→ linear equations
Krylov iteration−−−−−−−−−→ arithmetic
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Now consider solving a stiff time-dependent PDE. We must also discretise
in space. We could spatially discretise at any level:

I the time-dependent PDE, yielding a very large ODE system;

I the nonlinear PDEs arising from time discretisation;

I the linear PDEs arising from the nonlinear solver.
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Newton’s method−−−−−−−−−−→ linear equations
Krylov iteration−−−−−−−−−→ arithmetic

Now consider solving a stiff time-dependent PDE. We must also discretise
in space. We could spatially discretise at any level:

I the time-dependent PDE, yielding a very large ODE system;

I the nonlinear PDEs arising from time discretisation;

I the linear PDEs arising from the nonlinear solver.

These operations sometimes commute, and sometimes do not.
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Variational formulation of nonlinear problems

For a nonlinear PDE, we must

I devise a scheme to solve the nonlinear problem;

I discretise in space to make the problem finite-dimensional.

We can do these in either order.

P. E. Farrell (Oxford) Finite Element Methods 12 14 / 33



Variational formulation of nonlinear problems

For a nonlinear PDE, we must

I devise a scheme to solve the nonlinear problem;

I discretise in space to make the problem finite-dimensional.

We can do these in either order.

P. E. Farrell (Oxford) Finite Element Methods 12 14 / 33



Discretise, then solve

Section 3

Discretise, then solve
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Discretise, then solve

We consider the Galerkin approximation:

find uh ∈ Vh such that G(uh; vh) = 0 for all vh ∈ Vh.

A primary goal of an analysis is bounding the error ‖u− uh‖V .

But which u, and which uh? How do we pair the continuous and discrete
solutions across mesh levels? How do we know that the discrete problem
supports the right number of solutions? How do we know there are no
spurious solutions?

These are difficult questions; possible to address, but we will sidestep
them.
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Solve, then discretise

Section 4

Solve, then discretise
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Solve, then discretise

We will develop an algorithm for dealing with the nonlinearity on the
infinite-dimensional level, the Newton–Kantorovich iteration.

This will achieve the solution of the nonlinear problem by solving a
sequence of linear problems, each of which we then discretise with the
finite element method.

First, let’s recall Newton’s method in R and RN .
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Newton’s method in RN

Section 5

Newton’s method in RN

P. E. Farrell (Oxford) Finite Element Methods 12 19 / 33



Newton’s method in RN

Consider f(x) = e9x/10 − x2 with x0 = 2.6.

−3 −2 −1 1 2 3

2

4

6

t0

x0 x

f(x)

P. E. Farrell (Oxford) Finite Element Methods 12 20 / 33



Newton’s method in RN

Consider f(x) = e9x/10 − x2 with x0 = 2.6.

−3 −2 −1 1 2 3

2

4

6

t0

x0

t1

x1 x

f(x)

P. E. Farrell (Oxford) Finite Element Methods 12 20 / 33



Newton’s method in RN

Consider f(x) = e9x/10 − x2 with x0 = 2.6.

−3 −2 −1 1 2 3

2

4

6

t0

x0

t1

x1

t2

x2 x

f(x)

P. E. Farrell (Oxford) Finite Element Methods 12 20 / 33



Newton’s method in RN

Consider f(x) = e9x/10 − x2 with x0 = 2.6.

−3 −2 −1 1 2 3

2

4

6

t0

x0

t1

x1

t2

x2 x

f(x)

solve f ′(xk)δxk = −f(xk); update xk+1 = xk + δxk.
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Newton’s method in RN

Termination

The algorithm terminates if f(xk) = 0, as desired.

Invertibility

We require f ′(xk) to be invertible at every iteration.

Poor global convergence

The initial guess matters. With poor initial guesses, Newton’s method may
diverge to infinity, or get stuck in a cycle.

Good local convergence

If f is smooth, the solution is isolated, and the guess close, Newton
converges quadratically.
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Newton’s method in RN

Consider f(x) = x3 − 2x+ 2 with x0 = 0.
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Newton’s method in RN

This geometric reasoning is hard to generalise to higher dimensions. Let’s
look at a derivation that does extend.

Consider the Taylor expansion of f around xk:

f(xk + δxk) = f(xk) + f ′(xk)δxk +O(δx2k).

Linearise the model by ignoring higher-order terms:

f(xk + δx) ≈ f(xk) + f ′(xk)δxk

and find δx such that f(xk + δx) ≈ 0:

0 = f(xk) + f ′(xk)δxk.
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Newton’s method in RN

This does extend to an F ∈ C1(RN ;RN ). Newton’s method is to

solve DF (xk)δxk = −F (xk); update xk+1 = xk + δxk,

where DF is the Jacobian (Fréchet derivative) of F .

All the previous remarks apply, plus

Affine covariance

Given any nonsingular A ∈ RN×N , Newton’s method applied to AF yields
the exact same sequence of iterates as applied to F , starting from the
same initial guess.
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Newton’s method in RN

We can visualise the erratic global convergence with a Newton fractal.

f : C→ C
f(z) = z3 − 1.
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Newton’s method in Banach spaces

Section 6

Newton’s method in Banach spaces
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Newton’s method in Banach spaces

I Invented linear programming
(via industrial consultancy!).

I Instrumental in saving over a
million lives during the siege of
Leningrad.

I Involved in the Soviet nuclear
bomb project.

I Nearly sent to the gulag for
“shadow prices”.

I Pseudo-Nobel prize in
Economics (1975).

Leonid Kantorovich (1912–1986).
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Newton’s method in Banach spaces

The generalisation of Newton’s method to Banach spaces is called the
Newton–Kantorovich algorithm.

Kantorovich’s theorem (1948) is a triumph, fundamental both to nonlinear
analysis and applied mathematics. It does not assume the existence of a
solution: given certain conditions on the residual and initial guess, it
proves the existence and local uniqueness of a solution.

With a good initial guess, and great cleverness, it is possible to devise
computer-assisted proofs of the existence of solutions to
infinite-dimensional nonlinear problems.
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Newton’s method in Banach spaces

Theorem (Kantorovich (1948))

Let X and Y be two Banach spaces. Let Ω be an open subset of X, the
set where the residual is defined. Let H ∈ C1(Ω, Y ) be the residual of our
nonlinear problem, and let x0 ∈ Ω be an initial guess such that the Fréchet
derivative H ′(x0) is invertible (hence H ′(x0) ∈ L(X;Y ) and
H ′(x0)

−1 ∈ L(Y ;X)). Let B(x0, r) denote the open ball of radius r
centred at x0.

Assume that there exists a constant r > 0 such that

(1) B(x0, r) ⊂ Ω,

(2) ‖H ′(x0)−1H(x0)‖X ≤ r
2 ,

(3) For all x̃, x ∈ B(x0, r),

‖H ′(x0)−1
(
H ′(x̃)−H ′(x)

)
‖L(X;X) ≤

1

r
‖x̃− x‖X .
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Newton’s method in Banach spaces

Theorem (Kantorovich (1948))

Then

(1) H ′(x) ∈ L(X;Y ) is invertible at each x ∈ B(x0, r).

(2) The Newton sequence (xk)∞k=0 defined by

xk+1 = xk −H ′(xk)−1H(xk)

is such that xk ∈ B(x0, r) for all k ≥ 0 and converges to a root
x? ∈ B(x0, r) of H.

(3) For each k ≥ 0,

‖x? − xk‖X ≤
r

2k
.

(4) The root x? is the locally unique, i.e. x? is the only root of H in the
ball ĞB(x0, r).

P. E. Farrell (Oxford) Finite Element Methods 12 30 / 33



The Bratu–Gelfand equation again

The Bratu–Gelfand equation

u′′(x) + λeu = 0, u(0) = 0 = u(1).

has variational formulation: u ∈ H1
0 (0, 1) such that

G(u; v) = −
∫ 1

0
u′(x)v′(x) dx+

∫ 1

0
λeuv dx = 0

for all v ∈ H1
0 (0, 1).
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The Bratu–Gelfand equation again

Unwinding the statement of the Newton step, the update δuk solves

Gu(uk; v, δuk) = −G(uk; v) for all v ∈ V.

Here

G(u; v) = −
∫ 1

0
u′(x)v′(x) dx+

∫ 1

0
λeuv dx

so the Newton equation becomes : find δuk ∈ H1
0 (0, 1) such that

−
∫ 1

0
δu′k(x)v′(x) dx+

∫ 1

0
λeukδukv dx =

∫ 1

0
u′k(x)v′(x) dx−

∫ 1

0
λeukv dx

for all v ∈ H1
0 (0, 1).

This is then discretised with the finite element method.
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Conclusions

Many questions remain.

Are the linear equations well-posed? In general they are not coercive. We
need a more general theory of well-posedness.

We will never compute the exact δuk; we can only compute a
finite-dimensional approximation. One therefore develops inexact
Newton–Kantorovich methods.

How can we control the approximation error of δuk? Adaptive
discretisations.

How can the algorithm be globalised? Line searches, trust regions,
continuation in parameter, continuation in mesh.
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C6.4 Finite Element Methods for PDEs
Lecture 13: Noncoercive problems

Patrick E. Farrell

University of Oxford
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So far we have treated coercive problems. This means that the bilinear
form a(u, v) in the linear variational problem we are trying to solve

find u ∈ V such that a(u, v) = F (v) for all v ∈ V

satisfies

a(u, u) ≥ α‖u‖2V
for some α > 0.

Recall that the best constant α satisfying the definition is given by

α := inf
u∈V
u6=0

a(u, u)

‖u‖2V
.
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We now consider noncoercive problems, one for which no such α > 0
exists. We will develop more general (necessary and sufficient) criteria for
well-posedness of the linear variational problem, the so-called inf-sup or
Babuška conditions.

For coercive problems, well-posedness is inherited for Vh ⊂ V . This is not
true for noncoercive problems. Well-posedness is not inherited for
arbitrary Vh ⊂ V . One must prove the stability of each candidate
discretisation individually.
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Examples

Mixed Poisson (lecture 5)

Find (σ, u) ∈ H(div,Ω)× L2(Ω) such that∫
Ω
σ · v dx−

∫
Ω
∇ · vu−

∫
Ω
∇ · σw dx = −

∫
Ω
fw dx

for all (v, w) ∈ H(div,Ω)× L2(Ω).

Here a(0, u; 0, u) = 0 for all u ∈ L2(Ω).

Mixed linear elasticity (lecture 7)

Find (u, p) ∈ H1
0 (Ω;Rn)× L2(Ω) such that∫

Ω
2µε(u) : ε(v) dx+

∫
Ω
p∇·v dx− 1

λ

∫
Ω
pq dx+

∫
Ω
q∇·u dx =

∫
Ω
f ·v dx,

for all (v, q) ∈ H1
0 (Ω;R2)× L2(Ω).

Here a(0, p; 0, p) ≤ 0 for all p ∈ L2(Ω).
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Examples

Not all examples have multiple variables (are mixed problems). For
example, the (“bad”) Helmholtz equation

−∇2u− k2u = f in Ω,

u = 0 on ∂Ω,

is well-posed if k2 is not an eigenvalue of the Dirichlet Laplacian, but is
not coercive for k large enough. For k2 to be an eigenvalue of the
Dirichlet Laplacian, it means that there exists u 6= 0 such that

−∇2u = k2u in Ω,

u = 0 on ∂Ω,

i.e. −∇2 − k2I has a nontrivial kernel.
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Babuška’s theorem

Section 2

Babuška’s theorem
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Babuška’s theorem

We will first state the theorem, so we know where we are going, and then
we will try to build intuition about where the conditions come from.
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Babuška’s theorem

Theorem (Babuška’s theorem)

Let V1 and V2 be two Hilbert spaces. Let a : V1 × V2 → R be a bilinear
form for which there exist constants C <∞, γ > 0, γ′ > 0 such that

(1) |a(u, v)| ≤ C‖u‖V1‖v‖V2 for all u ∈ V1, v ∈ V2;

(2) γ ≤ inf
u∈V1
u6=0

sup
v∈V2
v 6=0

a(u,v)
‖u‖V1‖v‖V2

;

(3) γ′ ≤ inf
v∈V2
v 6=0

sup
u∈V1
u6=0

a(u,v)
‖u‖V1‖v‖V2

.

Then for all F ∈ V ∗2 there exists exactly one element u ∈ V1 such that

a(u, v) = F (v) for all v ∈ V2.

Furthermore the problem is stable in that

‖u‖V1 ≤
‖F‖V ∗

2

γ
.
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Babuška’s theorem

Theorem (Babuška’s theorem)
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Babuška’s theorem

As a first example of how to manipulate inf-sup conditions, let’s show that
a coercive problem satisfies the inf-sup conditions.

Suppose a(u, v)
satisfies

α‖u‖2V ≤ a(u, u) for all u ∈ V.

Dividing both sides of the inequality by ‖u‖V for u 6= 0, we have

α‖u‖V ≤
a(u, u)

‖u‖V

≤ sup
v∈V
v 6=0

a(u, v)

‖v‖V
.

Infimising over u 6= 0, we have

0 < α ≤ inf
u∈V
u6=0

sup
v∈V
v 6=0

a(u, v)

‖u‖V ‖v‖V
.

So the coercivity constant α works for γ (and γ′).

P. E. Farrell (Oxford) Finite Element Methods 13 9 / 41
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Understanding the inf-sup conditions

Section 3

Understanding the inf-sup conditions
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Understanding the inf-sup conditions

Remember that we often rewrite

find u ∈ V such that a(u, v) = F (v) for all v ∈ V

as
find u ∈ V such that Au = F,

where A : V → V ∗, (Au)(v) := a(u, v).

The inf-sup conditions are just variational ways of stating facts about A.

The key to unpacking the inf-sup conditions is to recall the norm on the
dual of a Hilbert space:

‖j‖V ∗ = sup
‖u‖V =1

|j(u)| = sup
u∈V
u6=0

|j(u)|
‖u‖V

.

In our explanations we’ll always take V1 = V2, but the theorem applies
more generally.
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Understanding the inf-sup conditions

Our exposition of the inf-sup conditions will follow Brezzi and Bathe. This
starts off gently, looking at the stability of a linear system of equations to
perturbation.

Consider the N -dimensional linear system

find x ∈ RN such that Mx = b,

arising from a Galerkin discretisation of

find u ∈ V such that a(u, v) = F (v) for all v ∈ V.

We know from linear algebra that the linear system Mx = b has a unique
solution for all b ∈ RN if and only if the associated homogeneous problem
Mx = 0 has only one solution, x = 0. Let us suppose for now that this is
the case.
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Understanding the inf-sup conditions

Now suppose that a perturbation δb is applied to the right hand side,
causing a change δx in the solution.

For the system to be stable, we hope that a small change in b will induce
only a small change in x. To measure this, we introduce norms.

Since we know x and b represent the coefficients of (approximations to)
u ∈ V and F ∈ V ∗ respectively, let’s use the infinite-dimensional norms.
We therefore equip x and b with the norms ‖ · ‖V and ‖ · ‖V ∗ respectively.
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Understanding the inf-sup conditions

Definition (Stability constant)

The stability constant of M with respect to the norms ‖ · ‖V , ‖ · ‖V ∗ is the
smallest possible constant S such that

‖δx‖V
‖x‖V

≤ S ‖δb‖V
∗

‖b‖V ∗

for all vectors x and δx in RN such that Mx = b and Mδx = δb.

Such a stability constant always exists if the matrix is invertible. However,
if we consider a sequence of linear systems with increasing dimension N
(corresponding to a finer and finer discretisation) it might be the case that
the associated constants (S) depend on N and become infinitely large as
N →∞. We thus say that a sequence of linear systems is stable with
respect to the norms ‖ · ‖V , ‖ · ‖V ∗ if the sequence of stability constants is
bounded.
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Understanding the inf-sup conditions

We can use matrix (operator) norms to clarify the nature of the stability
constant. Define

‖M‖ = sup
y∈V
y 6=0

‖My‖V ∗

‖y‖V
,

where we denote the input space by V .

Choosing y = x, My = b, we have

‖M‖ ≥ ‖b‖V
∗

‖x‖V
.

This implies that

‖M‖‖x‖V
‖b‖V ∗

≥ 1.
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Understanding the inf-sup conditions

Now let us consider the inverse norm. We have

‖M−1‖ = sup
z∈V ∗
z 6=0

‖M−1z‖V
‖z‖V ∗

,

where we denote the output space by V ∗.

Choosing z = δb, M−1z = δx,
we have

‖M−1‖ ≥ ‖δx‖V
‖δb‖V ∗

.

Multiplying the upper bound by a quantity greater than one will not
change the inequality, so

‖δx‖V
‖δb‖V ∗

≤ ‖M−1‖‖M‖ ‖x‖V
‖b‖V ∗

which implies
‖δx‖V
‖x‖V

≤ ‖M‖‖M−1‖‖δb‖V
∗

‖b‖V ∗
.

Since x and δx are arbitrary,

S = ‖M‖‖M−1‖.
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Understanding the inf-sup conditions

This is exactly the condition number of the matrix. In a linear algebra
course this is usually specialised to the Euclidean case

‖ · ‖V = ‖ · ‖V ∗ = ‖ · ‖`2 ,

where the condition number resolves to the ratio of the largest and
smallest singular values.

For the stability of our problem to be bounded, we will require both ‖M‖
and ‖M−1‖ to be bounded from above. We will now consider them in
turn.
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Understanding the inf-sup conditions The forward operator norm

Assume a is bounded: that is, there exists a constant C such that

|a(u, v)| ≤ C‖u‖V ‖v‖V ,
and since our matrix encodes the action of the bilinear form, we have

|yTMx| ≤ C‖y‖V ‖x‖V .
The forward operator norm ‖M‖ is exactly the continuity constant C in
disguise. To see this, expand the definitions:

‖M‖ = sup
x∈V
x 6=0

‖Mx‖V ∗

‖x‖V

= sup
x∈V
x6=0


1

‖x‖V
sup
y∈V
y 6=0

|yTMx|
‖y‖V


= sup

x,y∈V
x,y 6=0

|yTMx|
‖x‖V ‖y‖V

= C.
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Understanding the inf-sup conditions The forward operator norm

If M arises from a conforming discretisation of a continuous bilinear form,
then ‖M‖ is bounded above by the continuity constant of the form. Thus,
the sequence of problems will be stable if and only if the inverse operator
norm ‖M−1‖ is bounded above.
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Understanding the inf-sup conditions The inverse operator norm

Lemma (Characterising the inverse operator norm)

Let M ∈ RN×N be nonsingular, and let ‖ · ‖V be the norm for its input
space, and let the associated dual norm be used for its output space. Then

‖M−1‖−1 = inf
x∈V
x 6=0

sup
y∈V
y 6=0

|yTMx|
‖y‖V ‖x‖V

.
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Understanding the inf-sup conditions The inverse operator norm

Proof.

‖M−1‖−1 =

 sup
z∈V ∗
z 6=0

‖M−1z‖V
‖z‖V ∗


−1

= inf
z∈V ∗
z 6=0

‖z‖V ∗

‖M−1z‖V

= inf
x∈V
x6=0

‖Mx‖V ∗

‖x‖V
(set z = Mx)

= inf
x∈V
x6=0

 1

‖x‖V
sup
y∈V
y 6=0

|yTMx|
‖y‖V

(defn of dual norm)

= inf
x∈V
x6=0

sup
y∈V
y 6=0

|yTMx|
‖y‖V ‖x‖V

.
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Understanding the inf-sup conditions The inverse operator norm

The first step in using inf-sup conditions is to unpack the inf. So rewrite

0 < γ ≤ inf
x∈V
x 6=0

sup
y∈V
y 6=0

|yTMx|
‖y‖V ‖x‖V

as

γ‖x‖V ≤ sup
y∈V
y 6=0

|yTMx|
‖y‖V

for all x ∈ V.

Note that we can get rid of the absolute values:

γ‖x‖V ≤ sup
y∈V
y 6=0

yTMx

‖y‖V
for all x ∈ V,

since if the supremum is reached with a negative value, negating the
sequence of y’s will make the fraction positive (so it wasn’t the
supremum).
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Understanding the inf-sup conditions The inverse operator norm

Thus, for the sequence of problems to be stable, we need that ‖M−1‖−1

to be bounded below, and so we require a constant γ ∈ R such that

inf
x∈V
x 6=0

sup
y∈V
y 6=0

yTMx

‖y‖V ‖x‖V
≥ γ > 0.

Since the matrix M encodes the bilinear form, the analogous condition for
the infinite-dimensional problem is: there exists γ ∈ R such that

inf
u∈V
u6=0

sup
v∈V
v 6=0

a(u, v)

‖u‖V ‖v‖V
≥ γ > 0.

This is the famous “inf-sup” condition of Babuška. It says that (if it
exists) the inverse of A : V → V ∗ is bounded, where (Au)(v) := a(u, v).
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The inf-sup condition and the kernel

Section 4

The inf-sup condition and the kernel
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The inf-sup condition and the kernel

Suppose A : V → V ∗ satisfies an inf-sup condition, i.e.

inf
u∈V
u6=0

sup
v∈V
v 6=0

|Au(v)|
‖u‖V ‖v‖V

≥ γ > 0.

Then

sup
v∈V
v 6=0

|Au(v)|
‖v‖V

≥ γ‖u‖V for all u ∈ V.

The quantity on the left is just the dual norm ‖Au‖V ∗ , so we have

‖Au‖V ∗ ≥ γ‖u‖V ≥ 0 for all u ∈ V.

What is the kernel of A? If Au = 0, then ‖Au‖V ∗ = 0 and hence u = 0.

So the inf-sup condition guarantees the injectivity of A.
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Necessity of the inf-sup condition

Section 5

Necessity of the inf-sup condition
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Necessity of the inf-sup condition

If the operator equation
Au = F

is well-posed, A−1 exists.

If the problem is stable, ‖A−1‖ < γ−1 for some γ <∞, so

0 < γ = ‖A−1‖−1 = inf
u∈V
u6=0

sup
v∈V
v 6=0

a(u, v)

‖u‖V ‖v‖V
.
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The transpose condition

Section 6

The transpose condition
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The transpose condition

Conditions for Babuška’s theorem:

(1) |a(u, v)| ≤ C‖u‖V1‖v‖V2 for all u ∈ V1, v ∈ V2;

(2) γ ≤ inf
u∈V1
u6=0

sup
v∈V2
v 6=0

a(u,v)
‖u‖V1‖v‖V2

;

(3) γ′ ≤ inf
v∈V2
v 6=0

sup
u∈V1
u6=0

a(u,v)
‖u‖V1‖v‖V2

.

For square linear systems in finite dimensions, injectivity is equivalent to
surjectivity is equivalent to bijectivity. So if you satisfy an inf-sup condition
on a finite-dimensional space V1 = V2, one inf-sup condition is enough.

For V1 6= V2 or infinite-dimensional problems we need (3).
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The transpose condition

Consider a linear system with a rectangular matrix M ∈ RP×N :

Mx = b.

We know that this cannot be well-posed for arbitrary b ∈ RP , so we want
the Babuška conditions to fail.

If M is underdetermined (fat, P < N), rank-nullity guarantees there exist
x ∈ RN such that Mx = 0, so inf-sup (2) fails.

What if M is overdetermined (tall and skinny, P > N)?
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The transpose condition

Take

M =

1 0
0 1
1 1

 .

The first step is to unpack. We want to show that there exists γ such that

γ‖x‖ ≤ sup
y∈R3

y 6=0

yTMx

‖y‖
for all x ∈ R2.

For x = [x1, x2]T , take ỹ = [x1, x2, x1 + x2]T = Mx to get

sup
y∈R3

y 6=0

yTMx

‖y‖
≥ ỹT ỹ

‖ỹ‖
= ‖ỹ‖ ≥ ‖x‖

so we can take γ = 1.
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≥ ỹT ỹ

‖ỹ‖
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The transpose condition

So the associated bilinear form satisfies the inf-sup condition!

We thus need a third condition: that the nullspace of the transpose is
trivial. That is, we also require that yTM = 0 =⇒ y = 0. Recall that the
fundamental theorem of linear algebra tells us that

range(M) = kernel(MT )⊥,

that is, the range of M is the orthogonal complement of the nullspace of
MT . Thus, in order for the operator to be surjective (and have a complete
range), we must therefore require the nullspace of MT to be trivial. This
is the condition that fails in this case; for example, choose yT = [1, 0,−1].
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The transpose condition

Let’s now distinguish u ∈ V1 from v ∈ V2. We’ve already introduced

A : V1 → V ∗2 , (Au)(v) := a(u, v).

Now consider
A∗ : V2 → V ∗1 , (A∗v)(u) := a(u, v).

These really are adjoints:

〈Au, v〉 = a(u, v) = 〈A∗v, u〉.

The closed range theorem of functional analysis guarantees that if ker(A∗)
is trivial, then A is surjective. This gives the “transpose” inf-sup condition:

0 < γ′ ≤ inf
v∈V2
v 6=0

sup
u∈V1
u6=0

a(u, v)

‖u‖V1‖v‖V2

.

P. E. Farrell (Oxford) Finite Element Methods 13 33 / 41



The transpose condition

Let’s now distinguish u ∈ V1 from v ∈ V2. We’ve already introduced

A : V1 → V ∗2 , (Au)(v) := a(u, v).

Now consider
A∗ : V2 → V ∗1 , (A∗v)(u) := a(u, v).

These really are adjoints:

〈Au, v〉 = a(u, v) = 〈A∗v, u〉.

The closed range theorem of functional analysis guarantees that if ker(A∗)
is trivial, then A is surjective. This gives the “transpose” inf-sup condition:

0 < γ′ ≤ inf
v∈V2
v 6=0

sup
u∈V1
u6=0

a(u, v)

‖u‖V1‖v‖V2

.

P. E. Farrell (Oxford) Finite Element Methods 13 33 / 41



The transpose condition

Let’s now distinguish u ∈ V1 from v ∈ V2. We’ve already introduced

A : V1 → V ∗2 , (Au)(v) := a(u, v).

Now consider
A∗ : V2 → V ∗1 , (A∗v)(u) := a(u, v).

These really are adjoints:

〈Au, v〉 = a(u, v) = 〈A∗v, u〉.

The closed range theorem of functional analysis guarantees that if ker(A∗)
is trivial, then A is surjective. This gives the “transpose” inf-sup condition:

0 < γ′ ≤ inf
v∈V2
v 6=0

sup
u∈V1
u6=0

a(u, v)

‖u‖V1‖v‖V2

.

P. E. Farrell (Oxford) Finite Element Methods 13 33 / 41



The transpose condition

Let’s now distinguish u ∈ V1 from v ∈ V2. We’ve already introduced

A : V1 → V ∗2 , (Au)(v) := a(u, v).

Now consider
A∗ : V2 → V ∗1 , (A∗v)(u) := a(u, v).

These really are adjoints:

〈Au, v〉 = a(u, v) = 〈A∗v, u〉.

The closed range theorem of functional analysis guarantees that if ker(A∗)
is trivial, then A is surjective. This gives the “transpose” inf-sup condition:

0 < γ′ ≤ inf
v∈V2
v 6=0

sup
u∈V1
u6=0

a(u, v)

‖u‖V1‖v‖V2

.

P. E. Farrell (Oxford) Finite Element Methods 13 33 / 41



Review

Section 7

Review
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Review

The conditions again:

(1) |a(u, v)| ≤ C‖u‖V1‖v‖V2 for all u ∈ V1, v ∈ V2;

(2) γ ≤ inf
u∈V1
u6=0

sup
v∈V2
v 6=0

a(u,v)
‖u‖V1‖v‖V2

;

(3) γ′ ≤ inf
v∈V2
v 6=0

sup
u∈V1
u6=0

a(u,v)
‖u‖V1‖v‖V2

.

To summarise: (1) is the boundedness of the operator. (2) is the
injectivity of A. (3) is the surjectivity of A.

Note that for symmetry we could rewrite (1) as

sup
u∈V1
u6=0

sup
v∈V2
v 6=0

a(u, v)

‖u‖V1‖v‖V2

≤ C.

so we have a “sup-sup” condition and two “inf-sup” conditions.
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Discretisation and quasioptimality

Section 8

Discretisation and quasioptimality
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Discretisation and quasioptimality

Start with

find u ∈ V such that a(u, v) = F (v) for all v ∈ V,

and take the Galerkin approximation over closed Vh ⊂ V :

find uh ∈ Vh such that a(uh, vh) = F (vh) for all vh ∈ Vh.

Note that Galerkin orthogonality still holds.

Is the discrete problem well-posed?
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Discretisation and quasioptimality

Let’s check the Babuška conditions.

Satisfaction of (1) is inherited. What about (2)? (We don’t need to check
(3) in this case! The discrete system is square and finite-dimensional, so
(2) ⇐⇒ (3) by rank-nullity.) That is, does there exist γ̃ such that

inf
uh∈Vh
uh 6=0

sup
vh∈Vh
vh 6=0

a(uh, vh)

‖uh‖V ‖vh‖V
≥ γ̃ > 0,

with γ̃ independent of the mesh size h?

No! Examples later.

P. E. Farrell (Oxford) Finite Element Methods 13 38 / 41



Discretisation and quasioptimality

Let’s check the Babuška conditions.
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Discretisation and quasioptimality

Theorem

Assume we have a well-posed discretisation of a well-posed problem. Then

‖u− uh‖V ≤
(

1 +
C

γ̃

)
inf

vh∈Vh

‖u− vh‖V .
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Discretisation and quasioptimality

Proof.

For every vh ∈ Vh, we have

γ̃‖vh − uh‖V ≤ sup
wh∈Vh
wh 6=0

a(vh − uh, wh)

‖wh‖V
(discrete inf-sup)

= sup
wh∈Vh
wh 6=0

a(vh − u,wh) + a(u− uh, wh)

‖wh‖V
(bilinearity of a)

= sup
wh∈Vh
wh 6=0

a(vh − u,wh)

‖wh‖V
(Galerkin orth.)

≤ sup
wh∈Vh
wh 6=0

C‖vh − u‖V ‖wh‖V
‖wh‖V

(bddness of a)

= C‖vh − u‖V .
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Discretisation and quasioptimality

Proof.

Now apply the triangle inequality to ‖u− uh‖V :

‖u− uh‖V ≤ ‖u− vh‖V + ‖vh − uh‖V

≤ ‖u− vh‖V +
C

γ̃
‖u− vh‖V

=

(
1 +

C

γ̃

)
‖u− vh‖V .

As before, we can combine this with an approximation result and a
regularity result to derive error estimates for finite element discretisations.
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C6.4 Finite Element Methods for PDEs
Lecture 14: Saddle point problems

Patrick E. Farrell

University of Oxford
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We have now seen the general necessary and sufficient Babuška conditions
for the well-posedness of

find u ∈ V such that a(u, v) = F (v) for all v ∈ V.

Many noncoercive problems arise via mixed formulations (solving for more
than one variable), and in this lecture we will rephrase the well-posedness
conditions for saddle point problems: find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F (v)

b(u, q) = G(q)

for all (v, q) ∈ V ×Q.

These are the Brezzi conditions. The Brezzi conditions are easier to
understand and verify than the Babuška conditions if you have a saddle
point problem.
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Note that the problem: find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F (v)

b(u, q) = G(q)

for all (v, q) ∈ V ×Q

is equivalent to

find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) + b(u, q) = F (v) +G(q)

for all (v, q) ∈ V ×Q. (Set v = 0 and vary q ∈ Q, set q = 0 and vary
v ∈ V .)
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Examples

We’ve already seen one example:

Mixed Poisson (lecture 5)

Find (σ, u) ∈ H(div,Ω)× L2(Ω) such that∫
Ω
σ · v dx−

∫
Ω
∇ · vu−

∫
Ω
∇ · σw dx = −

∫
Ω
fw dx

for all (v, w) ∈ H(div,Ω)× L2(Ω).

Here

a(σ, v) =

∫
Ω
σ · v dx, b(v, u) = −

∫
Ω
∇ · vu dx.
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Examples

We’ve already seen one system that is not an example:

Mixed linear elasticity (lecture 7)

Find (u, p) ∈ H1
0 (Ω;Rn)× L2(Ω) such that∫

Ω
2µε(u) : ε(v) dx+

∫
Ω
p∇·v dx− 1

λ

∫
Ω
pq dx+

∫
Ω
q∇·u dx =

∫
Ω
f ·v dx,

for all (v, q) ∈ H1
0 (Ω;R2)× L2(Ω).

We can restructure this as

a(u, v) + b(v, p) = F (v)

b(u, q) + c(p, q) = G(q)

a(u, v) =

∫
Ω

2µε(u) : ε(v) dx, b(v, p) =

∫
Ω
∇·vp dx, c(p, q) = − 1

λ

∫
Ω
pq dx.

This is a saddle point problem for λ→∞.

P. E. Farrell (Oxford) Finite Element Methods 14 5 / 36



Examples

We’ve already seen one system that is not an example:

Mixed linear elasticity (lecture 7)

Find (u, p) ∈ H1
0 (Ω;Rn)× L2(Ω) such that∫

Ω
2µε(u) : ε(v) dx+

∫
Ω
p∇·v dx− 1

λ

∫
Ω
pq dx+

∫
Ω
q∇·u dx =

∫
Ω
f ·v dx,

for all (v, q) ∈ H1
0 (Ω;R2)× L2(Ω).

We can restructure this as

a(u, v) + b(v, p) = F (v)

b(u, q) + c(p, q) = G(q)

a(u, v) =

∫
Ω

2µε(u) : ε(v) dx, b(v, p) =

∫
Ω
∇·vp dx, c(p, q) = − 1

λ

∫
Ω
pq dx.

This is a saddle point problem for λ→∞.

P. E. Farrell (Oxford) Finite Element Methods 14 5 / 36



Examples

We’ve already seen one system that is not an example:

Mixed linear elasticity (lecture 7)

Find (u, p) ∈ H1
0 (Ω;Rn)× L2(Ω) such that∫

Ω
2µε(u) : ε(v) dx+

∫
Ω
p∇·v dx− 1

λ

∫
Ω
pq dx+

∫
Ω
q∇·u dx =

∫
Ω
f ·v dx,

for all (v, q) ∈ H1
0 (Ω;R2)× L2(Ω).

We can restructure this as

a(u, v) + b(v, p) = F (v)

b(u, q) + c(p, q) = G(q)

a(u, v) =

∫
Ω

2µε(u) : ε(v) dx, b(v, p) =

∫
Ω
∇·vp dx, c(p, q) = − 1

λ

∫
Ω
pq dx.

This is a saddle point problem for λ→∞.

P. E. Farrell (Oxford) Finite Element Methods 14 5 / 36



Examples

We’ve already seen one system that is not an example:

Mixed linear elasticity (lecture 7)

Find (u, p) ∈ H1
0 (Ω;Rn)× L2(Ω) such that∫

Ω
2µε(u) : ε(v) dx+

∫
Ω
p∇·v dx− 1

λ

∫
Ω
pq dx+

∫
Ω
q∇·u dx =

∫
Ω
f ·v dx,

for all (v, q) ∈ H1
0 (Ω;R2)× L2(Ω).

We can restructure this as

a(u, v) + b(v, p) = F (v)

b(u, q) + c(p, q) = G(q)

a(u, v) =

∫
Ω

2µε(u) : ε(v) dx, b(v, p) =

∫
Ω
∇·vp dx, c(p, q) = − 1

λ

∫
Ω
pq dx.

This is a saddle point problem for λ→∞.

P. E. Farrell (Oxford) Finite Element Methods 14 5 / 36



Examples

Let’s consider one more example.

The Stokes equations are an elementary model in fluid mechanics. They
describe the motion of a steady, incompressible, viscous, Newtonian,
isothermal, slow-moving fluid.

−∇2u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

Here u : Ω→ Rn is the flow velocity and p : Ω→ R is the pressure.
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Examples

Multiply the momentum equation by a vector-valued test function v ∈ V ,
and the continuity equation by a scalar-valued test function q ∈ Q:∫

Ω
−∇ · ∇u · v dx+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
q∇ · u dx = 0.

Integrate the vector Laplacian by parts:∫
Ω
∇u : ∇v dx−

∫
∂Ω
n · ∇u · v ds+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
q∇ · u dx = 0.

We have nowhere to weakly enforce u = 0, so take V = H1
0 (Ω;Rn).

P. E. Farrell (Oxford) Finite Element Methods 14 7 / 36



Examples

Multiply the momentum equation by a vector-valued test function v ∈ V ,
and the continuity equation by a scalar-valued test function q ∈ Q:∫

Ω
−∇ · ∇u · v dx+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
q∇ · u dx = 0.

Integrate the vector Laplacian by parts:∫
Ω
∇u : ∇v dx−

∫
∂Ω
n · ∇u · v ds+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
q∇ · u dx = 0.

We have nowhere to weakly enforce u = 0, so take V = H1
0 (Ω;Rn).

P. E. Farrell (Oxford) Finite Element Methods 14 7 / 36



Examples

Multiply the momentum equation by a vector-valued test function v ∈ V ,
and the continuity equation by a scalar-valued test function q ∈ Q:∫

Ω
−∇ · ∇u · v dx+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
q∇ · u dx = 0.

Integrate the vector Laplacian by parts:∫
Ω
∇u : ∇v dx−

∫
∂Ω
n · ∇u · v ds+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
q∇ · u dx = 0.

We have nowhere to weakly enforce u = 0, so take V = H1
0 (Ω;Rn).

P. E. Farrell (Oxford) Finite Element Methods 14 7 / 36



Examples

Multiply the momentum equation by a vector-valued test function v ∈ V ,
and the continuity equation by a scalar-valued test function q ∈ Q:∫

Ω
−∇ · ∇u · v dx+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
q∇ · u dx = 0.

Integrate the vector Laplacian by parts:∫
Ω
∇u : ∇v dx−

∫
∂Ω
n · ∇u · v ds+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
q∇ · u dx = 0.

We have nowhere to weakly enforce u = 0, so take V = H1
0 (Ω;Rn).

P. E. Farrell (Oxford) Finite Element Methods 14 7 / 36



Examples

Multiply the momentum equation by a vector-valued test function v ∈ V ,
and the continuity equation by a scalar-valued test function q ∈ Q:∫

Ω
−∇ · ∇u · v dx+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
q∇ · u dx = 0.

Integrate the vector Laplacian by parts:∫
Ω
∇u : ∇v dx−

∫
∂Ω
n · ∇u · v ds+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
q∇ · u dx = 0.

We have nowhere to weakly enforce u = 0, so take V = H1
0 (Ω;Rn).

P. E. Farrell (Oxford) Finite Element Methods 14 7 / 36



Examples

The formulation∫
Ω
∇u : ∇v dx+

∫
Ω
∇p · v dx =

∫
Ω
f · v dx,∫

Ω
q∇ · u dx = 0,

requires u ∈ H1
0 (Ω;Rn) and p ∈ H1(Ω).

We can weaken the regularity requirement to p ∈ L2(Ω) by integrating by
parts, and then negating the second equation for symmetry:∫

Ω
∇u : ∇v dx−

∫
Ω
p∇ · v dx =

∫
Ω
f · v dx,

−

∫
Ω
q∇ · u dx = 0,

Here

a(u, v) =

∫
Ω
∇u : ∇v dx, b(v, p) = −

∫
Ω
p∇ · v dx.
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Examples

In the strong form of the problem, p only appears via ∇p.

So if (u, p) is a solution, so is (u, p+ c) for c ∈ R. We can see this
variationally:∫

Ω
(p+ c)∇ · v dx =

∫
Ω
p∇ · v dx+ c

∫
Ω
∇ · v dx

=

∫
Ω
p∇ · v dx+ c

∫
∂Ω
v · n ds

=

∫
Ω
p∇ · v dx.

To fix a unique pressure we choose

Q = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
q dx = 0}.
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Energy minimisation

Many weak formulations arise from energy minimisation.

Many problems of saddle-point form arise from constrained minimisation.
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Energy minimisation

Consider

u = argmin
v∈H1

0 (Ω;Rn)

1

2

∫
Ω
∇v : ∇v dx−

∫
Ω
f · v dx,

subject to ∇ · v = 0.

We introduce a Lagrange multiplier p and write the Lagrangian
L : H1

0 (Ω;Rn)× L2
0(Ω)→ R:

L(u, p) =
1

2

∫
Ω
∇u : ∇u dx−

∫
Ω
f · u dx−

∫
Ω
p∇ · u dx.
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Energy minimisation

L(u, p) =
1

2

∫
Ω
∇u : ∇u dx−

∫
Ω
p∇ · u dx−

∫
Ω
f · u dx.

Calculating the Euler–Lagrange equations, we have

Lu(u, p; v) =

∫
Ω
∇u : ∇v dx−

∫
Ω
p∇ · v dx−

∫
Ω
f · v dx = 0,

Lp(u, p; q) = −
∫

Ω
q∇ · u dx = 0,

the Stokes equations in weak form.

In general constrained optimisation problems give you saddle point
problems, because the constraint equation does not involve the Lagrange
multiplier.
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Prelude: Orthogonal decompositions in Hilbert spaces
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Prelude: Orthogonal decompositions in Hilbert spaces

A very useful fact: Hilbert spaces can be cleanly separated into any closed
subspace and its orthogonal complement.

Theorem (Orthogonal decomposition of a Hilbert space)

Let H be a Hilbert space, and suppose K ⊂ H is a closed subspace of H.
Then its orthogonal complement

K⊥ := {v ∈ H : v ⊥ k for all k ∈ K}

is also a closed subspace, and

H = K ⊕K⊥,

which means that every v ∈ H can be uniquely written as

v = vK + v⊥,

with vK ∈ K and v⊥ ∈ K⊥.
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Saddle point systems in finite dimensions: homogeneous case
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Saddle point systems in finite dimensions:
homogeneous case
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Saddle point systems in finite dimensions: homogeneous case

Consider the following N ×N linear system:(
A BT

B 0

)(
u
p

)
=

(
f
0

)
,

where A ∈ RNA×NA, B ∈ RNB×NA, NA+NB = N , NA > NB.

For Stokes, A is the vector Laplacian, BT is the pressure gradient, B is
the divergence.

Since the second equation says that Bu = 0, we know that

u ∈ K := kernel(B) = {v ∈ V : Bv = 0}.

If K = {0}, then the equation reduces to BT p = f . Let’s suppose
dim(K) > 0.
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Saddle point systems in finite dimensions: homogeneous case

Let’s test the first equation with v ∈ K:

vTAu+ vTBT p = vT f,

and since vTBT p = pT (Bv) = 0, we derive the problem

find u ∈ K such that vTAu = vT f for all v ∈ K.

This is a variational problem posed on a closed subspace of a Hilbert
space, and we know how to ensure its well-posedness:

In the simpler case, assume the form is coercive on the kernel, i.e.

vTAv ≥ α‖v‖2 for all v ∈ K.

In general, we assume the Babuška conditions hold.
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Saddle point systems in finite dimensions: homogeneous case

Suppose we have solved the problem on the kernel for u, and let us see
what we have achieved.

Using the orthogonal decomposition, we know that we can write

f = fK + f⊥,

where fK ∈ K and f⊥ ⊥ K.

Testing with v ∈ K yields

vT f = vT fK + vT f⊥ = vT fK ,

and so Au = fK , and f −Au = f⊥.
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Saddle point systems in finite dimensions: homogeneous case

Having solved for the variable u, we must complete the solution of the
problem by computing the unique p ∈ Q such that

BT p = f −Au = f⊥.

By the fundamental theorem of linear algebra,

range(BT ) = kernel(B)⊥ = K⊥,

and since f⊥ ∈ range(BT ), there exists at least one p ∈ Q such that
BT p = f −Au.

However, we must ensure that there is only one such p; that is, we must
ensure that BT is injective.
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Saddle point systems in finite dimensions: homogeneous case

To ensure injectivity, we wish to ensure that BT p = 0 =⇒ p = 0.

We saw in the previous lecture that the inf-sup condition expresses this
variationally: there exists γ ∈ R such that

0 < γ ≤ inf
q∈Q
q 6=0

sup
v∈V
v 6=0

vTBT q

‖q‖‖v‖
.

If we assume this holds, then the operator BT : Q→ K⊥ is a bijection,
and we can solve for p ∈ Q uniquely.
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The inhomogeneous case

Section 5

Saddle point systems in finite dimensions: the
inhomogeneous case
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The inhomogeneous case

Now consider the modified problem(
A BT

B 0

)(
u
p

)
=

(
f
g

)
,

the inhomogeneous case.

Again, define K to be the kernel of B

K = kernel(B)

and write
u = uK + u⊥.
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The inhomogeneous case

Suppose that we change our basis so that we may write

u =

(
uK

u⊥

)
, A =

(
AKK AK⊥

A⊥K A⊥⊥

)
.

Such a change of basis is always possible.

We can therefore write

AKKuK +AK⊥u⊥ = fK ,

A⊥KuK +A⊥⊥u⊥ +BT p = f⊥,

Bu⊥ = g.

There is no BT p term in the first equation because its range is K⊥ and so
it can only contribute to the second equation after our change of basis.
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The inhomogeneous case

Can we solve Bu⊥ = g for u⊥? Yes! The inf-sup condition guarantees
BT : Q→ K⊥ is a bijection, and so B : K⊥ → Q is also a bijection. We
solve this for u⊥.

Testing the equation

AKKuK = fK −AK⊥u⊥

with v ∈ K yields a linear variational problem over K

find uK ∈ K such that vTAKKuK = vT fK − vTAK⊥u⊥ for all v ∈ K

as before. We solve the problem on the kernel for uK .

We can then solve

BT p = f⊥ −A⊥KuK −A⊥⊥u⊥

for p as before.

So no further assumptions are required for the inhomogeneous case.
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Brezzi’s theorem

We now state the Brezzi conditions for the well-posedness of the abstract
saddle point problem.

Theorem (Well-posedness of saddle point problems)

Let V and Q be Hilbert spaces. Given F ∈ V ∗ and G ∈ Q∗, we consider
the problem: find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F (v),

b(u, q) = G(q),

for all (v, q) ∈ V ×Q. Let

K = {v ∈ V : b(v, q) = 0 for all q ∈ Q}.
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Brezzi’s theorem

Theorem (Well-posedness of saddle point problems)

Suppose that

(1) a : V × V → R and b : V ×Q→ R are bounded bilinear forms;

(2) The variational problem

find u ∈ K such that a(u, v) = F (v) for all v ∈ K

is well-posed;

(3) b satisfies the following inf-sup condition: there exists γ ∈ R such that

0 < γ ≤ inf
q∈Q
q 6=0

sup
v∈V
v 6=0

b(v, q)

‖v‖V ‖q‖Q
.

Then there exists a unique pair (u, p) ∈ V ×Q that solves the variational
problem, and the solution is stable with respect to the data F and G.
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Finite element discretisations of mixed problems

Take Vh ×Qh ⊂ V ×Q, and consider: find (uh, ph) ∈ Vh ×Qh such that

a(uh, vh) + b(vh, ph) = F (vh),

b(uh, qh) = G(qh),

for all (vh, qh) ∈ Vh ×Qh.

For this to be well-posed, Brezzi’s conditions require that the LVP
involving a is well-posed on the discrete kernel

Kh = {vh ∈ Vh : b(vh, qh) = 0 for all qh ∈ Qh}.

Compare with

K ∩ Vh = {vh ∈ Vh : b(vh, q) = 0 for all q ∈ Q}.
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Finite element discretisations of mixed problems

In general, for vh ∈ Vh, the property

b(vh, qh) = 0 for all qh ∈ Qh

will not imply
b(vh, q) = 0 for all q ∈ Q.

(It will sometimes, but not always.)

So in general Kh 6⊂ K. This means that well-posedness of a on the
discrete kernel Kh does not necessarily follow automatically from
well-posedness of a on the full kernel K.

One way to look at it: we have a non-conforming discretisation of the
kernel problem.
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Finite element discretisations of mixed problems

That’s one way a discretisation might fail. Any others?

Given that b satisfies the inf-sup condition over V and Q, it does not
follow that b satisfies the inf-sup condition: there exists γ̃ ∈ R such that

0 < γ̃ ≤ inf
qh∈Qh
qh 6=0

sup
vh∈Vh
vh 6=0

b(vh, qh)

‖vh‖‖qh‖
.

We will see this by counterexample (later).

So to analyse our discretisation error, we must additionally assume the
Brezzi conditions hold for our discrete problem. This is a compatibility
condition on the elements we choose for Vh and Qh: they must work
together.
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Quasi-optimality

Section 8

Quasi-optimality
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Quasi-optimality

Theorem

Consider the Galerkin approximation of our saddle point problem over
Vh ×Qh, a closed subspace of V ×Q:

a(uh, vh) + b(vh, ph) = F (vh),

b(uh, qh) = G(qh).

Let
Kh = {vh ∈ Vh : b(vh, qh) = 0 for all qh ∈ Qh}.
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Quasi-optimality

Theorem

In addition to the assumptions of Brezzi’s theorem that guarantee
well-posedness of the continuous problem, suppose that

(1) The variational problem

find uh ∈ Kh such that a(uh, vh) = F (vh) for all vh ∈ Kh

is well-posed.

(2) b satisfies the following inf-sup condition over Vh × Qh: there exists
γ̃ ∈ R such that

0 < γ̃ ≤ inf
qh∈Qh
qh 6=0

sup
vh∈Vh
vh 6=0

b(vh, qh)

‖vh‖V ‖qh‖Q
.

Then the Galerkin approximation is well-posed.
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Quasi-optimality

Theorem

Furthermore, the approximate solutions are quasi-optimal: there exists
c <∞ such that

‖u− uh‖V + ‖p− ph‖Q ≤ c
(

inf
vh∈Vh

‖u− vh‖V + inf
qh∈Qh

‖p− qh‖Q
)
.

This means you generally have to think about the quality of the
approximation for u and p together: there’s probably no point having a
very high-order discretisation for u and a very low-order one for p!
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Review

Many interesting problems are of saddle point form: find (u, p) ∈ V ×Q
such that

a(u, v) + b(v, p) = F (v)

b(u, q) = G(q)

for all (v, q) ∈ V ×Q.

For this to be well-posed, we needed continuity of a and b, and

(1) The variational problem

find u ∈ K such that a(u, v) = F (v) for all v ∈ K

over K := {v ∈ V : b(v, q) = 0 for all q ∈ Q} is well-posed;

(2) b satisfies the following inf-sup condition: there exists γ ∈ R such that

0 < γ ≤ inf
q∈Q
q 6=0

sup
v∈V
v 6=0

b(v, q)

‖v‖V ‖q‖Q
.
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Review

Consider a Galerkin approximation: find (uh, ph) ∈ Vh ×Qh such that

a(uh, vh) + b(vh, ph) = F (vh)

b(uh, qh) = G(qh)

for all (vh, qh) ∈ Vh ×Qh.

We similarly require

(1) The variational problem

find uh ∈ Kh such that a(uh, vh) = F (vh) for all vh ∈ Kh

over Kh := {vh ∈ Vh : b(vh, qh) = 0 for all qh ∈ Qh} is well-posed;

(2) Vh ×Qh satisfies the following inf-sup condition: there exists γ̃ ∈ R
such that

0 < γ̃ ≤ inf
qh∈Qh
qh 6=0

sup
vh∈Vh
vh 6=0

b(vh, qh)

‖vh‖V ‖qh‖Q
.

In this lecture we apply this theory to the mixed Poisson equation.
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Mixed Poisson in 1D

Section 2

Mixed Poisson in 1D
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Mixed Poisson in 1D

Let’s consider the mixed Poisson equation in one dimension. Start with

−u′′ = f, u(0) = 0 = u(1),

and introduce σ = −u′ to get the system

σ + u′ = 0,

σ′ = f.

Testing the equations with (τ, v) ∈ V ×Q, we get∫
Ω
στ dx+

∫
Ω
u′τ dx = 0,∫

Ω
σ′v dx =

∫
Ω
fv dx.
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Mixed Poisson in 1D

∫
Ω
στ dx+

∫
Ω
u′τ dx = 0,∫

Ω
σ′v dx =

∫
Ω
fv dx.

As it stands we need both σ, τ ∈ H1(Ω) and u, v ∈ H1(Ω). Let’s integrate
by parts to remove the derivative from u onto τ , and negate:∫

Ω
στ dx−

∫
Ω
uτ ′ dx+

∫
∂Ω
uτ ds = 0,

−
∫

Ω
σ′v dx = −

∫
Ω
fv dx.

We can impose the Dirichlet BCs on u naturally by dropping the boundary
term.
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Mixed Poisson in 1D

We thus have: find (σ, u) ∈ V ×Q := H1(Ω)× L2(Ω) such that∫
Ω
στ dx−

∫
Ω
uτ ′ dx−

∫
Ω
σ′v dx = −

∫
Ω
fv dx

for all (τ, v) ∈ V ×Q.

Let’s think about well-posedness. Is

a(σ, τ) =

∫
Ω
στ dx = (σ, τ)L2(Ω)

coercive over the kernel

K := {τ ∈ H1(Ω) :

∫
Ω
τ ′v dx = 0 for all v ∈ L2(Ω)}?

Since τ ′ ∈ L2(Ω), choosing v = τ ′ as test function yields that

τ ∈ K ⇐⇒ τ ′ = 0.
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Mixed Poisson in 1D

For coercivity on the kernel, note that

a(τ, τ) = ‖τ‖2L2(Ω) = ‖τ‖2L2(Ω) + ‖τ ′‖2L2(Ω) = ‖τ‖2H1(Ω),

so it is coercive with constant α = 1. This is only true on the kernel,
where τ ′ = 0. It is not coercive on the whole of H1(Ω)!
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Mixed Poisson in 1D

For the inf-sup condition, we require that there exists γ such that

0 < γ ≤ inf
v∈L2(Ω)
v 6=0

sup
τ∈H1(Ω)
τ 6=0

∫
Ω τ
′v dx

‖τ‖H1(Ω)‖v‖L2(Ω)
.

For a given v ∈ L2(Ω), choose

τ(x) =

∫ x

0
v(x) dx

so that τ ′ = v and τ(0) = 0. We saw in Lecture 5, slide 7–9 that for such
a function ‖τ‖L2(Ω) ≤ c‖τ ′‖L2(Ω) = c‖v‖L2(Ω) and hence

‖τ‖H1(Ω) ≤ c‖v‖L2(Ω)

for some (different) c.
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∫ x

0
v(x) dx

so that τ ′ = v and τ(0) = 0. We saw in Lecture 5, slide 7–9 that for such
a function ‖τ‖L2(Ω) ≤ c‖τ ′‖L2(Ω) = c‖v‖L2(Ω) and hence

‖τ‖H1(Ω) ≤ c‖v‖L2(Ω)

for some (different) c.
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Mixed Poisson in 1D

With this choice, for any v ∈ L2(Ω),

sup
τ∈V
τ 6=0

∫
Ω τ
′v dx

‖τ‖H1(Ω)‖v‖L2(Ω)
≥
‖v‖2L2(Ω)

c‖v‖2
L2(Ω)

=
1

c
> 0

so the inf-sup condition holds.

Applying Brezzi’s theorem, we conclude that the mixed formulation is
well-posed.

Here we see that the inf-sup condition is really surjectivity of

d

dx
: H1(Ω)→ L2(Ω),

plus continuity.
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Discretising the mixed Poisson equation in 1D

Section 3

Discretising the mixed Poisson equation in 1D
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Discretising the mixed Poisson equation in 1D

Let’s consider three different discretisations for Vh ×Qh:

(A) CG1 × CG1

(B) CG1 ×DG0

(C) CG2 ×DG0

Try them with f = 8, so that the exact solution is u = −4x(x− 1):
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Discretising the mixed Poisson equation in 1D Discretisation (A): CG1 × CG1

Subsection 1

Discretisation (A): CG1 × CG1
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Discretising the mixed Poisson equation in 1D Discretisation (A): CG1 × CG1

The discrete inf-sup condition is that there exists γ̃ such that

0 < γ̃ ≤ inf
vh∈Qh
vh 6=0

sup
τh∈Vh
τh 6=0

∫
Ω τ
′
hvh dx

‖τh‖H1(Ω)‖vh‖L2(Ω)
.

Let’s choose vh ∈ Qh in the worst possible way. On each cell vh is a linear
polynomial and τ ′h is a constant.

For integrands of polynomial degree one, midpoint quadrature is exact.

If we choose vh to have value zero at each midpoint, then∫
Ω
τ ′hvh dx =

∑
K∈M

∫
K
τ ′hvh dx

=
∑
K∈M

τ ′hvh (midpoint(K))

= 0

for all τh ∈ Vh.

P. E. Farrell (Oxford) Finite Element Methods 15 14 / 36



Discretising the mixed Poisson equation in 1D Discretisation (A): CG1 × CG1

The discrete inf-sup condition is that there exists γ̃ such that

0 < γ̃ ≤ inf
vh∈Qh
vh 6=0

sup
τh∈Vh
τh 6=0

∫
Ω τ
′
hvh dx

‖τh‖H1(Ω)‖vh‖L2(Ω)
.

Let’s choose vh ∈ Qh in the worst possible way. On each cell vh is a linear
polynomial and τ ′h is a constant.

For integrands of polynomial degree one, midpoint quadrature is exact.

If we choose vh to have value zero at each midpoint, then∫
Ω
τ ′hvh dx =

∑
K∈M

∫
K
τ ′hvh dx

=
∑
K∈M

τ ′hvh (midpoint(K))

= 0

for all τh ∈ Vh.

P. E. Farrell (Oxford) Finite Element Methods 15 14 / 36



Discretising the mixed Poisson equation in 1D Discretisation (A): CG1 × CG1

The discrete inf-sup condition is that there exists γ̃ such that

0 < γ̃ ≤ inf
vh∈Qh
vh 6=0

sup
τh∈Vh
τh 6=0

∫
Ω τ
′
hvh dx

‖τh‖H1(Ω)‖vh‖L2(Ω)
.

Let’s choose vh ∈ Qh in the worst possible way. On each cell vh is a linear
polynomial and τ ′h is a constant.

For integrands of polynomial degree one, midpoint quadrature is exact.

If we choose vh to have value zero at each midpoint, then∫
Ω
τ ′hvh dx =

∑
K∈M

∫
K
τ ′hvh dx

=
∑
K∈M

τ ′hvh (midpoint(K))

= 0

for all τh ∈ Vh.

P. E. Farrell (Oxford) Finite Element Methods 15 14 / 36



Discretising the mixed Poisson equation in 1D Discretisation (A): CG1 × CG1

The discrete inf-sup condition is that there exists γ̃ such that

0 < γ̃ ≤ inf
vh∈Qh
vh 6=0

sup
τh∈Vh
τh 6=0

∫
Ω τ
′
hvh dx

‖τh‖H1(Ω)‖vh‖L2(Ω)
.

Let’s choose vh ∈ Qh in the worst possible way. On each cell vh is a linear
polynomial and τ ′h is a constant.

For integrands of polynomial degree one, midpoint quadrature is exact.

If we choose vh to have value zero at each midpoint, then∫
Ω
τ ′hvh dx =

∑
K∈M

∫
K
τ ′hvh dx

=
∑
K∈M

τ ′hvh (midpoint(K))

= 0

for all τh ∈ Vh.

P. E. Farrell (Oxford) Finite Element Methods 15 14 / 36



Discretising the mixed Poisson equation in 1D Discretisation (A): CG1 × CG1

The discrete inf-sup condition is that there exists γ̃ such that

0 < γ̃ ≤ inf
vh∈Qh
vh 6=0

sup
τh∈Vh
τh 6=0

∫
Ω τ
′
hvh dx

‖τh‖H1(Ω)‖vh‖L2(Ω)
.

Let’s choose vh ∈ Qh in the worst possible way. On each cell vh is a linear
polynomial and τ ′h is a constant.

For integrands of polynomial degree one, midpoint quadrature is exact.

If we choose vh to have value zero at each midpoint, then∫
Ω
τ ′hvh dx =

∑
K∈M

∫
K
τ ′hvh dx

=
∑
K∈M

τ ′hvh (midpoint(K))

= 0

for all τh ∈ Vh.

P. E. Farrell (Oxford) Finite Element Methods 15 14 / 36



Discretising the mixed Poisson equation in 1D Discretisation (A): CG1 × CG1

The discrete inf-sup condition is that there exists γ̃ such that

0 < γ̃ ≤ inf
vh∈Qh
vh 6=0

sup
τh∈Vh
τh 6=0

∫
Ω τ
′
hvh dx

‖τh‖H1(Ω)‖vh‖L2(Ω)
.

Let’s choose vh ∈ Qh in the worst possible way. On each cell vh is a linear
polynomial and τ ′h is a constant.

For integrands of polynomial degree one, midpoint quadrature is exact.

If we choose vh to have value zero at each midpoint, then∫
Ω
τ ′hvh dx =

∑
K∈M

∫
K
τ ′hvh dx

=
∑
K∈M

τ ′hvh (midpoint(K))

= 0

for all τh ∈ Vh.
P. E. Farrell (Oxford) Finite Element Methods 15 14 / 36



Discretising the mixed Poisson equation in 1D Discretisation (A): CG1 × CG1

Thus, for this discretisation,

0 = inf
vh∈Qh
vh 6=0

sup
τh∈Vh
τh 6=0

∫
Ω τ
′
hvh dx

‖τh‖H1(Ω)‖vh‖L2(Ω)
.

Conclusion

The CG1 × CG1 discretisation is unstable: it fails the inf-sup condition.
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Discretising the mixed Poisson equation in 1D Discretisation (B): CG1 × DG0

Subsection 2

Discretisation (B): CG1 ×DG0
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Discretising the mixed Poisson equation in 1D Discretisation (B): CG1 × DG0

Let’s check the two discrete Brezzi conditions.

The discrete kernel is

Kh := {τh ∈ Vh :

∫
Ω
τ ′hvh dx = 0 for all vh ∈ Qh}.

The derivative of a CG1 function is a DG0 function.

Thus, if τh ∈ Kh, choosing vh = τ ′h yields that τ ′h = 0, so Kh = K ∩ Vh.

Hence, for τh ∈ Kh,

a(τh, τh) = ‖τh‖2L2(Ω) = ‖τh‖2L2(Ω) + ‖τ ′h‖2L2(Ω) = ‖τh‖2H1(Ω),

so the a(τh, τh) form is coercive over Kh.

P. E. Farrell (Oxford) Finite Element Methods 15 17 / 36



Discretising the mixed Poisson equation in 1D Discretisation (B): CG1 × DG0

Let’s check the two discrete Brezzi conditions.

The discrete kernel is

Kh := {τh ∈ Vh :

∫
Ω
τ ′hvh dx = 0 for all vh ∈ Qh}.

The derivative of a CG1 function is a DG0 function.

Thus, if τh ∈ Kh, choosing vh = τ ′h yields that τ ′h = 0, so Kh = K ∩ Vh.

Hence, for τh ∈ Kh,

a(τh, τh) = ‖τh‖2L2(Ω) = ‖τh‖2L2(Ω) + ‖τ ′h‖2L2(Ω) = ‖τh‖2H1(Ω),

so the a(τh, τh) form is coercive over Kh.

P. E. Farrell (Oxford) Finite Element Methods 15 17 / 36



Discretising the mixed Poisson equation in 1D Discretisation (B): CG1 × DG0

Let’s check the two discrete Brezzi conditions.

The discrete kernel is

Kh := {τh ∈ Vh :

∫
Ω
τ ′hvh dx = 0 for all vh ∈ Qh}.

The derivative of a CG1 function is a DG0 function.

Thus, if τh ∈ Kh, choosing vh = τ ′h yields that τ ′h = 0, so Kh = K ∩ Vh.

Hence, for τh ∈ Kh,

a(τh, τh) = ‖τh‖2L2(Ω) = ‖τh‖2L2(Ω) + ‖τ ′h‖2L2(Ω) = ‖τh‖2H1(Ω),

so the a(τh, τh) form is coercive over Kh.

P. E. Farrell (Oxford) Finite Element Methods 15 17 / 36



Discretising the mixed Poisson equation in 1D Discretisation (B): CG1 × DG0

Let’s check the two discrete Brezzi conditions.

The discrete kernel is

Kh := {τh ∈ Vh :

∫
Ω
τ ′hvh dx = 0 for all vh ∈ Qh}.

The derivative of a CG1 function is a DG0 function.

Thus, if τh ∈ Kh, choosing vh = τ ′h yields that τ ′h = 0, so Kh = K ∩ Vh.

Hence, for τh ∈ Kh,

a(τh, τh) = ‖τh‖2L2(Ω) = ‖τh‖2L2(Ω) + ‖τ ′h‖2L2(Ω) = ‖τh‖2H1(Ω),

so the a(τh, τh) form is coercive over Kh.

P. E. Farrell (Oxford) Finite Element Methods 15 17 / 36



Discretising the mixed Poisson equation in 1D Discretisation (B): CG1 × DG0

Let’s check the two discrete Brezzi conditions.

The discrete kernel is

Kh := {τh ∈ Vh :

∫
Ω
τ ′hvh dx = 0 for all vh ∈ Qh}.

The derivative of a CG1 function is a DG0 function.

Thus, if τh ∈ Kh, choosing vh = τ ′h yields that τ ′h = 0, so Kh = K ∩ Vh.

Hence, for τh ∈ Kh,

a(τh, τh) = ‖τh‖2L2(Ω) = ‖τh‖2L2(Ω) + ‖τ ′h‖2L2(Ω) = ‖τh‖2H1(Ω),

so the a(τh, τh) form is coercive over Kh.

P. E. Farrell (Oxford) Finite Element Methods 15 17 / 36



Discretising the mixed Poisson equation in 1D Discretisation (B): CG1 × DG0

What about the discrete inf-sup condition? Does there exist a γ̃ such that

0 < γ̃ ≤ inf
vh∈Qh
vh 6=0

sup
τh∈Vh
τh 6=0

∫
Ω τ
′
hvh dx

‖τh‖H1(Ω)‖vh‖L2(Ω)
?

In infinite dimensions we proved this by constructing a τ ∈ V for any
v ∈ Q

τ(x) =

∫ x

0
v(x) dx.

If vh is piecewise constant, the associated τ is piecewise linear and
continuous, so τ ∈ Vh! So the inf-sup argument works in the same way.

Conclusion

This discretisation is stable, by Brezzi’s theorem.
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Discretising the mixed Poisson equation in 1D Discretisation (B): CG1 × DG0

These are the same arguments that worked in infinite dimensions. Why did
they work again?

H1 L2

Vh Qh

d
dx

d
dx

Structure preservation

It worked because our choice of function spaces mimics the structure of
the infinite-dimensional problem: the diagram commutes.
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Discretising the mixed Poisson equation in 1D Discretisation (C): CG2 × DG0

Subsection 3

Discretisation (C): CG2 ×DG0
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Discretising the mixed Poisson equation in 1D Discretisation (C): CG2 × DG0

First let’s consider the inf-sup condition. Let Vh be constructed with CG2

elements, and let Ṽh ( Vh be constructed with CG1 elements. Then for
any vh ∈ Qh,

sup
τh∈Vh
τh 6=0

∫
Ω τ
′
hvh dx

‖τh‖H1(Ω)‖vh‖L2(Ω)
≥ sup

τh∈Ṽh
τh 6=0

∫
Ω τ
′
hvh dx

‖τh‖H1(Ω)‖vh‖L2(Ω)

≥ γ̃‖vh‖L2(Ω),

since discretisation (B) is stable.

In other words, enriching your discretisation of the V -space can only
improve the inf-sup condition.

What about well-posedness of the LVP involving a on the kernel?
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Discretising the mixed Poisson equation in 1D Discretisation (C): CG2 × DG0

Increasing the size of Vh makes the discrete kernel Kh larger, so it is
harder to satisfy coercivity.

Consider a single mesh cell K = [x̄, x̄+ h]. Define

τh(x) = (x− x̄)(x− (x̄+ h))

on K, and zero elsewhere. We have τh ∈ Vh.

Here the discrete kernel is:

Kh = {τh ∈ Vh :

∫
Ω
τ ′hvh dx = 0 for all vh ∈ Qh}.

Claim: τh ∈ Kh.
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Discretising the mixed Poisson equation in 1D Discretisation (C): CG2 × DG0

Calculating, on K,

τh(x) = x2 − x(x̄+ h)− xx̄+ x̄(x̄+ h),

and so
τ ′h(x) = 2x− 2x̄− h.

We know that for integrands of degree 1, midpoint quadrature is exact, so∫ x̄+h

x̄
τ ′hvh dx = vh

∫ x̄+h

x̄
τ ′h dx = hvhτ

′
h(x̄+ h/2)

and thus we evaluate τ ′h(x̄+ h/2):

τ ′h(x̄+
h

2
) = 2x̄+ h− 2x̄− h = 0.

So τh ∈ Kh.
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Discretising the mixed Poisson equation in 1D Discretisation (C): CG2 × DG0

So now we must decide whether a(σ, τ) = (σ, τ)L2(Ω) is coercive on Kh.

Taking τh as previously constructed,

a(τh, τh) = O(h5), ‖τh‖2H1(Ω) = O(h3),

so
a(τh, τh)/‖τh‖2H1(Ω) = O(h2)→ 0 as h→ 0.

So there is a loss of coercivity on the kernel as the mesh is refined.
Assembling on any given mesh yields an invertible linear system, but the
resulting approximations do not converge to the exact solution as the
mesh is refined.

Conclusion

The CG2 ×DG0 discretisation is unstable: loss of coercivity on the kernel.
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Discretising the mixed Poisson equation in 1D Discretisation (C): CG2 × DG0

(A) CG1 × CG1 7 (does not satisfy inf-sup)

(B) CG1 ×DG0 3

(C) CG2 ×DG0 7 (coercivity on the kernel)
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Higher dimensions

Section 4

Higher dimensions
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Higher dimensions

Let’s now recall the mixed Poisson equation in higher dimensions. As in
Lecture 5, introducing σ = −∇u, we have

σ +∇u = 0 in Ω,

∇ · σ = f in Ω,

u = 0 on ∂Ω.

This yields the variational formulation: Find (σ, u) ∈ H(div,Ω)× L2(Ω)
such that∫

Ω
σ · v dx−

∫
Ω
∇ · vu−

∫
Ω
∇ · σw dx = −

∫
Ω
fw dx

for all (v, w) ∈ H(div,Ω)× L2(Ω).
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Higher dimensions

In two dimensions, the L2(Ω) de Rham complex is

H1 H(div) L2

Σh Vh Qh

curl div

curl div
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Higher dimensions

In two dimensions, the L2(Ω) de Rham complex is

H1 H(div) L2

Σh Vh Qh

curl div

curl div

In two dimensions, curl of a scalar field is: take its gradient and rotate it
90◦ anticlockwise. On a simply connected domain, anything in kernel(div)
is in the range of curl.

P. E. Farrell (Oxford) Finite Element Methods 15 28 / 36



Higher dimensions

In two dimensions, the L2(Ω) de Rham complex is

H1 H(div) L2

Σh Vh Qh

curl div

curl div

In two dimensions, curl of a scalar field is: take its gradient and rotate it
90◦ anticlockwise. On a simply connected domain, anything in kernel(div)
is in the range of curl.

It would make sense to choose Vh ⊂ H(div,Ω) and Qh ⊂ L2(Ω) so that

div(Vh) = Qh.

P. E. Farrell (Oxford) Finite Element Methods 15 28 / 36



Higher dimensions

In two dimensions, the L2(Ω) de Rham complex is

H1 H(div) L2

Σh Vh Qh

curl div

curl div

In two dimensions, curl of a scalar field is: take its gradient and rotate it
90◦ anticlockwise. On a simply connected domain, anything in kernel(div)
is in the range of curl.

It would make sense to choose Vh ⊂ H(div,Ω) and Qh ⊂ L2(Ω) so that

div(Vh) = Qh.

P. E. Farrell (Oxford) Finite Element Methods 15 28 / 36



Higher dimensions

Let’s try BDM1 ×DG0, and [CG1]2 ×DG0 with exact
u = 4x(x− 1)y(y − 1):

The results with Brezzi–Douglas–Marini look correct (they are). The
results with continuous Lagrange elements for the flux are rubbish. The
element pair is not stable; the inf-sup condition fails.

P. E. Farrell (Oxford) Finite Element Methods 15 29 / 36



Higher dimensions

Let’s try BDM1 ×DG0, and [CG1]2 ×DG0 with exact
u = 4x(x− 1)y(y − 1):

The results with Brezzi–Douglas–Marini look correct (they are). The
results with continuous Lagrange elements for the flux are rubbish. The
element pair is not stable; the inf-sup condition fails.

P. E. Farrell (Oxford) Finite Element Methods 15 29 / 36



Higher dimensions

Let’s try BDM1 ×DG0, and [CG1]2 ×DG0 with exact
u = 4x(x− 1)y(y − 1):

The results with Brezzi–Douglas–Marini look correct (they are). The
results with continuous Lagrange elements for the flux are rubbish. The
element pair is not stable; the inf-sup condition fails.

P. E. Farrell (Oxford) Finite Element Methods 15 29 / 36



Higher dimensions Well-posedness of BDM1 × DG0

Subsection 1

Well-posedness of BDM1 ×DG0
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Higher dimensions Well-posedness of BDM1 × DG0

Let’s investigate the Brezzi conditions for the BDM1 ×DG0 discretisation.

We have

Kh = {τh ∈ Vh :

∫
Ω
∇ · τhvh dx = 0 for all vh ∈ Qh},

and since div(Vh) = Qh, we can rewrite this as

Kh = {τh ∈ Vh : ∇ · τh = 0} = K ∩ Vh.

So in this case Kh ⊂ K and coercivity on the kernel is inherited with
α = 1.
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Higher dimensions Well-posedness of BDM1 × DG0

The inf-sup condition will follow from the following results. Consider the
smoother complex

H1 L2

Vh Qh

div

πV πQ

div

There exist bounded cochain projections

πV : H1(Ω)→ Vh,

πQ : L2(Ω) → Qh,

(so π2
V = πV , π

2
Q = πQ) such that for all τ ∈ H1(Ω),

‖πV τ‖H(div,Ω) ≤ CV ‖τ‖H1(Ω),

∇ · (πV τ) = πQ∇ · τ.
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Higher dimensions Well-posedness of BDM1 × DG0

In this context we use H1(Ω) as the domain of πV in order to ensure that
the Brezzi–Douglas–Marini degrees of freedom are all defined.

This is analogous to the requirement that we apply the continuous
Lagrange interpolation operator to H2(Ω)-smooth functions.

The development of a bounded cochain projection onto BDMk with
domain H(div,Ω) is much more technical.
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Higher dimensions Well-posedness of BDM1 × DG0

Theorem

There exists γ̃ such that for all vh ∈ Qh,

γ̃‖vh‖L2(Ω) ≤ sup
τh∈Vh
τh 6=0

∫
Ω∇ · τhvh dx

‖τh‖H(div,Ω)
.

Proof.

Let’s construct a τh ∈ Vh such that ∇ · τh = vh and ‖τh‖V ≤ c‖vh‖Q for
some c.

First find σ ∈ H1(Ω) with ∇ · σ = vh, ‖σ‖H1(Ω) ≤ c‖vh‖L2(Ω). We can do
this by extending the domain to a disc (so an elliptic regularity result
applies), extending vh by zero, then solve −∇2u = vh with zero Dirichlet
BCs for u ∈ H2 on the extended domain. We then set σ = − ∇u|Ω.
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Higher dimensions Well-posedness of BDM1 × DG0

Proof.

Now set τh = πV σ.

Using the commuting diagram property,

∇ · τh = ∇ · πV σ
= πQ∇ · σ
= πQvh

= vh,

and
‖τh‖V ≤ Cv‖σ‖H1(Ω) ≤ Cvc‖vh‖L2(Ω).

Using τh to give a lower-bound for the supremum concludes the argument,
as before.
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Higher dimensions Well-posedness of BDM1 × DG0

This kind of analysis, using Hilbert complexes to understand and preserve
the structure, is now fundamental to the finite element method. The
theory goes by the name of the finite element exterior calculus.

We develop stable and structure-preserving discretisations of PDEs by
constructing subcomplexes with bounded cochain projections.

The finite element exterior calculus connects numerical approximation of
PDEs with geometry and topology (the de Rham complex encodes the
topology of the domain, and so does a subcomplex!).

It is now used to develop structure-preserving methods in fluid mechanics,
elasticity, electromagnetism, general relativity, and beyond.
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