
Finite Element Methods. QS 4
This sheet is not to be turned in. Complete it, and check your answers with the provided solutions.

Class: Trinity term.

1. In lectures we proved that for a stable discretisation of a stable (noncoercive) problem
of the form

a(u, v) = F (v) for all v ∈ V, (T)

a Galerkin approximation satisfies the quasi-optimality result

‖u− uh‖V ≤ (1 + c) inf
vh∈Vh

‖u− vh‖V ,

where uh is the solution to the Galerkin approximation of (T) over a closed subspace
Vh ( V . Here c = C/γ̃, where C is the continuity constant of a and γ̃ is the discrete
inf-sup constant.

(i) Prove that (under the same conditions) the Galerkin approximation is stable, i.e. uh
satisfies

‖uh‖V ≤ c‖u‖V ,

for the same constant c = C/γ̃.

(ii) For fixed Vh ( V and a, consider the operator P : V → Vh defined by

a(uh, vh) = a(u, vh) for all vh ∈ Vh.

In this equation we think of u as an input and uh = Pu as an output. Prove that
P is linear and is a projection, i.e. P 2 = P .

(iii) A result from functional analysis states that for a bounded linear projection P :
V → V satisfying 0 6= P 2 = P 6= I (I the identity operator on V ),

‖P‖L(V,V ) = ‖I − P‖L(V,V ),

where the ‖ · ‖L(V,V ) norm is the operator norm

‖Q‖L(V,V ) = sup
u∈V
u6=0

‖Qu‖V
‖u‖V

.

Using this result, derive the improved quasi-optimality estimate

‖u− uh‖V ≤ c inf
vh∈Vh

‖u− vh‖V .

2. Let V = H1
0 (Ω;Rn) and Q = L2

0(Ω). Let

L(u, p) =
1

2

∫
Ω
∇u : ∇u dx−

∫
Ω
f · u dx−

∫
Ω
p∇ · u dx.
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We say (u, p) is a saddle point of L iff

L(u, q) ≤ L(u, p) ≤ L(v, p)

for all v ∈ V , q ∈ Q.

Show that (u, p) is a weak solution of the Stokes equations if and only if it is a saddle
point of the Lagrangian. (This is why these problems are called saddle point problems!)

3. Consider the mixed Poisson equation: find (σ, u) ∈ H(div,Ω)× L2(Ω) such that∫
Ω
σ · τ dx−

∫
Ω
∇ · τu−

∫
Ω
∇ · σw dx = −

∫
Ω
fw dx

for all (τ, w) ∈ H(div,Ω)× L2(Ω).

(i) Write the mixed Poisson equation as the Fréchet derivative of a Lagrangian L(τ, w).

(ii) What constrained optimisation problem is encoded by this Lagrangian?

4. In this question we will investigate the key structure-preserving properties of the so-called
bounded cochain projections πV and πQ used to prove the inf-sup inequality for the mixed
Poisson equation in Lecture 15. We consider the complex

H1(Ω;R2) L2(Ω)

Vh Qh

div

πV πQ

div

Here Vh is constructed on a triangular mesh with the Brezzi–Douglas–Marini element of
degree 1: K = 4, V = P1(K)2, and degrees of freedom L defined by

`2i(v) =

∫
ei

v · n ds, `2i+1(v) =

∫
ei

v · nl ds,

where ei is the ith edge of the triangle K, i = 0, . . . , 2, n is the outward normal to the
edge, and l is a fixed linear polynomial on the edge. (In other words, {1, l} is a basis
for P1(ei)). Define πV to be the finite element interpolation operator induced by this
finite element. That is, the interpolant πV : H1(Ω;R2) → Vh matches the zeroth and
first order moments of the normal component of the interpolated function on each edge.

As in lectures, Qh is constructed with the discontinous Lagrange element of degree 0:
K = 4, V = P0(K) = span(1), and

L =

{
` : v 7→

∫
Ω
v dx

}
.
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Define πQ to be the finite element interpolation operator induced by this finite element.
In other words, πQ : L2(Ω)→ Qh is the L2(Ω)-projection, given by∫

Ω
(πQq)ph dx =

∫
Ω
qph dx for all ph ∈ Qh.

(a) Show the commuting diagram property holds, i.e. that for any τ ∈ H1(Ω;R2),

∇ · (πV τ) = πQ(∇ · τ).

(b) We now turn to consider the boundedness of these cochain projections. Show that
πQ is bounded, i.e. for all w ∈ L2(Ω),

‖πQw‖L2(Ω) ≤ ‖w‖L2(Ω).

(c) Given the approximation results

‖τ − πV τ‖L2(Ω) ≤ ch|τ |H1(Ω), ‖w − πQw‖L2(Ω) ≤ ch‖w‖H1(Ω),

show that πV is bounded: there exists c ∈ R independent of h such that for all τ ∈
H1(Ω;R2),

‖πV τ‖H(div;Ω) ≤ c‖τ‖H1(Ω).

Here c is a generic constant that may take different values on different uses. [Hint: first
bound ‖πV τ‖L2(Ω) by writing πV τ = τ + πV τ − τ and applying the triangle inequality.]

(d) Prove that if ∇ · τ = 0, then ∇ · πV τ = 0 also.

5. Let Ω ⊂ R3. It is desirable to construct a H2(Ω)-conforming finite element in three
dimensions. Consider the following candidate:

Definition (Tetrahedral Argyris element). Let K be a tetrahedron (4 vertices, 4 facets,
6 edges), let V = P5(K), and let the degrees of freedom L be defined as follows:

– Pointwise evaluation at 4 vertices.

– Pointwise evaluation at 4 interior points given in barycentric coordinates by (5
8 ,

1
8 ,

1
8 ,

1
8),

(1
8 ,

5
8 ,

1
8 ,

1
8), (1

8 ,
1
8 ,

5
8 ,

1
8) and (1

8 ,
1
8 ,

1
8 ,

5
8).

– Derivative evaluation at 4 vertices.

– Hessian evaluation at 4 vertices.

– The derivative normal to the edge (two components), at the midpoint of 6 edges.

(i) Show that this element is unisolvent.

(ii) Consider a facet F of the tetrahedron K with outward-pointing normal n. Do the
degrees of freedom on F completely determine the normal derivative ∇u · n on F?
Is the tetrahedral Argyris element H2(Ω)-conforming?
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