Finite Element Methods. QS 4
This sheet is not to be turned in. Complete it, and check your answers with the provided solutions.
Class: Trinity term.

1. In lectures we proved that for a stable discretisation of a stable (noncoercive) problem

of the form
a(u,v) = F(v) for all v € V, (T)

a Galerkin approximation satisfies the quasi-optimality result

lu—uplly < (1+4¢) inf [Ju—wvylv,
v EVR

where uy, is the solution to the Galerkin approximation of (T) over a closed subspace
Vi, € V. Here ¢ = C/4, where C is the continuity constant of a and 7 is the discrete

=

inf-sup constant.

(i) Prove that (under the same conditions) the Galerkin approximation is stable, i.e. up,
satisfies
lunllv < cllullv,

for the same constant ¢ = C'/7.

Solution: Applying the discrete inf-sup condition,

Sunlly < sup “un0n)
v EVR HUhHV
vp#0

= sup a(u7 Uh)

oneVi 1Vnllv
vp#0

< sup Cllullvjvnllv

vREVR thHV
vp#0

= Cllullv-

So ||up|lv < %||u||v as required.

(ii) For fixed V3, C V and a, consider the operator P : V' — V}, defined by
a(uh, Uh) = a(u,vh) for all vy, € V.

In this equation we think of u as an input and u; = Pu as an output. Prove that
P is linear and is a projection, i.e. P2 = P.



Solution: Linearity: let u,w € V. Let F(v) := a(u,v) and G(v) = a(w,v).
Then P(u+ \w) satisfies

a(P(u+ Aw),vp) = (F + AG)(vy) = F(vp) + AG(vp,)  for all vy, € V,
for any A € R, by definition. Similarly, Pu and Pw satisfy
a(Pu,vp) = F(vp), a(Pw,vp) = G(vp).
Adding these two equations together, we have
a(Pu,vp)+Aa(Pw,vp) = a(Pu+APw,vp) = F(vp)+AG(vp) = a(P(u+w), vp,).

Hence P(u + Aw) = Pu + APw as required.

Projection: again, let u € V, F(v) := a(u,v), up := Pu, and define Fj,(v) =
a(up,v). By construction, Fj,(vy) = F(vp,) for all vy, € Vj,. Then Puy, satisfies

a(Pup,vy) = Fp(vp) = F(vp) = a(Pu,vy),

and hence Puj, = P?u = Pu.

(iii) A result from functional analysis states that for a bounded linear projection P :
V — V satisfying 0 # P? = P # I (I the identity operator on V),

1Pllzevivy = I = Plleevvy,s

where the || - [z, norm is the operator norm
[Qullv
1@l z(v,v) = sup :
uey  [ullv
u#0

Using this result, derive the improved quasi-optimality estimate

— < ¢ inf — .
lu — up|lv _Cvirelvhllu vnllv

Solution: Part (i) shows that ||P|| < ¢. Thus ||[I — P|| < ¢ also. To derive
the required result, we need to show that ||u — uplly < ||[I — Pl||ju — vnllv.
Calculating, we find

u—up=u—Pu=u—Pu—v,+Pop,=u—v,—Plu—uvp) = —P)(u—up)
for arbitrary vj, € Vj,. Thus (working forwards),

lu = unllv <[II = Plllu—vallv
= [[Pl[llu = vnllv

< cllu—wvnllv,




so that
lu—upllv <c inf |Ju—ovpv.

as required.

2. Let V = H}(Q;R") and Q = L3(9). Let
L(u,p) = /Vu Vud:n—/f udx—/pV u dz.
We say (u,p) is a saddle point of L iff

L(u,q) < L(u,p) < L(v, p)

forallveV, g€ Q.

Show that (u,p) is a weak solution of the Stokes equations if and only if it is a saddle
point of the Lagrangian. (This is why these problems are called saddle point problems!)

Solution: Let
a(u,v):/Vu:Vvdx, b(v,q):—/qv-vd:c, f(v):/f-vdx.
Q Q Q

We have that L(u,p) = a(u,u) + b(u,p) — f(u). Start with the first inequality:

Vg€ Q, L(u,q) < L(u,p) & Vg € Q, L(u,q) — L(u,p) <0

@VQEQ, ( Q)_b(u)p)<0
& Vg €Q, blu,q— )<0
& Vg €Q, b(u,q) =0,

where in the last step we used the fact that @ is a vector space (take ¢ + p and
—q+p).

Recall that if @ is symmetric and coercive, then u solves a(u,v) = f(v) for all v € V' if

and only if u minimises J(v) = 1a(v,v) — f(v) in V. Let J,(v) = 2a(v,v) +b(v,p) —

f(v). The second inequality can be rewritten:

Vv € V, L(u,p) < L(v,p) < « minimises J, in V'
& Vv eV, a(u,v) 4+ b(v,p) = f(v),

where the last line is the weak form of the momentum equation.




3. Consider the mixed Poisson equation: find (o,u) € H(div,Q) x L?(Q2) such that

/0’ de—/V Tu—/V owdx = — /fwdx

for all (r,w) € H(div,Q) x L*(Q).

(i) Write the mixed Poisson equation as the Fréchet derivative of a Lagrangian L(7, w).

Solution: By inspection, the required Lagrangian is

1
w):/|T|2dx—/v-7wdw+/fwdx.
2 Ja Q Q

(ii) What constrained optimisation problem is encoded by this Lagrangian?

Solution: Recall that the minimisation of a quantity J(7) subject to a con-
straint C(7) = 0 is related to the Lagrangian L(7,w) := J(7) — (w,C(7)). In
this case, we have

:/ 72 dz, C(r)=V-7—f.
Q
In other words, the optimisation problem is to compute

) 1
o= argmin — [ 7-7dz,
T€H (div,Q) Q

subject to V-7 = f.

In other words, we can think of the solution of the Poisson equation u as a
Lagrange multiplier that enforces the constraint on the flux while minimising
its L2(€2) norm.

4. In this question we will investigate the key structure-preserving properties of the so-called
bounded cochain projections my and mg used to prove the inf-sup inequality for the mixed
Poisson equation in Lecture 15. We consider the complex

HY(Q;R?) —45 12(Q)

| |

Vi — I Qp

Here V}, is constructed on a triangular mesh with the Brezzi-Douglas—Marini element of



degree 1: K = A, V = P1(K)?, and degrees of freedom L defined by
loi(v) = / vends, fyr1(v) = / v-nl ds,

where e; is the i edge of the triangle K, i = 0,...,2, n is the outward normal to the
edge, and [ is a fixed linear polynomial on the edge. (In other words, {1,{} is a basis
for Pi(e;)). Define 7y to be the finite element interpolation operator induced by this
finite element. That is, the interpolant my : H'(€2;R?) — V}, matches the zeroth and
first order moments of the normal component of the interpolated function on each edge.

As in lectures, @)y, is constructed with the discontinous Lagrange element of degree O:
K =A,V ="7Py(K)=span(l), and

Ez{ﬁ:vw/gvdaz}.

Define m¢ to be the finite element interpolation operator induced by this finite element.
In other words, mg : L*(Q) — Qy, is the L?(Q)-projection, given by

/Q(WQq)ph dz = /quh dx for all p, € Q.

(a) Show the commuting diagram property holds, i.e. that for any 7 € H'(Q;R?),

V- (myT) =7mo(V - 7).

Solution: Both the left- and right-hand sides of this equation are piecewise constant
functions. It therefore suffices to consider them over an arbitrary cell K of the mesh,
i.e. we want to show that

/V'(Tl'vT) dﬂI:/ﬂ'Q(V'T) dz
K K
= V-1 dez,
K

where the last equality holds because the indicator function for K is in Q.

Applying the divergence theorem, we have:

/V'(’]TvT) dm—/ (myT)-nds
K 0K
:/ T-nds
oK
:/V-de,
K

where the middle equality holds by the definition of the BDM degrees of freedom.




(b) We now turn to consider the boundedness of these cochain projections. Show that
7 is bounded, i.e. for all w € L*(Q),

ImQullzz() < llwllp2(q)-

Solution: We know that
/(WQw)ph dz = / wpyp, dz for all pp, € Qp,.
Q Q

Choosing p;, = mw, we have
HT"QMH%Q(Q) = /QWTQU) dz
< w2 ImQull L2 (0)-

So [[rQullr2(0) < llwllL2(q)-

(c) Given the approximation results
IT = mvrllie) < chltlma) v —mqullLa(q) < chl|wl| g o) for we H' (),
show that 7y is bounded as a map from H'(Q,R?) to V;, C H(div;): there exists ¢ € R
independent of h such that for all 7 € H'(Q;R?),
IVl zaivie) < cllmllm @)

Here c¢ is a generic constant that may take different values on different uses. [Hint: first
bound |[my 7| 12(q) by writing 7y T = 7 + my7T — 7 and applying the triangle inequality.]

Solution: Applying the hint,
vz < I7ll2@) + 17 = mv T2
< |17l a1y + bl T|m @)
< |I7lla () + cdiam(Q)|7] g1 (q)
< (1+ cdiam(Q))||T||H1(Q).

Here we bounded h < diam({2) to ensure that the boundedness constant is indepen-
dent of the mesh size. (In other words, the continuity constant gets better as we
refine the mesh, so we can take the worst possible h as our bound.)

Now, we consider
v T iy = Imv7lI720) + IV - 10711720
= |mvlliz) + 7@V - 7ll72
<l + 1V - Tl22

< el e

as required.




(d) Prove that if V-7 =0, then V- my7 = 0 also.

Solution: Using the commuting diagram property,

IV (r=mvr)lr2@ = IV 7=V mv7 2
=[|V-7 =71V - 7l 12
< ch||V - 7llgiq)-

So if V.7 =0, then ||V - (7 — 7y 7)||12(q) = 0, as required.

5. Let Q C R3. It is desirable to construct a H?({2)-conforming finite element in three
dimensions. Consider the following candidate:

Definition (Tetrahedral Argyris element). Let K be a tetrahedron (4 vertices, 4 facets,
6 edges), let V = P5(K), and let the degrees of freedom L be defined as follows:

— Pointwise evaluation at 4 vertices.

— Pointwise evaluation at 4 interior points given in barycentric coordinates by (%, %, %7 %),
(léll)(llél) d(i L 1%
882878/ (81888 AN (R, 55588/

— Derivative evaluation at 4 vertices.

Hessian evaluation at 4 vertices.

The derivative normal to the edge (two components), at the midpoint of 6 edges.

(i) Show that this element is unisolvent.

Solution: Suppose u € V is such that all degrees of freedom evaluated on w
are zero. On each facet, the degrees of freedom are the same as the triangular
Argyris element, and hence by the unisolvence of the triangular Argyris element
u must be zero on each of the facets. Hence u must factorise as

U = pA1A2A3 g,

where (A1, A2, A3, A4) are the barycentric coordinates on the tetrahedron, and p
is a linear polynomial. However, u is zero at each of the four interior evalua-
tion degrees of freedom, and hence p is also. Since p is a linear polynomial in
three dimensions that is zero at four points, it must be zero, and hence u = 0
everywhere. Hence the element is unisolvent.

(ii) Consider a facet F' of the tetrahedron K with outward-pointing normal n. Do the
degrees of freedom on F' completely determine the normal derivative Vu - n on F?



Is the tetrahedral Argyris element H?())-conforming?

Solution: The normal derivative Vu-n is a polynomial of degree 4 over K, and
in particular on each facet of K. Let us examine whether the degrees of freedom
on a given facet determine Vu - n. Suppose all degrees of freedom evaluate to
zero, and let us see if that forces Vu - n to be zero also. On each edge of the
facet, the function is a quartic polynomial with a double root at the vertices
and a single root at the midpoint, so it is zero on each edge. Thus we can write

Vu - n =piiheds,

where the edges are described by A\ = 0, A2 = 0, A3 = 0, and p is a polynomial
of degree 1.

However, we have no data to constrain p: we have no extra degrees of freedom
interior to the facet. In fact, Vu - n depends on the values of the 4 cell-interior
degrees of freedom, which are not shared by adjacent cells. So Vu -n is not
determined by the data shared between cells and the element is not H?(Q)-
conforming.




