
Finite Element Methods. QS 4
This sheet is not to be turned in. Complete it, and check your answers with the provided solutions.

Class: Trinity term.

1. In lectures we proved that for a stable discretisation of a stable (noncoercive) problem
of the form

a(u, v) = F (v) for all v ∈ V, (T)

a Galerkin approximation satisfies the quasi-optimality result

‖u− uh‖V ≤ (1 + c) inf
vh∈Vh

‖u− vh‖V ,

where uh is the solution to the Galerkin approximation of (T) over a closed subspace
Vh ( V . Here c = C/γ̃, where C is the continuity constant of a and γ̃ is the discrete
inf-sup constant.

(i) Prove that (under the same conditions) the Galerkin approximation is stable, i.e. uh
satisfies

‖uh‖V ≤ c‖u‖V ,

for the same constant c = C/γ̃.

Solution: Applying the discrete inf-sup condition,

γ̃‖uh‖V ≤ sup
vh∈Vh
vh 6=0

a(uh, vh)

‖vh‖V

= sup
vh∈Vh
vh 6=0

a(u, vh)

‖vh‖V

≤ sup
vh∈Vh
vh 6=0

C‖u‖V ‖vh‖V
‖vh‖V

= C‖u‖V .

So ‖uh‖V ≤ C
γ̃ ‖u‖V as required.

(ii) For fixed Vh ( V and a, consider the operator P : V → Vh defined by

a(uh, vh) = a(u, vh) for all vh ∈ Vh.

In this equation we think of u as an input and uh = Pu as an output. Prove that
P is linear and is a projection, i.e. P 2 = P .
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Solution: Linearity: let u,w ∈ V . Let F (v) := a(u, v) and G(v) := a(w, v).
Then P (u+ λw) satisfies

a(P (u+ λw), vh) = (F + λG)(vh) = F (vh) + λG(vh) for all vh ∈ Vh,

for any λ ∈ R, by definition. Similarly, Pu and Pw satisfy

a(Pu, vh) = F (vh), a(Pw, vh) = G(vh).

Adding these two equations together, we have

a(Pu, vh)+λa(Pw, vh) = a(Pu+λPw, vh) = F (vh)+λG(vh) = a(P (u+λw), vh).

Hence P (u+ λw) = Pu+ λPw as required.

Projection: again, let u ∈ V , F (v) := a(u, v), uh := Pu, and define Fh(v) =
a(uh, v). By construction, Fh(vh) = F (vh) for all vh ∈ Vh. Then Puh satisfies

a(Puh, vh) = Fh(vh) = F (vh) = a(Pu, vh),

and hence Puh = P 2u = Pu.

(iii) A result from functional analysis states that for a bounded linear projection P :
V → V satisfying 0 6= P 2 = P 6= I (I the identity operator on V ),

‖P‖L(V,V ) = ‖I − P‖L(V,V ),

where the ‖ · ‖L(V,V ) norm is the operator norm

‖Q‖L(V,V ) = sup
u∈V
u6=0

‖Qu‖V
‖u‖V

.

Using this result, derive the improved quasi-optimality estimate

‖u− uh‖V ≤ c inf
vh∈Vh

‖u− vh‖V .

Solution: Part (i) shows that ‖P‖ ≤ c. Thus ‖I − P‖ ≤ c also. To derive
the required result, we need to show that ‖u − uh‖V ≤ ‖I − P‖‖u − vh‖V .
Calculating, we find

u− uh = u− Pu = u− Pu− vh + Pvh = u− vh − P (u− vh) = (I − P )(u− vh)

for arbitrary vh ∈ Vh. Thus (working forwards),

‖u− uh‖V ≤ ‖I − P‖‖u− vh‖V
= ‖P‖‖u− vh‖V
≤ c‖u− vh‖V ,
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so that
‖u− uh‖V ≤ c inf

vh∈Vh
‖u− vh‖V .

as required.

2. Let V = H1
0 (Ω;Rn) and Q = L2

0(Ω). Let

L(u, p) =
1

2

∫
Ω
∇u : ∇u dx−

∫
Ω
f · u dx−

∫
Ω
p∇ · u dx.

We say (u, p) is a saddle point of L iff

L(u, q) ≤ L(u, p) ≤ L(v, p)

for all v ∈ V , q ∈ Q.

Show that (u, p) is a weak solution of the Stokes equations if and only if it is a saddle
point of the Lagrangian. (This is why these problems are called saddle point problems!)

Solution: Let

a(u, v) =

∫
Ω
∇u : ∇v dx, b(v, q) = −

∫
Ω
q∇ · v dx, f(v) =

∫
Ω
f · v dx.

We have that L(u, p) = 1
2a(u, u) + b(u, p)− f(u). Start with the first inequality:

∀q ∈ Q, L(u, q) ≤ L(u, p)⇔ ∀q ∈ Q, L(u, q)− L(u, p) ≤ 0

⇔ ∀q ∈ Q, b(u, q)− b(u, p) ≤ 0

⇔ ∀q ∈ Q, b(u, q − p) ≤ 0

⇔ ∀q ∈ Q, b(u, q) = 0,

where in the last step we used the fact that Q is a vector space (take q + p and
−q + p).

Recall that if a is symmetric and coercive, then u solves a(u, v) = f(v) for all v ∈ V if
and only if u minimises J(v) = 1

2a(v, v)− f(v) in V . Let Jp(v) = 1
2a(v, v) + b(v, p)−

f(v). The second inequality can be rewritten:

∀v ∈ V, L(u, p) ≤ L(v, p)⇔ u minimises Jp in V

⇔ ∀v ∈ V, a(u, v) + b(v, p) = f(v),

where the last line is the weak form of the momentum equation.
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3. Consider the mixed Poisson equation: find (σ, u) ∈ H(div,Ω)× L2(Ω) such that∫
Ω
σ · τ dx−

∫
Ω
∇ · τu−

∫
Ω
∇ · σw dx = −

∫
Ω
fw dx

for all (τ, w) ∈ H(div,Ω)× L2(Ω).

(i) Write the mixed Poisson equation as the Fréchet derivative of a Lagrangian L(τ, w).

Solution: By inspection, the required Lagrangian is

L(τ, w) =
1

2

∫
Ω
|τ |2 dx−

∫
Ω
∇ · τw dx+

∫
Ω
fw dx.

(ii) What constrained optimisation problem is encoded by this Lagrangian?

Solution: Recall that the minimisation of a quantity J(τ) subject to a con-
straint C(τ) = 0 is related to the Lagrangian L(τ, w) := J(τ) − (w,C(τ)). In
this case, we have

J(τ) =

∫
Ω
|τ |2 dx, C(τ) = ∇ · τ − f.

In other words, the optimisation problem is to compute

σ = argmin
τ∈H(div,Ω)

1

2

∫
Ω
τ · τ dx,

subject to ∇ · τ = f.

In other words, we can think of the solution of the Poisson equation u as a
Lagrange multiplier that enforces the constraint on the flux while minimising
its L2(Ω) norm.

4. In this question we will investigate the key structure-preserving properties of the so-called
bounded cochain projections πV and πQ used to prove the inf-sup inequality for the mixed
Poisson equation in Lecture 15. We consider the complex

H1(Ω;R2) L2(Ω)

Vh Qh

div

πV πQ

div

Here Vh is constructed on a triangular mesh with the Brezzi–Douglas–Marini element of
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degree 1: K = 4, V = P1(K)2, and degrees of freedom L defined by

`2i(v) =

∫
ei

v · n ds, `2i+1(v) =

∫
ei

v · nl ds,

where ei is the ith edge of the triangle K, i = 0, . . . , 2, n is the outward normal to the
edge, and l is a fixed linear polynomial on the edge. (In other words, {1, l} is a basis
for P1(ei)). Define πV to be the finite element interpolation operator induced by this
finite element. That is, the interpolant πV : H1(Ω;R2) → Vh matches the zeroth and
first order moments of the normal component of the interpolated function on each edge.

As in lectures, Qh is constructed with the discontinous Lagrange element of degree 0:
K = 4, V = P0(K) = span(1), and

L =

{
` : v 7→

∫
Ω
v dx

}
.

Define πQ to be the finite element interpolation operator induced by this finite element.
In other words, πQ : L2(Ω)→ Qh is the L2(Ω)-projection, given by∫

Ω
(πQq)ph dx =

∫
Ω
qph dx for all ph ∈ Qh.

(a) Show the commuting diagram property holds, i.e. that for any τ ∈ H1(Ω;R2),

∇ · (πV τ) = πQ(∇ · τ).

Solution: Both the left- and right-hand sides of this equation are piecewise constant
functions. It therefore suffices to consider them over an arbitrary cell K of the mesh,
i.e. we want to show that∫

K
∇ · (πV τ) dx =

∫
K
πQ(∇ · τ) dx

=

∫
K
∇ · τ dx,

where the last equality holds because the indicator function for K is in Qh.

Applying the divergence theorem, we have:∫
K
∇ · (πV τ) dx =

∫
∂K

(πV τ) · n ds

=

∫
∂K

τ · n ds

=

∫
K
∇ · τ dx,

where the middle equality holds by the definition of the BDM degrees of freedom.
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(b) We now turn to consider the boundedness of these cochain projections. Show that
πQ is bounded, i.e. for all w ∈ L2(Ω),

‖πQw‖L2(Ω) ≤ ‖w‖L2(Ω).

Solution: We know that∫
Ω

(πQw)ph dx =

∫
Ω
wph dx for all ph ∈ Qh.

Choosing ph = πQw, we have

‖πQw‖2L2(Ω) =

∫
Ω
wπQw dx

≤ ‖w‖L2(Ω)‖πQw‖L2(Ω).

So ‖πQw‖L2(Ω) ≤ ‖w‖L2(Ω).

(c) Given the approximation results

‖τ − πV τ‖L2(Ω) ≤ ch|τ |H1(Ω), ‖w − πQw‖L2(Ω) ≤ ch‖w‖H1(Ω) for w ∈ H1(Ω),

show that πV is bounded as a map from H1(Ω,R2) to Vh ⊂ H(div; Ω): there exists c ∈ R
independent of h such that for all τ ∈ H1(Ω;R2),

‖πV τ‖H(div;Ω) ≤ c‖τ‖H1(Ω).

Here c is a generic constant that may take different values on different uses. [Hint: first
bound ‖πV τ‖L2(Ω) by writing πV τ = τ + πV τ − τ and applying the triangle inequality.]

Solution: Applying the hint,

‖πV τ‖L2(Ω) ≤ ‖τ‖L2(Ω) + ‖τ − πV τ‖L2(Ω)

≤ ‖τ‖H1(Ω) + ch|τ |H1(Ω)

≤ ‖τ‖H1(Ω) + cdiam(Ω)|τ |H1(Ω)

≤ (1 + cdiam(Ω))‖τ‖H1(Ω).

Here we bounded h ≤ diam(Ω) to ensure that the boundedness constant is indepen-
dent of the mesh size. (In other words, the continuity constant gets better as we
refine the mesh, so we can take the worst possible h as our bound.)

Now, we consider

‖πV τ‖2H(div;Ω) = ‖πV τ‖2L2(Ω) + ‖∇ · πV τ‖2L2(Ω)

= ‖πV τ‖2L2(Ω) + ‖πQ∇ · τ‖2L2(Ω)

≤ c‖τ‖2H1(Ω) + ‖∇ · τ‖2L2(Ω)

≤ c‖τ‖2H1(Ω)

as required.
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(d) Prove that if ∇ · τ = 0, then ∇ · πV τ = 0 also.

Solution: Using the commuting diagram property,

‖∇ · (τ − πV τ)‖L2(Ω) = ‖∇ · τ −∇ · πV τ‖L2(Ω)

= ‖∇ · τ − πQ∇ · τ‖L2(Ω)

≤ ch‖∇ · τ‖H1(Ω).

So if ∇ · τ = 0, then ‖∇ · (τ − πV τ)‖L2(Ω) = 0, as required.

5. Let Ω ⊂ R3. It is desirable to construct a H2(Ω)-conforming finite element in three
dimensions. Consider the following candidate:

Definition (Tetrahedral Argyris element). Let K be a tetrahedron (4 vertices, 4 facets,
6 edges), let V = P5(K), and let the degrees of freedom L be defined as follows:

– Pointwise evaluation at 4 vertices.

– Pointwise evaluation at 4 interior points given in barycentric coordinates by (5
8 ,

1
8 ,

1
8 ,

1
8),

(1
8 ,

5
8 ,

1
8 ,

1
8), (1

8 ,
1
8 ,

5
8 ,

1
8) and (1

8 ,
1
8 ,

1
8 ,

5
8).

– Derivative evaluation at 4 vertices.

– Hessian evaluation at 4 vertices.

– The derivative normal to the edge (two components), at the midpoint of 6 edges.

(i) Show that this element is unisolvent.

Solution: Suppose u ∈ V is such that all degrees of freedom evaluated on u
are zero. On each facet, the degrees of freedom are the same as the triangular
Argyris element, and hence by the unisolvence of the triangular Argyris element
u must be zero on each of the facets. Hence u must factorise as

u = pλ1λ2λ3λ4,

where (λ1, λ2, λ3, λ4) are the barycentric coordinates on the tetrahedron, and p
is a linear polynomial. However, u is zero at each of the four interior evalua-
tion degrees of freedom, and hence p is also. Since p is a linear polynomial in
three dimensions that is zero at four points, it must be zero, and hence u = 0
everywhere. Hence the element is unisolvent.

(ii) Consider a facet F of the tetrahedron K with outward-pointing normal n. Do the
degrees of freedom on F completely determine the normal derivative ∇u · n on F?
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Is the tetrahedral Argyris element H2(Ω)-conforming?

Solution: The normal derivative ∇u ·n is a polynomial of degree 4 over K, and
in particular on each facet of K. Let us examine whether the degrees of freedom
on a given facet determine ∇u · n. Suppose all degrees of freedom evaluate to
zero, and let us see if that forces ∇u · n to be zero also. On each edge of the
facet, the function is a quartic polynomial with a double root at the vertices
and a single root at the midpoint, so it is zero on each edge. Thus we can write

∇u · n = pλ1λ2λ3,

where the edges are described by λ1 = 0, λ2 = 0, λ3 = 0, and p is a polynomial
of degree 1.

However, we have no data to constrain p: we have no extra degrees of freedom
interior to the facet. In fact, ∇u · n depends on the values of the 4 cell-interior
degrees of freedom, which are not shared by adjacent cells. So ∇u · n is not
determined by the data shared between cells and the element is not H2(Ω)-
conforming.
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