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1 Introduction

MSc students on the Mathematical Modelling and Scientific Computing course
must complete a special topic if they wish to receive credit for this course.

The aim of the following special topics is for you to demonstrate your un-
derstanding of and competence with finite element discretisations of bound-
ary value problems. An auxiliary aim is to have fun!

2 General advice

In all cases you should submit code (written in MATLAB or Python) for
the solution of the problem at hand. This code should be structured into a
generic module that solves a class of problems, and application-specific code
that uses the generic code to solve a particular problem. For example, if one
were to write a solver on a uniform mesh for

−u′′(x) = f(x), u(a) = 0 = u(b), a < b,

the generic code should take in as input a representation of f(x), a and b, and
a mesh parameter N ; the application code should specify particular values
for these parameters to exercise it.

The best way of verifying the correctness of numerical solvers is to test
them on problems where the answer is known and check their order of conver-
gence against our theoretical expectations. For example, if I wished to test
the code above, I would choose a suitable u(x), a and b (e.g. u(x) = sin (πx),



a = 0, b = 1), and generate the f(x) by plugging in the solution into the
differential equation. This facilitates a convergence analysis: solve the prob-
lem for different refinements, and verify that the error scales as expected. In
our running example, I would check that ‖u − uh‖H1(0,1) halved each time I
doubled the number of elements in the mesh.

In all cases use the standard MATLAB or Python facilities for sparse
matrices, solving linear systems, and computing eigenvalues. I care only
about your discretisation and assembly; leave the linear algebra and mesh
generation (in two or three dimensions) to others. However, do not use any
finite element toolboxes supplied by others: you can solve any of the problems
below in twenty lines of Firedrake, but that doesn’t mean you understand
the finite element method!

The code should be clearly written and heavily commented; the comments
are as important as the code itself. It should be accompanied by a report,
between ten to twenty pages in length, explaining the problem, discretisation,
known theoretical results, code, and examples used to exercise the code and
verify its correctness.

As with the other special topics, the deadline of submission is Monday of
week 1 of Trinity term.

3 Possible projects

Without further ado, here is a list of suggestions.

1. Write a finite element solver for the biharmonic equation

u′′′′(x) = f(x), u(a) = u′(a) = 0 = u′(b) = u(b), a < b,

using Hermite or Argyris finite elements. Verify your convergence
against a known solution.

This is probably the most straightforward option suggested (but can
gain just as many marks as other projects).
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2. Write a finite element solver for the Laplace equation

−∇2u = f in Ω,

u = 0 on ∂Ω,

for an arbitrary bounded polygonal domain Ω ⊂ R2. You should use
the simplest discretisation, piecewise linear finite elements. This will
require some facility with meshing; I have provided a few references on
freely available meshing software and quadrature below. Verify your
solver against a known solution on a nonrectangular domain. You may
find Lemma (3.1.10) of Brenner & Scott useful for constructing a suit-
able known solution.
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3. Write a finite element solver to compute the first ten (lowest) eigenval-
ues λ and corresponding eigenfunctions u(x) 6= 0 of the problem

−u′′(x) + c(x)u(x) = λu(x), u(a) = 0 = u(b), a < b, c(x) ≥ 0.

Verify your solver on the particular problem with c(x) = 0, a = 0,
b = π. The eigenvalues are the squares of the integers: 1, 4, 9, . . . , and
the eigenvectors are of the form u(x) = sin (kx) for k = 1, 2, 3, . . . .
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4. Write a finite element solver for the Carrier equation

εu′′(x) + 2(1− x2)u(x) + u2(x) = 1, u(−1) = 0 = u(1),

for ε = 0.01. The equation is nonlinear due to the u2(x) term, and will
therefore require the application of a Newton–Kantorovich iteration.
For ε = 0.01, this equation supports eight distinct solutions; how many
can you find?
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5. Given an obstacle function g(x) ∈ H1(0, 1) with g(0), g(1) ≤ 0, define
the closed convex set

K = {v ∈ H1
0 (0, 1) : v(x) ≥ g(x) almost everywhere}.

Write a finite element solver for the minimisation problem

u = argmin
v∈K

∫ 1

0

(v′(x))
2

dx.

The (necessary and sufficient) optimality condition for this system is
the variational inequality

find u ∈ K such that a(u, v − u) ≥ 0 for all v ∈ K,

where

a(u, v) =

∫ 1

0

u′(x)v′(x) dx.
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6. A topic of your choice.

The theme here is that I want to go exactly one step beyond the Laplace
equation in one dimension. That might mean posing the problem that
requires elements beyond Lagrange (#1), a problem in higher dimen-
sions (#2), an eigenvalue problem (#3), a nonlinear problem (#4), or
a constrained convex minimisation problem (#5).

Other ideas might be to consider an equation on an unbounded interval,
or to consider a stochastic boundary value problem, or to consider a
transient equation (a PDE involving space and time), or to consider
the bifurcation analysis of an equation as a parameter is varied, or to
implement an a posteriori error indicator and adaptive discretisation.
I am open to discussion and keen for you to solve a problem by which
you are enthused!
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