Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

minimize f(x) subject to $x \in \Omega \subseteq \mathbb{R}^n$. (†)

■ $f: \Omega \to \mathbb{R}$ is (sufficiently) smooth ($f \in C^i(\Omega)$, $i \in \{1, 2\}$).

• f objective; x variables; Ω feasible set (determined by finitely many constraints).

 \square *n* may be large.

minimizing $-f(x) \equiv -$ maximizing f(x). Wlog, minimize.

minimize f(x) subject to $x \in \Omega \subseteq \mathbb{R}^n$. (†)

■ $f: \Omega \to \mathbb{R}$ is (sufficiently) smooth ($f \in C^i(\Omega)$, $i \in \{1, 2\}$).

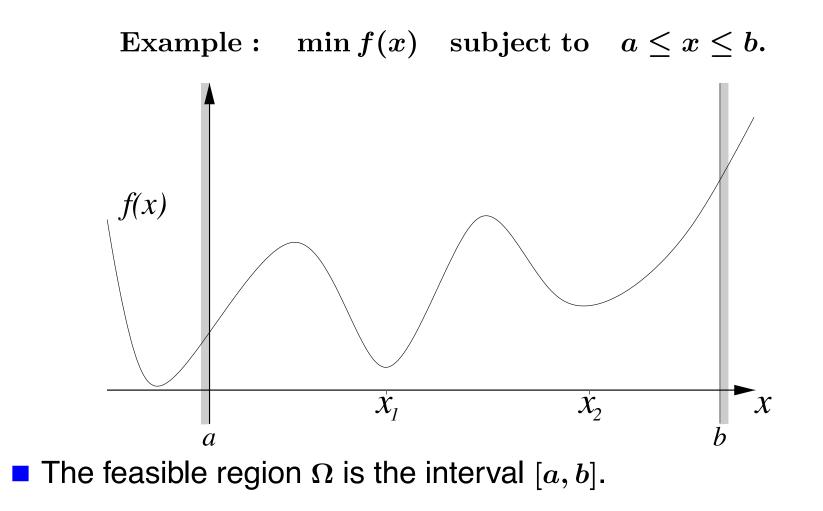
• f objective; x variables; Ω feasible set (determined by finitely many constraints).

 \square *n* may be large.

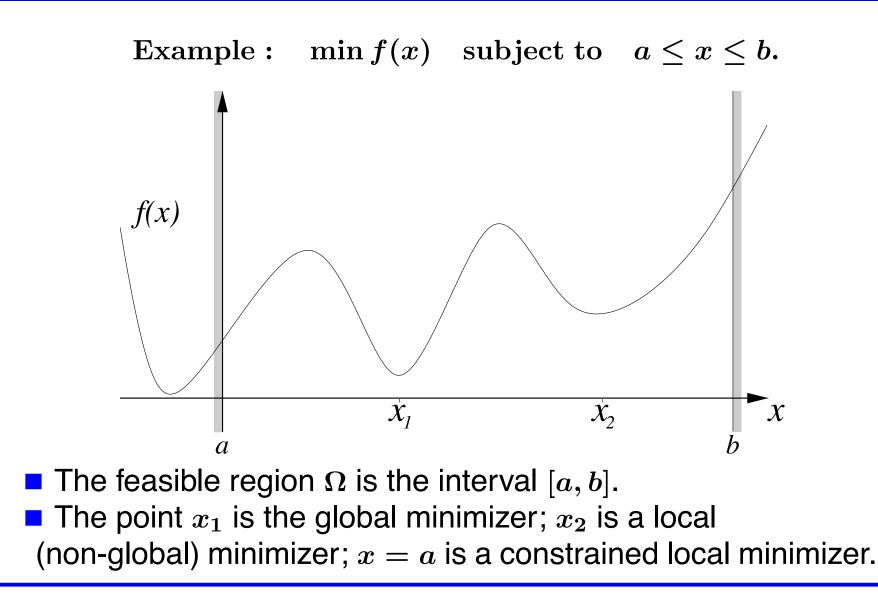
minimizing $-f(x) \equiv -$ maximizing f(x). Wlog, minimize.

 x^* global minimizer of f over $\Omega \iff f(x) \ge f(x^*), \forall x \in \Omega$. x^* local minimizer of f over $\Omega \iff$ there exists $\mathcal{N}(x^*, \delta)$ such that $f(x) \ge f(x^*)$, for all $x \in \Omega \cap \mathcal{N}(x^*, \delta)$, where $\mathcal{N}(x^*, \delta) := \{x \in \mathbb{R}^n : ||x - x^*|| \le \delta\}$ and $||\cdot||$ is the Euclidean norm.

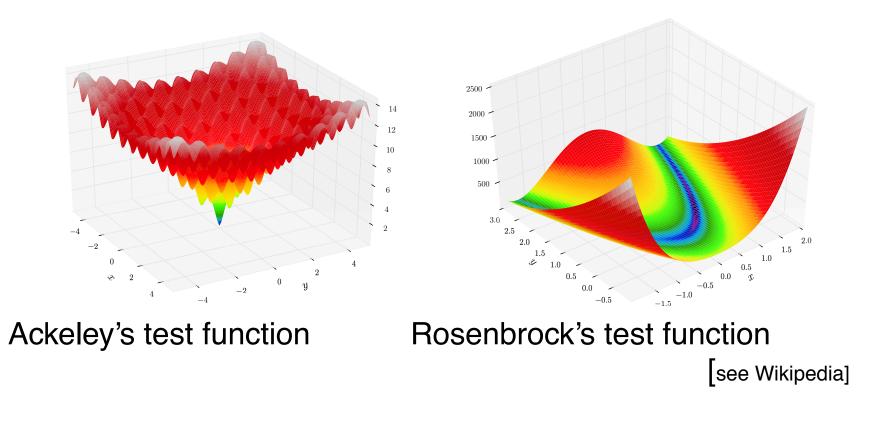
Example problem in one dimension



Example problem in one dimension



Example problems in two dimensions



Main classes of continuous optimization problems

Linear (Quadratic) programming: linear (quadratic) objective and linear constraints in the variables

 $\min_{x\in extbf{R}^n} c^T x \left(+rac{1}{2} x^T H x
ight) ext{ subject to } a_i^T x = b_i, i\in E; \; a_i^T x \geq b_i, i\in I,$

where $c, a_i \in \mathbb{R}^n$ for all *i* and *H* is $n \times n$ matrix; *E* and *I* are finite index sets.

Main classes of continuous optimization problems

Linear (Quadratic) programming: linear (quadratic) objective and linear constraints in the variables

 $\min_{x\in extbf{R}^n} c^T x \left(+rac{1}{2} x^T H x
ight) ext{ subject to } a_i^T x = b_i, i\in E; \; a_i^T x \geq b_i, i\in I,$

where $c, a_i \in \mathbb{R}^n$ for all *i* and *H* is $n \times n$ matrix; *E* and *I* are finite index sets.

Unconstrained (Constrained) nonlinear programming

 $\min_{x\in {\hbox{I\!R}}^n} f(x) \ \ (ext{subject to } c_i(x)=0, i\in E; \ c_i(x)\geq 0, i\in I)$

where $f, c_i : \mathbb{R}^n \longrightarrow \mathbb{R}$ are (smooth, possibly nonlinear) functions for all *i*; *E* and *I* are finite index sets. Most real-life problems are nonlinear, often large-scale ! Optimization of a high-pressure gas network pressures $p = (p_i, i)$; flows $q = (q_j, j)$; demands $d = (d_k, k)$; compressors. Maximize net flow s.t. the constraints:

$$\left\{egin{array}{l} Aq-d=0\ A^Tp^2+Kq^{2.8359}=0\ A_2^Tq+z\cdot c(p,q)=0\ p_{\min}\leq p\leq p_{\max}\ q_{\min}\leq q\leq q_{\max}\end{array}
ight.$$

A, *A*₂ ∈ {±1, 0}; *z* ∈ {0, 1}
 200 nodes and pipes, 26 machines: 400 variables;
 variable demand, (*p*, *d*) 10mins. → 58,000 vars; real-time.

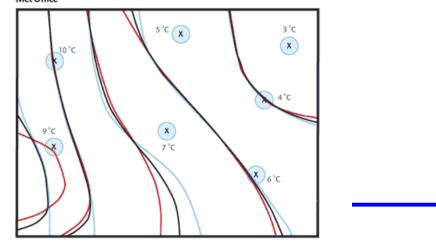
Data assimilation for weather forecasting

■ best estimate of the current state of the atmosphere → find initial conditions x_0 for the numerical forecast by solving the (ill-posed) nonlinear inverse problem

$$\min_{x_0} \sum_{i=0}^m (H_i[x_i] - y_i)^T R_i^{-1} (H[x_i] - y_i),$$

 $x_i = S(t_i, t_0, x_0)$, S solution operator of the discrete nonlinear model; H_i maps x_i to observations y_i , R_i error covariance matrix of the observations at t_i

 x_0 of size $10^7 - 10^8$; observations $m \approx 250,000$.

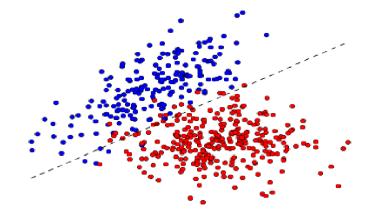


 Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization – p. 7/17

 Observation - only guess
 Forecast - only guess
 Best combined guess

Supervised learning problems

```
[Scheinberg, 2018; Curtis & Scheinberg, 2017; Bouttou et al, 2018]
```



Binary classification: Map $w \in W \subseteq \Re^{d_w}$ to $y \in \mathcal{Y} \subseteq \{-1, 1\}$ Choose predictor $p(w; x) : W \to \mathcal{Y}$ If $p(w; x) = w^T x$ - linear classifier; more generally, p(w; x)nonlinear (such as neural network).

Selection of the best classifier:

Minimize Expected/Empirical Error, Loss, AUC

```
Coralia Cartis (University of Oxford)
```

Finding the best predictor

[Curtis & Scheinberg, 2017; Scheinberg, 2018]

$$\min_{x\in\mathcal{X}}f(x):=\int_{\mathcal{W}\times\mathcal{Y}}\mathbb{1}[yp(w;x)\leq 0]dP(w,y).$$

 \rightarrow intractable due to unknown distribution Use instead the empirical risk of p(w; x) over finite training set S,

$$\min_{x\in\mathcal{X}}f_{\mathcal{S}}(x):=\frac{1}{m}\sum_{i=1}^m \mathbb{1}[y_ip(w_i;x)\leq 0].$$

 \longrightarrow hard to solve, nonsmooth.

Use the smooth and 'easy' empirical loss of p(w; x) over the finite training set S,

$$\min_{x \in \mathcal{X}} \hat{f}_{\mathcal{S}}(x) := \frac{1}{m} \sum_{i=1}^{m} l(p(w_i; x), y_i) = \sum_{i=1}^{m} f_i(x).$$

 \longrightarrow tractable but huge scale in *n* and *m*; deterministic formulation. Care also about expected loss $\mathbb{E}(l(p(w; x), y))$ (stochastic).

Coralia Cartis (University of Oxford)

Lecture Course Outline

- Unconstrained optimization :
 - optimality conditions (characterizing optimality solutions of unconstrained problems)
 - algorithms/methods : gradient and Newton methods, line-search and trust-region techniques to ensure convergence.
- Constrained optimization :
 - optimality conditions (characterizing optimality solutions of constrained problems)
 - algorithms/methods : penalty methods, augmented Lagrangian, interior point algorithms and time permitting, more.

Problem/intercollegiate classes: 4. Numerical laboratories: 2 (optional, details TBC.)

C6.2/B2. Continuous Optimization

Resources

References

on

- [1] A. R. CONN, N. I. M. GOULD AND PH. L. TOINT, Trust-Region Methods, SIAM 2000.
- [2] J. DENNIS AND R. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear equations, (republished by) SIAM, 1996.
- [3] R. FLETCHER, Practical Methods of Optimization, 2nd edition Wiley, 1987 (republished in paperback in 2000).
- [4] P. GILL, W. MURRAY AND M. H. WRIGHT, Practical Optimization, Academic Press, 1981.

[5] N. I. M. GOULD, An Introduction to Algorithms for Continuous Optimization, 2006. Available for course download at http://www.numerical.rl.ac.uk/nimg/course/lectures/paper/paper.pdf.

> [6] J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer Verlag, 1999 (1st edition) or 2006 (2nd edition). All citations in the lecture notes apply to either edition, unless otherwise stated.

Comments on the bibliography

For a comprehensive, yet highly accessible, introduction to numerical methods for continuous (unconstrained and constrained) optimization problems, see [6] - most recommended (but not required) for this course! Reference [5] is also a very good, but more succinct introduction to this topic, with particular emphasis on nonconvex problems and with a well-structured bibliography of fundamental optimization articles. The monograph [1] is the most comprehensive reference book on trust-region methods to date. The remaining books in the bibliography are classics of the nonlinear (constrained and unconstrained) optimization literature.

Online and software resources

For an index and a guide to existing public and commercial software for solving (constrained and unconstrained) optimization problems, see

http://neos-guide.org/Optimization-Guide

and follow the links to *Optimization Tree* for example. Other useful links related to optimization may be found at the same webpage (links to test problems, to the NEOS Server which solves user-sent optimization problems over the internet, to online repositories of optimization articles, etc.).

For general nonconvex, smooth constrained and unconstrained problems the following software packages are of high quality/reliable: KNITRO, IPOPT, GALAHAD, etc. MATLAB's optimization toolbox (available on departmental computers) contains built-in optimization solvers for various problem classes - be careful which subroutine you choose ! COIN-OR is a public software repository that you may find useful in the future.

An important aspect of optimization software is the *interface* that allows the user to input the problem to the solver; interfaces, and hence acceptable input formats, vary between solvers. Presently, usually besides file-input in the language the solver is written in, much software allows MATLAB input files or/and AMPL files (AMPL is a modelling language specifically designed for expressing optimization problems; see www.ampl.com), etc.

An introduction to algorithms for continuous optimization

AVAILABLE ON COURSE WEBSITE

COURSE SLIDES BASED OFTEN ON THIS BOOKLET

Nicholas Gould

Oxford University Computing Laboratory and Rutherford Appleton Laboratory

Copyright \bigodot 2006 by Nicholas Ian Mark Gould.

Contents

	GLO	SSARY OF SYMBOLS	iii
	An e	RODUCTION xample—the optimization of a high-pressure gas network e other application areas	1 4 7
1	OPTIMALITY CONDITIONS AND WHY THEY ARE IMPORTANT		9
	1.1	Optimization problems	11
	1.2	Notation	11
	1.3	Lipschitz continuity and Taylor's theorem	12
	1.4	Farkas' lemma — the fundamental theorem of linear inequalities	14
	1.5	Optimality conditions	15
	1.6	Optimality conditions for unconstrained minimization	16
	1.7	Optimality conditions for constrained minimization	16
		1.7.1 Optimality conditions for equality-constrained minimization	17
		1.7.2 Optimality conditions for inequality-constrained minimization	17
2	LIN	ESEARCH METHODS FOR UNCONSTRAINED OPTIMIZATION	21
	2.1	Linesearch methods	23
	2.2	Practical linesearch methods	24
	2.3	Convergence of generic linesearch methods $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	27
	2.4	Method of steepest descent	28
	2.5	More general descent methods	29
		2.5.1 Newton and Newton-like methods	29
		2.5.2 Modified-Newton methods	32
		2.5.3 Quasi-Newton methods	33
		2.5.4 Conjugate-gradient and truncated-Newton methods	34
		2.5.5 Nonlinear conjugate-gradient methods	35
3	TRU	JST-REGION METHODS FOR UNCONSTRAINED OPTIMIZATION	39
	3.1	Linesearch vs. trust-region methods	41
	3.2	Trust-region models	41
	3.3	Basic trust-region method	42
	3.4	Basic convergence of trust-region methods	44
	3.5	Solving the trust-region subproblem	48
		3.5.1 Solving the ℓ_2 -norm trust-region subproblem	48
	3.6	Solving the large-scale problem	52
4			
	TIOI		55
	4.1	Quadratic programming	57

C6.2/B2. Continuous Optimization

Mathematical Background (brief review)

Optimization draws on a number of key results in analysis and linear algebra. We briefly summarize some useful notions here. For more details, you may consult **Burden**, **R.L.**, & **Faires**, **J.D.**, *Numerical Analysis*, 6th edition or later, Brooks/Cole Publishing.

Single valued functions and their derivatives

All the functions $f: \mathbb{R}^n \mapsto \mathbb{R}$ in this course are assumed to be smooth.

• The function $l : \mathbb{R}^n \mapsto \mathbb{R}$ is a **linear function** iff it is of the form

$$l(x) = d + g^T x \equiv d + \sum_{i=1}^n g_i x_i, \quad \text{where} \quad g = \begin{pmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

and $d \in \mathbb{R}$ and $g \in \mathbb{R}^n$ are known.

• The function $q(x) : \mathbb{R}^n \to \mathbb{R}$ is a quadratic function iff it is of the form

$$q(x) = d + g^{T}x + \frac{1}{2}x^{T}Hx = d + \sum_{i=1}^{n} g_{i}x_{i} + \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n} h_{ij}x_{i}x_{j}, \text{ where } H = \begin{pmatrix} h_{11} & h_{12} & \dots & h_{1n} \\ h_{21} & h_{22} & \dots & h_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ h_{n1} & h_{n2} & \dots & h_{nn} \end{pmatrix}.$$

may be taken to be constant and symmetric. Although a quadratic function is strictly nonlinear, its properties are such that it is treated separately. Thus the term 'nonlinear function' often refers to a function which is not linear *or* quadratic.

• For the function $f : \mathbb{R}^n \mapsto \mathbb{R}$, the vector of first partial derivatives or gradient vector is

$$g(x) \equiv \nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} (x),$$

where ∇ denotes the gradient operator $(\partial/\partial x_1 \ \partial/\partial x_2 \ \dots \ \partial/\partial x_n)^T$.

• For the function $f : \mathbb{R}^n \mapsto \mathbb{R}$, the matrix of second partial derivatives or Hessian matrix

$$H(x) \equiv \nabla [g(x)]^T = \nabla [\nabla f(x)]^T = \nabla \nabla^T f(x) = \nabla^2 f(x),$$