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Problems and solutions

minimize f(x) subject to x ∈ Ω ⊆ Rn. (†)

f : Ω → R is (sufficiently) smooth (f ∈ Ci(Ω), i ∈ {1, 2}).
f objective; x variables; Ω feasible set (determined by

finitely many constraints).
n may be large.
minimizing −f(x) ≡ − maximizing f(x). Wlog, minimize.
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Problems and solutions

minimize f(x) subject to x ∈ Ω ⊆ Rn. (†)

f : Ω → R is (sufficiently) smooth (f ∈ Ci(Ω), i ∈ {1, 2}).
f objective; x variables; Ω feasible set (determined by

finitely many constraints).
n may be large.
minimizing −f(x) ≡ − maximizing f(x). Wlog, minimize.

x∗ global minimizer of f over Ω ⇐⇒ f(x) ≥f(x∗), ∀x ∈ Ω.
x∗ local minimizer of f over Ω ⇐⇒ there exists N (x∗, δ) such
that f(x) ≥f(x∗), for all x ∈ Ω ∩ N (x∗, δ),
where N (x∗, δ) := {x ∈ Rn : ∥x − x∗∥ ≤ δ} and ∥ · ∥ is the
Euclidean norm.
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Example problem in one dimension

Example : min f(x) subject to a ≤ x ≤ b.

x 1x 2x 

f(x)

ba
The feasible region Ω is the interval [a, b].
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Example problem in one dimension

Example : min f(x) subject to a ≤ x ≤ b.

x 1x 2x 

f(x)

ba
The feasible region Ω is the interval [a, b].
The point x1 is the global minimizer; x2 is a local
(non-global) minimizer; x = a is a constrained local minimizer.
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Example problems in two dimensions

x

−4

−2

0

2

4
y

−4
−2

0
2

4

2

4

6

8

10

12

14

x

−1.5
−1.0

−0.5
0.0

0.5
1.0

1.5
2.0

y

−0.5

0.0

0.5

1.0

1.5

2.0

2.5
3.0

500

1000

1500

2000

2500

Ackeley’s test function Rosenbrock’s test function
[see Wikipedia]
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Main classes of continuous optimization problems

Linear (Quadratic) programming: linear (quadratic) objective
and linear constraints in the variables

min
x∈IRn

cTx

(
+

1

2
xTHx

)
subject to aT

ix = bi, i ∈ E; aT
ix ≥bi, i ∈ I,

where c, ai∈ IRn for all i and H is n × n matrix; E and I are
finite index sets.
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Main classes of continuous optimization problems

Linear (Quadratic) programming: linear (quadratic) objective
and linear constraints in the variables

min
x∈IRn

cTx

(
+

1

2
xTHx

)
subject to aT

ix = bi, i ∈ E; aT
ix ≥bi, i ∈ I,

where c, ai∈ IRn for all i and H is n × n matrix; E and I are
finite index sets.

Unconstrained (Constrained) nonlinear programming

min
x∈IRn

f(x) (subject to ci(x) = 0, i ∈ E; ci(x) ≥0, i ∈ I)

where f, ci : IRn −→ IR are (smooth, possibly nonlinear)
functions for all i; E and I are finite index sets.
Most real-life problems are nonlinear, often large-scale !
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Example: an OR application [Gould’06]

Optimization of a high-pressure gas network
pressures p = (pi, i); flows q = (qj, j); demands d = (dk, k);
compressors. Maximize net flow s.t. the constraints:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Aq − d = 0

ATp2 + Kq2.8359 = 0

AT
2 q + z · c(p, q) = 0

pmin ≤ p ≤ pmax

qmin ≤ q ≤ qmax

A, A2 ∈ {± 1, 0}; z ∈ {0, 1}
200 nodes and pipes, 26

machines: 400 variables;
variable demand, (p, d) 10mins.
−→ 58,000 vars; real-time.
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Example: an inverse problem application[MetOffice]

Data assimilation for weather forecasting
best estimate of the current state of the atmosphere
−→ find initial conditions x0 for the numerical forecast
by solving the (ill-posed) nonlinear inverse problem

min
x0

m∑

i=0

(Hi[xi]− yi)
TR−1

i (H[xi]− yi),

xi = S(ti, t0, x0), S solution operator of the discrete nonlinear
model; Hi maps xi to observations yi, Ri error covariance
matrix of the observations at ti.

x0 of size 107 − 108;
observations m ≈ 250,000.
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Supervised learning problems

[Scheinberg, 2018; Curtis & Scheinberg, 2017; Bouttou et al, 2018]

Introduction and Motivation

Introduction: Supervised Learning Problem

How do we select the best
classifier?

Min Expected/Empirical Error

Min Expected/Empirical Loss

Max Expected/Empirical AUC

Example: binary classification

Map x 2 X ✓ Rdx to y 2 Y ✓ {0, 1}.

Consider predictors in the form p(x; w) so that

p(·, w) : X ! Y,

If p(x, w) = wT x - linear classifier, more generally p(x, w) is
nonlinear, e.g., neural network.

Katya Scheinberg (Lehigh) Stochastic Framework September 28, 2018 4 / 35

Binary classification: Map w 2 W ✓ <
dw to y 2 Y ✓ {�1, 1}

Choose predictor p(w ; x) : W ! Y

If p(w ; x) = w
T
x - linear classifier; more generally, p(w ; x)

nonlinear (such as neural network).

Selection of the best classifier:
I Minimize Expected/Empirical Error, Loss, AUC

Coralia Cartis (University of Oxford)

Stochastic variants of classical optimization methods, with complexity guarantees



Finding the best predictor

[Curtis & Scheinberg, 2017; Scheinberg, 2018]

min
x2X

f (x) :=

Z

W⇥Y
1[yp(w ; x)  0]dP(w , y).

�! intractable due to unknown distribution

Use instead the empirical risk of p(w ; x) over finite training set S,

min
x2X

fS(x) :=
1

m

mX

i=1

1[yip(wi ; x)  0].

�! hard to solve, nonsmooth.

Use the smooth and ’easy’ empirical loss of p(w ; x) over the finite
training set S,

min
x2X

f̂S(x) :=
1

m

mX

i=1

l(p(wi ; x), yi ) =
mX

i=1

fi (x).

�! tractable but huge scale in n and m; deterministic formulation.
Care also about expected loss IE(l(p(w ; x), y)) (stochastic).

Coralia Cartis (University of Oxford)

Stochastic variants of classical optimization methods, with complexity guarantees



Lecture Course Outline

I Unconstrained optimization :
I optimality conditions (characterizing optimality solutions of

unconstrained problems)
I algorithms/methods : gradient and Newton methods,

line-search and trust-region techniques to ensure convergence.

I Constrained optimization :
I optimality conditions (characterizing optimality solutions of

constrained problems)
I algorithms/methods : penalty methods, augmented

Lagrangian, interior point algorithms and time permitting,
more.

Problem/intercollegiate classes: 4.
Numerical laboratories: 2 (optional, details TBC.)
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Resources
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Comments on the bibliography

For a comprehensive, yet highly accessible, introduction to numerical methods for continuous (uncon-
strained and constrained) optimization problems, see [6] - most recommended (but not required) for this
course ! Reference [5] is also a very good, but more succinct introduction to this topic, with particular
emphasis on nonconvex problems and with a well-structured bibliography of fundamental optimization
articles. The monograph [1] is the most comprehensive reference book on trust-region methods to date.
The remaining books in the bibliography are classics of the nonlinear (constrained and unconstrained)
optimization literature.

Online and software resources

For an index and a guide to existing public and commercial software for solving (constrained and uncon-
strained) optimization problems, see

http://neos-guide.org/Optimization-Guide
and follow the links to Optimization Tree for example. Other useful links related to optimization may be
found at the same webpage (links to test problems, to the NEOS Server which solves user-sent optimiza-
tion problems over the internet, to online repositories of optimization articles, etc.).

For general nonconvex, smooth constrained and unconstrained problems the following software pack-
ages are of high quality/reliable: KNITRO, IPOPT, GALAHAD, etc. MATLAB’s optimization toolbox
(available on departmental computers) contains built-in optimization solvers for various problem classes
- be careful which subroutine you choose ! COIN-OR is a public software repository that you may find
useful in the future.

An important aspect of optimization software is the interface that allows the user to input the problem
to the solver; interfaces, and hence acceptable input formats, vary between solvers. Presently, usually
besides file-input in the language the solver is written in, much software allows MATLAB input files
or/and AMPL files (AMPL is a modelling language specifically designed for expressing optimization
problems; see www.ampl.com), etc.
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Mathematical Background
(brief review)

Optimization draws on a number of key results in analysis and linear algebra. We briefly summarize
some useful notions here. For more details, you may consult Burden, R.L., & Faires, J.D., Numerical
Analysis, 6th edition or later, Brooks/Cole Publishing.

Single valued functions and their derivatives

All the functions f : Rn !→ R in this course are assumed to be smooth.

• The function l : Rn !→ R is a linear function iff it is of the form

l(x) = d+ gTx ≡ d+
n
∑

i=1

gixi, where g =

⎛

⎜

⎜

⎜

⎝

g1
g2
...
gn

⎞

⎟

⎟

⎟

⎠

, x =

⎛

⎜

⎜

⎜

⎝

x1

x2
...
xn

⎞

⎟

⎟

⎟

⎠

,

and d ∈ R and g ∈ Rn are known.

• The function q(x) : Rn !→ R is a quadratic function iff it is of the form

q(x) = d+ gTx+
1

2
xTHx = d+

n
∑

i=1

gixi +
1

2

n
∑

i=1

n
∑

j=1

hijxixj , where H =

⎛

⎜

⎜

⎜

⎝

h11 h12 . . . h1n

h21 h22 . . . h2n
...

...
. . .

...
hn1 hn2 . . . hnn

⎞

⎟

⎟

⎟

⎠

.

may be taken to be constant and symmetric. Although a quadratic function is strictly nonlinear,
its properties are such that it is treated separately. Thus the term ‘nonlinear function’ often refers
to a function which is not linear or quadratic.

• For the function f : Rn !→ R, the vector of first partial derivatives or gradient vector is

g(x) ≡ ∇f(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂f

∂x1
∂f

∂x2
...
∂f

∂xn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(x),

where ∇ denotes the gradient operator (∂/∂x1 ∂/∂x2 . . . ∂/∂xn)
T .

• For the function f : Rn !→ R, the matrix of second partial derivatives or Hessian matrix

H(x) ≡ ∇[g(x)]T = ∇[∇f(x)]T = ∇∇T f(x) = ∇2f(x),

1


